JP2643328B2 - Molecular beam crystal growth equipment - Google Patents

Molecular beam crystal growth equipment

Info

Publication number
JP2643328B2
JP2643328B2 JP17476088A JP17476088A JP2643328B2 JP 2643328 B2 JP2643328 B2 JP 2643328B2 JP 17476088 A JP17476088 A JP 17476088A JP 17476088 A JP17476088 A JP 17476088A JP 2643328 B2 JP2643328 B2 JP 2643328B2
Authority
JP
Japan
Prior art keywords
molecular beam
rheed
growth rate
substrate
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17476088A
Other languages
Japanese (ja)
Other versions
JPH0226890A (en
Inventor
毅 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17476088A priority Critical patent/JP2643328B2/en
Publication of JPH0226890A publication Critical patent/JPH0226890A/en
Application granted granted Critical
Publication of JP2643328B2 publication Critical patent/JP2643328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 〔概要〕 反射高エネルギ電子線回折(RHEED)振動の観察によ
り,結晶成長速度をモニタする分子線結晶成長(MBE)
装置に関し, RHEED振動の減衰を抑制して,成長速度の正確な測定
を可能とし,MBE成長の精度向上に寄与することを目的と
し, RHEED振動の観察により結晶成長速度をモニタする装
置を有し,被成長基板に入射させる該装置の測定用電子
線の入射面が,成長速度を決定する元素の分子線の入射
面にほぼ垂直になるように構成する。
DETAILED DESCRIPTION OF THE INVENTION [Overview] Molecular beam crystal growth (MBE) that monitors the crystal growth rate by observing reflection high energy electron diffraction (RHEED) vibration
The equipment has a device to monitor the crystal growth rate by observing the RHEED oscillation with the aim of suppressing the attenuation of the RHEED oscillation, enabling the accurate measurement of the growth rate and contributing to the improvement of the MBE growth accuracy. The apparatus is configured such that the plane of incidence of the measuring electron beam incident on the substrate to be grown is substantially perpendicular to the plane of incidence of the molecular beam of the element that determines the growth rate.

〔産業上の利用分野〕[Industrial applications]

本発明は反射高エネルギ電子線回折(RHEED)振動の
観察により,結晶成長速度をモニタする分子線結晶成長
(MBE)装置に関する。
The present invention relates to a molecular beam crystal growth (MBE) apparatus for monitoring a crystal growth rate by observing reflection high energy electron diffraction (RHEED) vibration.

MBE装置は,超格子を利用する半導体素子のように原
子層単位で厚さが制御される素子の形成に広く利用され
ている。分子線を発生させる分子線源は,成長させよう
とする物質に応じ単数または複数の元素を用意し,必要
分子線源を選択使用して所望の物質層を成長させる。
MBE devices are widely used for forming devices whose thickness is controlled in units of atomic layers, such as semiconductor devices using a superlattice. As a molecular beam source for generating a molecular beam, one or a plurality of elements are prepared according to a substance to be grown, and a desired material layer is grown by selectively using a necessary molecular beam source.

このようなMBEにおいては,結晶の成長速度は非常に
重要な因子である。従来,この成長速度の測定は,モニ
タ用のエピを成長し,その膜厚と成長時間から算出する
方法をとっていたが,モニタ用の基板が必要であること
と及びモニタ成長と膜厚の評価に時間がかかることのた
め,近年,超格子構造の形成等で所定数の原子層を正確
に成長させるために,RHEED振動による成長速度測定が行
われるようになってきた。
In such an MBE, the crystal growth rate is a very important factor. Conventionally, this growth rate was measured by growing a monitor epi and calculating it from its film thickness and growth time. However, the need for a monitor substrate and the monitor growth and film thickness Due to the time required for evaluation, in recent years, growth rate measurement by RHEED oscillation has been performed in order to accurately grow a predetermined number of atomic layers by forming a superlattice structure or the like.

〔従来の技術〕[Conventional technology]

第6図は従来のMBE装置の模式断面図である。 FIG. 6 is a schematic sectional view of a conventional MBE apparatus.

