JP2654326B2 - Cryogenic thermal power generation equipment - Google Patents

Cryogenic thermal power generation equipment

Info

Publication number
JP2654326B2
JP2654326B2 JP4336327A JP33632792A JP2654326B2 JP 2654326 B2 JP2654326 B2 JP 2654326B2 JP 4336327 A JP4336327 A JP 4336327A JP 33632792 A JP33632792 A JP 33632792A JP 2654326 B2 JP2654326 B2 JP 2654326B2
Authority
JP
Japan
Prior art keywords
thermocouple
heat insulating
power generation
wall
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4336327A
Other languages
Japanese (ja)
Other versions
JPH06188463A (en
Inventor
浩史 緑川
哲樹 菊地
賢二 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP4336327A priority Critical patent/JP2654326B2/en
Publication of JPH06188463A publication Critical patent/JPH06188463A/en
Application granted granted Critical
Publication of JP2654326B2 publication Critical patent/JP2654326B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、極低温物質の冷熱利用
発電装置に関し、特にLNG等の極低温物質を貯蔵する
地下タンク等における冷熱を利用する発電装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cryogenic power generation device using cryogenic material, and more particularly to a power generation device using cryogenic heat in an underground tank or the like for storing cryogenic material such as LNG.

【0002】[0002]

【従来の技術】液化天然ガスであるLNG等の極低温物
質は、例えば-160゜C程度で保存され、大きな冷熱を保持
している。この極低温物質の冷熱に対しては、一方では
空気液化分離、極低温倉庫等による有効利用が試みられ
てきた。他方、極低温物質を貯蔵する地下タンク等にお
いては、冷熱により貯蔵タンク周辺の地盤が凍結する問
題がある。地盤凍結を防止するため、図4に示すよう
に、貯蔵タンク2の断熱壁3の外側にヒートフェンスや
温水ヒータ等の熱源5を含む連壁4等の地盤保温構造が
設けられている。
2. Description of the Related Art A cryogenic substance such as LNG, which is a liquefied natural gas, is stored at, for example, about -160 ° C. and retains a large amount of cold. On the other hand, attempts have been made to effectively utilize the cold heat of the cryogenic substance by air liquefaction separation and cryogenic storage. On the other hand, in an underground tank or the like that stores a cryogenic substance, there is a problem that the ground around the storage tank freezes due to cold heat. In order to prevent ground freezing, as shown in FIG. 4, a ground heat insulating structure such as a continuous wall 4 including a heat source 5 such as a heat fence or a hot water heater is provided outside the heat insulating wall 3 of the storage tank 2.

【0003】[0003]

【発明が解決しようとする課題】しかし、前記地盤保温
構造における熱源5から連壁4へ供給される熱エネルギ
ーのうち、連壁4の外側から周囲の地盤8へ伝わる熱は
地盤保温目的のため有効に使用されるが、連壁4の内側
から低温の貯蔵タンクの断熱壁3へ伝わる熱は有効に利
用されていない。また、極低温物質の冷熱を利用する従
来の空気液化分離、極低温倉庫等の方法は、何れも大規
模で複雑な設備を必要とするためその実施は容易でなか
った。
However, of the thermal energy supplied from the heat source 5 to the continuous wall 4 in the above-mentioned ground thermal insulation structure, the heat transmitted from the outside of the continuous wall 4 to the surrounding ground 8 is used for the purpose of keeping the ground warm. Although it is used effectively, the heat transmitted from the inside of the continuous wall 4 to the heat insulating wall 3 of the low-temperature storage tank is not effectively used. In addition, conventional methods such as air liquefaction separation and cryogenic storage that use the cold heat of cryogenic substances are not easy to implement because all require large-scale and complicated facilities.

【0004】従って本発明の目的は、極低温物質の貯蔵
タンクの周囲地盤保温に要する外部エネルギーを節減す
にある。
[0004] It is therefore an object of the present invention to store cryogenic substances.
Reduces external energy required to keep the ground around the tank warm
In

【0005】[0005]

【課題を解決するための手段】本発明者は、前記目的実
現のため、熱電対によるベーゼック効果に注目した。熱
電対10は、例えば図5(A)に示すように、n形熱電素子
11とp形熱電素子12とからなり、各熱電素子11、12の一
端13を結合し、各熱電素子11、12の他端19を出力端子17
を介して外部へ接続すると共に各熱電素子11、12の他端
19を同一温度に保ったものである。図中、点線枠は二つ
の他端19が同一温度に保たれることを示す。熱電対10の
異種熱電素子11、12の結合部たるべき一端13及び他端19
をそれぞれ異なる温度T1、T2に保つと、ベーゼック効果
により2つの出力端子17に起電力Vが発生する。熱電対
のこの原理を利用すれば、極低温物質の持つ冷熱を電気
エネルギーとして回収することができる。
Means for Solving the Problems In order to realize the above object, the present inventor paid attention to the Beheck effect by a thermocouple. The thermocouple 10 is, for example, as shown in FIG.
11 and a p-type thermoelectric element 12. One end 13 of each thermoelectric element 11, 12 is connected, and the other end 19 of each thermoelectric element 11, 12 is connected to an output terminal 17.
And the other end of each thermoelectric element 11, 12
19 was kept at the same temperature. In the figure, the dotted frame indicates that the two other ends 19 are kept at the same temperature. One end 13 and the other end 19 to be the connecting portions of the different thermoelectric elements 11 and 12 of the thermocouple 10
Are maintained at different temperatures T1 and T2, respectively, an electromotive force V is generated at the two output terminals 17 due to the Besek effect. If this principle of a thermocouple is used, the cold heat of the cryogenic substance can be recovered as electric energy.

【0006】図1、4及び5の実施例を参照するに、本
発明の極低温物質の冷熱利用発電装置9は、断熱壁3外
側に熱源5付き連壁4を設けた極低温物質1の貯蔵タン
ク2において、断熱壁3の外側表面近傍の等温線が最も
密である部位にその等温線と平行に長く形成したスリッ
ト内に複数の熱電対10を挿入し、各熱電対10の異種熱電
素子の結合部たるべき一端13(又は19)及び他端19(又は1
3)をそのスリットの前記等温線と平行な対向面にそれぞ
れ電気的に絶縁して接触させ、各熱電対10の起電力が生
じる端部を出力端子17(図5(C))に接続してなるもの
である
Referring to the embodiments shown in FIGS. 1, 4 and 5 , a cryogenic substance cold heat power generating apparatus 9 according to the present invention comprises a cryogenic substance 1 provided with a continuous wall 4 having a heat source 5 outside a heat insulating wall 3. In the storage tank 2, the isotherm near the outer surface of the heat insulating wall 3 is the most
In a dense part, a slit formed long parallel to the isotherm
A plurality of thermocouples 10 are inserted into the thermocouple 10, and one end 13 (or 19 ) and the other end 19 (or
3) on the opposite surface of the slit parallel to the isotherm
Re which electrically contacted by insulation, formed by connecting the end of the output terminal 17 which electromotive force is generated in each thermocouple 10 (FIG. 5 (C))
It is .

【0007】本発明における連壁4とは、断熱壁3の外
側に連なって地盤保温用の熱源5が含まれる壁を意味す
る。図1(B)に示すように熱源5が断熱壁3内に埋め込
まれている場合には、断熱壁3中の熱源5を含む部分が
連壁4に該当する。図中の仮想線I−Iは、貯蔵タンク
2の内側から見て仮想線I−Iより外側は連壁4とみな
されることを意味する。
[0007] The continuous wall 4 in the present invention means a wall connected to the outside of the heat insulating wall 3 and including a heat source 5 for keeping the ground warm. When the heat source 5 is embedded in the heat insulating wall 3 as shown in FIG. 1B, the portion of the heat insulating wall 3 including the heat source 5 corresponds to the continuous wall 4. The imaginary line II in the drawing means that the outside of the imaginary line II as viewed from the inside of the storage tank 2 is regarded as the continuous wall 4.