図において,1は被成長基板,2はRHEED用入射電子線,4
は成長速度を決定する元素の分子線,5は分子線源(加熱
手段を持ったるつぽ),6は分子線を遮断するシャッタ,7
はRHEED用電子銃,8は螢光スクリーン,9は超高真空チェ
ンバ,10は基板ホルダ,11はヒータである。
In the figure, 1 is the substrate to be grown, 2 is the incident electron beam for RHEED, 4
Is the molecular beam of the element that determines the growth rate, 5 is the molecular beam source (rutu with heating means), 6 is the shutter that shuts off the molecular beam, 7
Is an electron gun for RHEED, 8 is a fluorescent screen, 9 is an ultra-high vacuum chamber, 10 is a substrate holder, and 11 is a heater.

この装置を用いて基板1上にエピ成長を行う場合,所
望の半導体を成長するためのソースを蓄えたるつぼ5を
加熱し分子線を放射させる。例えばソースとしてGaとAs
を用いればGaAs結晶を,Siを用いればSi結晶を成長でき
る。
When epitaxial growth is performed on the substrate 1 using this apparatus, a crucible 5 storing a source for growing a desired semiconductor is heated to emit molecular beams. For example, Ga and As as sources
Can be used to grow a GaAs crystal, and Si can be used to grow a Si crystal.

RHEEDは電子銃7より出た電子線を基板面に対し1〜
2゜の浅い角度で基板1に入射させ,その反射電子線に
よる回折パターンを螢光スクリーン8上に写し出す方法
で,この成長中にRHEEDパターンの回折点の強度を測定
すると,成長速度に対応した振動が見られ,これを利用
して成長速度をモニタすることができる。
RHEED applies the electron beam emitted from the electron gun 7 to the substrate surface
The intensity of the diffraction point of the RHEED pattern was measured during the growth by a method in which the light was incident on the substrate 1 at a shallow angle of 2 ° and the diffraction pattern by the reflected electron beam was projected on the fluorescent screen 8. Oscillations are seen, which can be used to monitor the growth rate.

RHEED振動は,結晶が層状成長をしているときに生ず
るもので,表面で平坦に原子が堆積しているときはRHEE
Dの強度は極大となり,さらにその上に原子が堆積し始
めると乱反射により強度が落ちる。1層の成長が終わり
平坦な面が再び現れたとき,強度は再び極大となる。こ
のようにして1原子層の成長に対応した周期で強度の振
動が得られる。
RHEED oscillations occur when the crystal is growing in layers, and when the atoms are deposited flat on the surface, the RHEE
The intensity of D becomes maximal, and when atoms begin to accumulate on it, the intensity drops due to diffuse reflection. When the growth of one layer is over and the flat surface reappears, the intensity is again at its maximum. In this way, a strong vibration is obtained with a period corresponding to the growth of one atomic layer.

第7図(1)〜(3)は従来によるRHEED振動を説明
する図である。
FIGS. 7 (1) to 7 (3) are diagrams for explaining conventional RHEED vibration.

第7図(1)のように,成長速度を決定する元素であ
るGa分子線4が入射電子線2と15゜の角をなして基板中
心に入射していた。このとき,第7図(2)に示される
ように,GaAsの成長速度は基板上で入射電子線2の方向
に1mmつき1%の傾き,即ち,照射領域3(第1図参
照)の全長(約10mm)で10%の傾きを持っていた。
As shown in FIG. 7 (1), the Ga molecular beam 4, which is an element determining the growth rate, was incident on the center of the substrate at an angle of 15 ° with the incident electron beam 2. At this time, as shown in FIG. 7 (2), the growth rate of GaAs is inclined by 1% per 1 mm in the direction of the incident electron beam 2 on the substrate, that is, the total length of the irradiation region 3 (see FIG. 1). (About 10mm) and had a 10% slope.

測定中,成長速度0.6μm/時間で成長したところ、第
7図(3)のようにRHEED振動は10回程度しか続かなか
った。
During the measurement, when the growth was performed at a growth rate of 0.6 μm / hour, the RHEED oscillation continued only about 10 times as shown in FIG. 7 (3).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来例のようなRHEED振動による成長速度のモニタを
行う際,RHEED振動が減衰して正確な測定ができないとい
う欠点があった。
When monitoring the growth rate by the RHEED vibration as in the conventional example, there is a disadvantage that the RHEED vibration is attenuated and accurate measurement cannot be performed.