【0008】図1に示す発電装置9の実施例では、例え
ば断熱壁3又は連壁4の少なくとも一方に熱電対10の両
端間の長さに相当する間隙のスリットを設け、熱電対10
をそのスリットへ挿入する。設計段階から貯蔵タンク2
に発電装置9を含める場合には、貯蔵タンク2の断熱壁
3を構成する側壁や底壁の構築時にあらかじめその表面
へ熱電対10を取付け、最適の発電を行うことができる。
In the embodiment of the power generating device 9 shown in FIG. 1, for example, at least one of the heat insulating wall 3 and the continuous wall 4 is provided with a slit having a gap corresponding to the length between both ends of the thermocouple 10, and the thermocouple 10
Into the slit. Storage tank 2 from the design stage
When the power generation device 9 is included in the storage tank 2, a thermocouple 10 is previously attached to the surface of the side wall or the bottom wall constituting the heat insulating wall 3 of the storage tank 2 so that optimum power generation can be performed.

【0009】好ましくは図2及び5の実施例に示すよう
に、複数の熱電対10からなるモジュール20を対向する2
枚の保護板16で挟持し、各熱電対10の一端13及び他端19
を一方の保護板16の対向面及び他方の保護板16の対向面
にそれぞれ電気的に絶縁して接触させ、一方の保護板16
及び他方の保護板16を断熱壁3の外側表面及び連壁4の
内側表面にそれぞれ接触させる。各熱電対10の一端13
(又は19)及び他端19(又は13)は保護板16を介して断熱壁
3の外側表面及び連壁4の内側表面にそれぞれ接触す
る。保護板16は、例えばセラミック板とすることがで
き、機械的強度を有して熱電対10を保護する。更に好ま
しくは、熱電対10をビスマス−テルル系熱電材料製とす
る。
Preferably, as shown in the embodiment of FIGS. 2 and 5 , a module 20 comprising a plurality of
And one end 13 and the other end 19 of each thermocouple 10.
Are electrically insulated and in contact with the opposing surface of one protective plate 16 and the opposing surface of the other protective plate 16, respectively.
And the other protective plate 16 is brought into contact with the outer surface of the heat insulating wall 3 and the inner surface of the continuous wall 4, respectively. One end 13 of each thermocouple 10
(Or 19 ) and the other end 19 (or 13) are in contact with the outer surface of the heat insulating wall 3 and the inner surface of the continuous wall 4 via the protective plate 16, respectively. The protection plate 16 may be, for example, a ceramic plate and has a mechanical strength to protect the thermocouple 10. More preferably, the thermocouple 10 is made of a bismuth-tellurium-based thermoelectric material.

【0010】[0010]

【作用】図4に、極低温物質1の貯蔵タンク2における
断熱壁3の温度分布の一例を示す。図4(A)に底面に垂
直な断面に於ける温度分布を示し、図4(B)は底面と平
行な断面に於ける断熱壁3とその外側の温度分布を示
す。図示例の場合、極低温物質1に近い断熱壁3の内側
では極低温物質1の冷熱により−25゜Cから−40゜C程度に
保たれ、連壁4と対向する断熱壁3の外側では熱源5よ
り供給される温熱により−0゜C程度となり、その間で等
温線が間隔を密にして並んでいることが分る。一方、連
壁4では等温線の間隔は広くなり、周囲の地盤8は8゜C
程度に保温されている。
FIG. 4 shows an example of the temperature distribution of the heat insulating wall 3 in the storage tank 2 for the cryogenic substance 1. FIG. 4A shows a temperature distribution in a cross section perpendicular to the bottom surface, and FIG. 4B shows a heat distribution wall 3 in a cross section parallel to the bottom surface and a temperature distribution on the outside thereof. In the case of the illustrated example, the inside of the heat insulating wall 3 close to the cryogenic substance 1 is kept at about −25 ° C. to −40 ° C. by the cold heat of the cryogenic substance 1, and outside the heat insulating wall 3 facing the continuous wall 4. It becomes approximately −0 ° C. due to the heat supplied from the heat source 5, and it can be seen that the isothermal lines are arranged closely at intervals. On the other hand, in the continuous wall 4, the interval between the isotherms becomes wider, and the surrounding ground 8 becomes 8 ° C.
It is kept warm to the extent.

【0011】本発明の発電装置9は等温線が密に並ぶ断
熱壁3と連壁4の間に挿入され、各熱電対10の断熱壁3
の外側表面に接触する一端13(又は19)は極低温物質1の
冷熱により冷却され、連壁4の内側表面と接触する他端
19(又は13)は熱源5の熱により相対的に高温となる。異
種熱電素子の結合部たるべき両端が異なる温度に保持さ
れるので熱電対10に起電力が生じ、各熱電対10に生じた
起電力を出力端子17を介して外部へ取り出すことができ
る。
The power generator 9 of the present invention is inserted between the heat insulating wall 3 and the continuous wall 4 in which isothermal lines are densely arranged, and the heat insulating wall 3 of each thermocouple 10 is provided.
One end 13 (or 19 ) contacting the outer surface of the wall is cooled by the cold heat of the cryogenic substance 1 and the other end contacting the inner surface of the continuous wall 4.
19 (or 13) becomes relatively high temperature due to the heat of the heat source 5. Since the two ends of the different thermoelectric elements, which are the connecting portions, are maintained at different temperatures, an electromotive force is generated in the thermocouples 10, and the electromotive force generated in each thermocouple 10 can be taken out through the output terminal 17.

【0012】図4に示すように断熱壁3の外壁温度が−
0゜C程度である場合は、本発明の熱電対10として、常温
近傍で最大熱電変換効率を有するビスマス−テルル系熱
電材料を用いることができる。しかし、本発明の熱電対
10はこれに限定されるものではなく、他の常温付近で使
用できる熱電材料、更に断熱壁3の外壁温度が常温でな
い場合にはその温度に応じた熱電材料を用いることがで
きる。
As shown in FIG. 4, the temperature of the outer wall of the heat insulating wall 3 is-
When the temperature is approximately 0 ° C., a bismuth-tellurium-based thermoelectric material having a maximum thermoelectric conversion efficiency near room temperature can be used as the thermocouple 10 of the present invention. However, the thermocouple of the present invention
10 is not limited to this, and other thermoelectric materials that can be used near normal temperature, and further, when the outer wall temperature of the heat insulating wall 3 is not normal temperature, a thermoelectric material corresponding to the temperature can be used.

【0013】例えば熱源5を連壁4の内側表面に近い部
位に設けた場合には、熱電対の一端を熱源5の運転温度
に近い温度に保持することができる。即ち、熱源5の運
転温度が20゜C程度の場合には、熱電対10の両端間の温度
差を30゜C程度とすることが可能となる。本発明者の試算
によると両端間の温度差が30゜Cの場合には0.018W/cm2
電力が得られ、熱電対10を1m2に敷きつめた場合には18
0Wの出力を得ることができる。
For example, when the heat source 5 is provided near the inner surface of the continuous wall 4, one end of the thermocouple can be maintained at a temperature close to the operating temperature of the heat source 5. That is, when the operating temperature of the heat source 5 is about 20 ° C., the temperature difference between both ends of the thermocouple 10 can be made about 30 ° C. According to the estimation of the present inventor, when the temperature difference between both ends is 30 ° C., power of 0.018 W / cm 2 is obtained, and when the thermocouple 10 is spread over 1 m 2 , 18
0W output can be obtained.

【0014】本発明の発電装置9は、断熱壁3と連壁4
との間に熱電対10を挿入してなる簡単な構造であって、
しかも容易に極低温物質の冷熱を利用することができ
る。従って、本発明の目的である「極低温物質の冷熱を
利用した簡易な構造の発電装置」の提供が達成される。
The power generation device 9 of the present invention comprises the heat insulating wall 3 and the continuous wall 4.
It is a simple structure with a thermocouple 10 inserted between
Moreover, it is possible to easily use the cold heat of the cryogenic substance. Therefore, the object of the present invention is to provide a "power generator having a simple structure using cold heat of a cryogenic substance".