RHEED振動の減衰の原因はいくつかあるが,大きな原
因の1つとして次のことがある。
There are several causes of RHEED vibration damping, but one of the major causes is as follows.

一般に電子線は入射角(この場合は入射線の基板に対
する角をいう)が1〜2゜と浅いため,基板上で入射方
向に数mmあるいはそれ以上の範囲にわたって照射される
ことになる。この範囲において成長速度に傾きがある場
合振動は急激に減衰してしまうことになる。
Generally, the electron beam has a shallow incidence angle (in this case, the angle of the incident beam with respect to the substrate) of 1 to 2 °, and is irradiated on the substrate in a range of several mm or more in the incidence direction. If there is a gradient in the growth rate in this range, the vibration will rapidly attenuate.

例えば,電子線が照射されている範囲の両端において
成長速度が5%異なっていたとする(通常のMBEでは基
板を回転させるので基板全面で±1%程度の膜厚の均一
性が得られるが,RHEED観察は基板を停止して行うため,
この程度の成長速度の傾きは起こり得る)と,一端でち
ょうど5原子層成長したとき(RHEED強度極大),他端
では4.5原子層成長している(RHEED強度極小)ことにな
り,RHEED強度は打ち消し合ってしまう。実際には電子線
照射領域での積分になり,振動はうねりを生じて急激に
減衰する。このため正確な成長速度の測定は困難であっ
た。
For example, suppose that the growth rates differ by 5% at both ends of the range where the electron beam is irradiated. (In a normal MBE, the substrate is rotated, so that a film thickness uniformity of about ± 1% can be obtained over the entire surface of the substrate. Since RHEED observation is performed with the substrate stopped,
This degree of growth rate gradient can occur), and when exactly 5 atomic layers are grown at one end (RHEED intensity maximum), 4.5 atomic layers are grown at the other end (RHEED intensity minimum), and the RHEED intensity is They will cancel each other out. Actually, the integral is obtained in the electron beam irradiation region, and the vibration causes undulation and rapidly attenuates. For this reason, it has been difficult to accurately measure the growth rate.

本発明はRHEED振動の減衰を抑制して,成長速度を正
確に測定できるようにすることを目的とする。
An object of the present invention is to suppress the attenuation of RHEED oscillation so that the growth rate can be measured accurately.

〔課題を解決するための手段〕[Means for solving the problem]

上記課題の解決は、反射高エネルギ電子線回折(RHEE
D)の振動の観察により結晶成長をモニタする装置を有
し,被成長基板に入射させる該装置の測定用電子線の入
射面(入射点に立てた法線と入射線を含む面)が,成長
速度を決定する元素の分子線の入射面に垂直になるよう
に構成されている分子線結晶成長装置により達成され
る。
The solution to the above problem is reflected high energy electron diffraction (RHEE).
The device has a device for monitoring the crystal growth by observing the vibration in D), and the incident surface (the surface including the normal line and the incident line set at the incident point) of the measurement electron beam of the device for incidence on the substrate to be grown is This is achieved by a molecular beam crystal growth apparatus configured to be perpendicular to the plane of incidence of the molecular beam of the element that determines the growth rate.

〔作用〕[Action]

第1図は本発明の原理を説明する平面図である。 FIG. 1 is a plan view for explaining the principle of the present invention.

図において,基板1に前記の浅い入射角で電子線2が
入射される。この場合基板上の照射領域3は入射方向に
細長い領域となる。
In the figure, an electron beam 2 is incident on a substrate 1 at the aforementioned shallow incidence angle. In this case, the irradiation area 3 on the substrate is an elongated area in the incident direction.

本発明は,成長速度を決定する元素の分子線4の入射
方向を,照射領域3内で成長速度が最も均一になるよう
に決めることによりRHEED振動の減衰を抑制するもので
ある。
The present invention suppresses the attenuation of the RHEED oscillation by determining the direction of incidence of the molecular beam 4 of the element that determines the growth rate so that the growth rate is the most uniform in the irradiation region 3.

そのためには,装置を次のように構成する。 To do so, the device is configured as follows.

(1)成長速度を決定する元素の分子線源の出射方向
(分子線4の方向)とRHEED用の電子銃の出射方向(入
射電子線2の方向)を基板中心に向けて配置し,それぞ
れの方向のなす角をほぼ90゜とする。
(1) The emission direction of the molecular beam source (the direction of the molecular beam 4) and the emission direction of the RHEED electron gun (the direction of the incident electron beam 2) of the element that determines the growth rate are arranged toward the center of the substrate. Angle is approximately 90 °.