【0015】[0015]

【実施例】図5(B)に示すように、n形熱電素子11の一
端とp形熱電素子12の一端を導電性の結合電極14によっ
て接続して熱電対の一端13としても、図5(A)の一端13
と同様に機能することが実験的に確認されている。図5
(B)の熱電対10の複数個を平面状の所定面状に配列して
図5(C)に示す熱電対モジュール20を形成し、これを用
いて本発明の発電装置9を製造することができる。
As shown in FIG. 5B, one end of an n-type thermoelectric element 11 and one end of a p-type thermoelectric element 12 are connected by a conductive coupling electrode 14 to form one end 13 of a thermocouple. One end 13 of (A)
It has been experimentally confirmed that it functions similarly to. FIG.
A plurality of thermocouples 10 of (B) are arranged in a predetermined planar shape to form a thermocouple module 20 shown in FIG. 5 (C), and the power generating device 9 of the present invention is manufactured using the module. Can be.

【0016】図2の実施例は、例えばモジュール20とし
た複数の熱電対10を対向する2枚の保護板16で挟持する
と共に、各熱電対10の異種熱電素子の結合部たるべき一
端及び他端を一方の保護板16の対向面及び他方の保護板
16の対向面にそれぞれ電気的に絶縁して接触させ、各熱
電対10の起電力が生じる端部に接続された出力端子17を
備えた発電ユニット18を示す。発電ユニット18は数十cm
角から数m角の大きさとすることができ、発電に利用す
る断熱壁3の面積や回収するエネルギー量等によって大
きさを選択し、組み合わせて発電装置9を組み立てる。
形状も図示例の平板形に限定されず、断熱壁3の外側表
面に嵌合する任意の形状とすることができる。好ましく
は、発電ユニット18の熱電対10をビスマス−テルル系熱
電材料製とする。
In the embodiment of FIG. 2, for example, a plurality of thermocouples 10 in the form of a module 20 are sandwiched between two opposing protective plates 16, and one end of each thermocouple 10 to be a connecting portion of a different thermoelectric element and another The end is the opposite surface of one protection plate 16 and the other protection plate
16 shows a power generation unit 18 having an output terminal 17 connected to an end of each thermocouple 10 where an electromotive force is generated, each of which is electrically insulated and in contact with the opposite surface of the thermocouple 16. Power generation unit 18 is several tens of cm
The size can be several m from the corner, and the size is selected according to the area of the heat insulating wall 3 used for power generation, the amount of energy to be recovered, and the like, and the power generation device 9 is assembled by combining the sizes.
The shape is not limited to the flat plate shape in the illustrated example, but may be any shape that fits on the outer surface of the heat insulating wall 3. Preferably, the thermocouple 10 of the power generation unit 18 is made of a bismuth-tellurium-based thermoelectric material.

【0017】図3の実施例は、連壁4の内側表面に保温
装置6を接触させ、保温装置6を断熱壁3の外側表面と
間隙を介して対向させ、この間隙中に複数の熱電対10を
配置し、各熱電対10の異種熱電素子の結合部たるべき一
端及び他端を断熱壁3の外側表面及び保温装置6にそれ
ぞれ電気的に絶縁して接触させた本発明の発電装置9を
示す。好ましくは、複数の熱電対10を対向する2枚の保
護板16で挟持して配置する。図示例の保温装置6は、連
壁4の内側表面に接触する箱体23及び箱体23内部に外部
から温水21を取り込み内部を循環させた後外部へ送り出
す内部循環手段24を備え、箱体23の壁を通して温水21の
温熱を連壁4及び発電装置9へ供給する。保温装置6と
してヒートフェンス等を用いてもよい。保温装置6の温
熱を連壁4を介さず熱電対10へ伝えるので、熱電対10の
両端間の温度差を大きく保ち効率の良い発電が期待でき
る。また、図3に示す発電装置9を図2に示す発電ユニ
ット18を用いて組み立てることもできる。
In the embodiment shown in FIG. 3, a heat insulating device 6 is brought into contact with the inner surface of the continuous wall 4, and the heat insulating device 6 is opposed to the outer surface of the heat insulating wall 3 via a gap. A power generator 9 according to the present invention, in which one end and the other end of the thermocouple 10 to be connected to the different thermoelectric elements are electrically insulated and contact with the outer surface of the heat insulating wall 3 and the heat retaining device 6, respectively. Is shown. Preferably, a plurality of thermocouples 10 are arranged so as to be sandwiched between two facing protection plates 16. The heat retaining device 6 in the illustrated example includes a box 23 in contact with the inner surface of the continuous wall 4, and internal circulating means 24 for taking in hot water 21 from the outside into the box 23, circulating the inside, and sending it out to the outside. The heat of the hot water 21 is supplied to the continuous wall 4 and the power generator 9 through the 23 walls. A heat fence or the like may be used as the heat retaining device 6. Since the heat of the heat retaining device 6 is transmitted to the thermocouple 10 without passing through the continuous wall 4, a large temperature difference between both ends of the thermocouple 10 can be maintained, and efficient power generation can be expected. Further, the power generation device 9 shown in FIG. 3 can be assembled using the power generation unit 18 shown in FIG.

【0018】[0018]

【発明の効果】以上詳細に説明したように、本発明によ
る極低温物質の冷熱利用発電装置は、複数の熱電対を極
低温物質貯蔵タンクの断熱壁外側表面とこれに対向する
地盤保温熱源を含む連壁の内側表面との間に挿入する構
成を有するので、次の顕著な効果を奏する。 (1)簡易な構成により、極低温物質1が保持する冷熱を
利用して電気エネルギーを取り出すことができる。 (2)連壁を含む地盤保温構造内において、発電エネルギ
ーの全部又は一部を連壁が有する熱源へ加えることによ
り、地盤保温構造内へ外部から供給する熱量の節減が期
待できる。
As described above in detail, the cryogenic substance cold energy power generating apparatus according to the present invention comprises a plurality of thermocouples each comprising the outer surface of the heat insulating wall of the cryogenic substance storage tank and the ground heat insulating heat source opposed thereto. Since it is configured to be inserted between the inner surface of the connecting wall and the connecting wall, the following remarkable effects are exhibited. (1) With a simple configuration, it is possible to extract electric energy by using cold heat held by the cryogenic substance 1. (2) By adding all or a part of the generated energy to the heat source of the continuous wall in the ground thermal insulation structure including the continuous wall, it is possible to reduce the amount of heat supplied from the outside to the ground thermal insulation structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明の一実施例の説明図である。FIG. 1 is an explanatory diagram of one embodiment of the present invention.

【図2】は、本発明の発電ユニットの説明図である。FIG. 2 is an explanatory diagram of a power generation unit of the present invention.

【図3】は、本発明の他の実施例の説明図である。FIG. 3 is an explanatory diagram of another embodiment of the present invention.

【図4】は、極低温物質の貯蔵タンクの温度分布図であ
る。
FIG. 4 is a temperature distribution diagram of a cryogenic substance storage tank.

【図5】は、本発明の熱電対の説明図である。FIG. 5 is an explanatory diagram of a thermocouple according to the present invention.

【符号の説明】[Explanation of symbols]

1 極低温物質 2 貯蔵タンク 3
断熱壁 4 連壁 5 地盤保温用の熱源 6
保温装置 8 地盤 9 発電装置 10
熱電対 11 n形熱電素子 12 p形熱電素子 13
一端 14 結合電極 15 接続電極 16
保護板 17 出力端子 18 発電ユニット 19
他端 20 熱電対モジュール 21 温水 23
箱体 24 温水循環手段。
1 Cryogenic substance 2 Storage tank 3
Insulated wall 4 Connecting wall 5 Heat source for keeping the ground warm 6
Heat insulation device 8 Ground 9 Power generation device 10
Thermocouple 11 N-type thermoelectric element 12 P-type thermoelectric element 13
One end 14 Coupling electrode 15 Connection electrode 16
Protection plate 17 Output terminal 18 Power generation unit 19
Other end 20 Thermocouple module 21 Hot water 23
Box 24 Hot water circulation means.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 断熱壁外側に熱源付き連壁を設けた極低
温物質の貯蔵タンクにおいて、前記断熱壁の外側表面近
傍の等温線が最も密である部位に前記等温線と平行に長
く形成したスリット内に複数の熱電対を挿入し、各熱電
対の異種熱電素子の結合部たるべき一端及び他端を前記
スリットの前記等温線と平行な対向面にそれぞれ電気的
に絶縁して接触させ、各熱電対の起電力が生じる端部を
出力端子に接続してなる極低温物質の冷熱利用発電装
置。
1. A storage tank for a cryogenic substance having a continuous wall with a heat source provided outside a heat insulating wall, the tank being near an outer surface of the heat insulating wall.
In the area where the next isotherm is the densest, extend parallel to the isotherm
A plurality of thermocouples are inserted into the formed slit, and one end and the other end of each thermocouple, which are to be joined portions of the different types of thermoelectric elements, are described above.
A cryogenic thermal power generation apparatus using a cryogenic substance, wherein an end of each of the thermocouples where an electromotive force is generated is connected to an output terminal, each of the slits being electrically insulated and in contact with a facing surface of the slit parallel to the isotherm .
【請求項2】 請求項1の発電装置において、前記連壁
の内側表面に保温装置を設け、前記保温装置を前記断熱
壁の外側表面と間隙を介して対向させ、前記間隙を前記
スリットとし該スリット中に前記複数の熱電対を配置
し、前記各熱電対の一端及び他端を前記断熱壁の外側表
面及び前記保温装置にそれぞれ電気的に絶縁して接触さ
せてなる極低温物質の冷熱利用発電装置。
2. The power generator according to claim 1, wherein a heat insulating device is provided on an inner surface of the connecting wall, and the heat insulating device is opposed to an outer surface of the heat insulating wall via a gap.
A cryogenic substance comprising a plurality of thermocouples arranged as slits and one end and the other end of each thermocouple electrically insulated and in contact with the outer surface of the heat insulating wall and the heat retaining device, respectively. Power generation equipment using cold energy.
【請求項3】 請求項1又は2の発電装置において、前
記複数の熱電対を対向する2枚の絶縁性セラミック保護
板で挟持し、前記各熱電対の一端及び他端を一方の保護
板の対向面及び他方の保護板の対向面にそれぞれ電気的
に絶縁して接触させ、前記一方の保護板及び他方の保護
板を前記断熱壁の外側表面及び前記連壁の内側表面にそ
れぞれ接触させてなる極低温物質の冷熱利用発電装置。
3. The power generator according to claim 1, wherein the plurality of thermocouples are sandwiched between two opposing insulating ceramic protection plates, and one end and the other end of each thermocouple are connected to one of the protection plates. The opposite surface and the opposite surface of the other protection plate are respectively electrically insulated and contacted, and the one protection plate and the other protection plate are respectively brought into contact with the outer surface of the heat insulating wall and the inner surface of the continuous wall, respectively. Cryogenic thermal power generation equipment.
【請求項4】 請求項1、2又は3の発電装置におい
て、前記熱電対をビスマス−テルル系熱電材料製として
なる極低温物質の冷熱利用発電装置。
4. The power generator according to claim 1, wherein the thermocouple is made of a bismuth-tellurium-based thermoelectric material.
【請求項5】 複数の熱電対を対向する2枚の絶縁性セ
ラミック保護板で挟持し、各熱電対の異種熱電素子の結
合部たるべき一端及び他端を一方の絶縁性セラミック
護板の対向面及び他方の保護板の対向面にそれぞれ電気
的に絶縁して接触させ、各熱電対の起電力が生じる端部
に接続された出力端子を備えてなる、請求項2又は3の
発電装置用の発電ユニット。
5. A plurality of thermocouples facing two insulating cells.
Was sandwiched between ceramic protective plate, respectively electricity opposing surface of the opposing surfaces and the other of the protective plate of one of the insulating ceramic coercive <br/> Mamoruban the coupling portion serving to one end and the other end of the heterologous thermoelectric elements of each thermocouple The power generation unit for a power generation device according to claim 2 or 3, further comprising an output terminal that is electrically insulated and in contact with each other, and is connected to an end where an electromotive force of each thermocouple is generated.
【請求項6】 請求項5の発電ユニットにおいて、前記
熱電対をビスマス−テルル系熱電材料製としてなる発電
ユニット。
6. The power generation unit according to claim 5, wherein said thermocouple is made of a bismuth-tellurium-based thermoelectric material.
JP4336327A 1992-12-16 1992-12-16 Cryogenic thermal power generation equipment Expired - Lifetime JP2654326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4336327A JP2654326B2 (en) 1992-12-16 1992-12-16 Cryogenic thermal power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4336327A JP2654326B2 (en) 1992-12-16 1992-12-16 Cryogenic thermal power generation equipment

Publications (2)

Publication Number Publication Date
JPH06188463A JPH06188463A (en) 1994-07-08
JP2654326B2 true JP2654326B2 (en) 1997-09-17

Family

ID=18297978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4336327A Expired - Lifetime JP2654326B2 (en) 1992-12-16 1992-12-16 Cryogenic thermal power generation equipment

Country Status (1)

Country Link
JP (1) JP2654326B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269645B1 (en) 1998-05-14 2001-08-07 Yyl Corporation Power plant

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57189584A (en) * 1981-05-15 1982-11-20 Citizen Watch Co Ltd Thermal generator
JPS58119781A (en) * 1982-01-09 1983-07-16 Yoshiro Nakamatsu Snow generator

Also Published As

Publication number Publication date
JPH06188463A (en) 1994-07-08

Similar Documents

Publication Publication Date Title
TW425729B (en) Thermal electric module unit
US20180138383A1 (en) Systems, Methods and/or Apparatus for Thermoelectric Energy
US20050087222A1 (en) Device for producing electric energy
US20090263708A1 (en) System and method of integrated thermal management for a multi-cell battery pack
CN103098249A (en) Distributed thermoelectric string and insulating panel and applications for local heating, local cooling, and power generation from heat
US5987891A (en) Thermoelectric refrigerator/warmer using no external power, and refrigerating/warming method
AU2688992A (en) Thermoelectric refrigeration system with flexible heat-conducting element
US6797427B2 (en) System for enhanced lithium-ion battery performance at low temperatures
CN103323780A (en) Thermoelectric material thermoelectric conversion performance testing system and method
KR20070081441A (en) Flexible thermoelectric effect device for cooling
JP2654326B2 (en) Cryogenic thermal power generation equipment
US3561224A (en) Thermoelectric temperature controller
WO2002101912A1 (en) Thermoelectric effect device, direct energy conversion system, and energy conversion system
US20130205780A1 (en) System and method for thermoelectric energy generation
US3183121A (en) Thermoelectric generator with heat transfer and thermal expansion adaptor
JP4261890B2 (en) Thermoelectric device, direct energy conversion system, energy conversion system
US20070137686A1 (en) Differential temperature energy harvesting in a fuel cell powered underwater vehicle
JPH06159953A (en) Latent-heat storage device
US20050126618A1 (en) Device for producing electric energy
US20070128473A1 (en) Differential temperature energy harvesting in a fuel cell powered underwater vehicle
JPH0229546A (en) Heat storage apparatus
JP4253471B2 (en) Energy conversion system
RU2658494C1 (en) Autonomous portable thermoelectric power source
JP3278494B2 (en) How to heat the windings of stationary induction equipment
Rajasekaran et al. Portable Thermoelectric Refrigeration System using Solar Energy