これは,基板上で,分子線に対し90゜の方向が最も膜
厚の均一性がよく,分子線に沿った方向では最も均一性
が悪いからである。
This is because the direction of 90 ° with respect to the molecular beam has the best uniformity of the film thickness on the substrate and the lowest uniformity in the direction along the molecular beam.

成長速度をモニタする元素の分子線源が複数個の場合
は,次の(2)〜(4)のようにする。
When there are a plurality of molecular beam sources of the element for monitoring the growth rate, the following (2) to (4) are performed.

(2)上記(1)の条件を満足する平面内に成長速度を
モニタする元素のすべての分子線源を配置する。
(2) All molecular beam sources of the elements whose growth rates are to be monitored are arranged in a plane satisfying the condition (1).

(3)上記(1)の条件を満足するよう電子銃と螢光ス
クリーンを複数個設ける。
(3) Provide a plurality of electron guns and fluorescent screens so as to satisfy the above condition (1).

(4)MBEチャンバ内で電子線を所望の方向に曲げる偏
向手段を設けて,上記(1)の条件を満足するように入
射させる。
(4) Deflection means for bending the electron beam in a desired direction in the MBE chamber is provided, and the electron beam is incident so as to satisfy the above condition (1).

上記(1)〜(4)のようにすることにより,電子線
照射領域3内において成長速度は均一となるため,RHEED
振動の減衰は抑制され,III/V比(III族元素/V族元素)
や基板温度等の成長条件によって決まる限度まで振動を
持続させることができる。
According to the above (1) to (4), the growth rate becomes uniform in the electron beam irradiation region 3, so that the RHEED
Vibration damping is suppressed, III / V ratio (Group III element / Group V element)
The oscillation can be continued up to the limit determined by the growth conditions such as the temperature and the substrate temperature.

〔実施例〕〔Example〕

以下の実施例においては,基板上の電子線の照射領域
3は約0.1mm×10mmである。
In the following embodiment, the irradiation area 3 of the electron beam on the substrate is about 0.1 mm × 10 mm.

実施例の測定は次のように行った。 The measurement of the example was performed as follows.

正確な測定をするため,RHEED振動の最低20周期を測定
する。
At least 20 periods of RHEED oscillation are measured for accurate measurement.

シャッタを開けてから,成長速度が安定するのに1〜
2分かかるので,上記20周期の測定は成長開始後最低2
分経過後行う。
After opening the shutter, the growth rate stabilizes
Since it takes 2 minutes, the measurement of the above 20 cycles is at least 2
Perform after minutes.

実施例1: GaAsの成長において,Gaの分子線源と電子銃及び螢光
スクリーンを,第1図のようにGaの分子線4と入射電子
線2のなす角を90゜に配置したところ,電子線照射領域
3内の成長速度のばらつきは0.5%以下となり,RHEED振
動の第2図のように100回以上も続いた。
Example 1 In the growth of GaAs, when the molecular beam source of Ga, the electron gun and the fluorescent screen were arranged at an angle of 90 ° between the molecular beam 4 of Ga and the incident electron beam 2 as shown in FIG. The variation in the growth rate in the electron beam irradiation area 3 was 0.5% or less, and the RHEED oscillation continued 100 times or more as shown in FIG.

実施例2: AlGaAs,InAlGaAsのように成長速度を決定する元素が
複数あるときは,分子線源5−1〜5−4と電子銃及び
螢光スクリーンを第3図のように配置する。
Embodiment 2: When there are a plurality of elements that determine the growth rate such as AlGaAs and InAlGaAs, the molecular beam sources 5-1 to 5-4, the electron gun and the fluorescent screen are arranged as shown in FIG.

図は,基板の中心を通り,基板と電子線の入射面とに
垂直な平面上の装置の断面図を示し,この平面内に出射
分子線3−1〜3−4が存在するように各分子線源5−
1〜5−4を配置すれば,各分子線の照射領域3内の成
長速度は均一となる。
The figure shows a cross-sectional view of the apparatus on a plane passing through the center of the substrate and perpendicular to the substrate and the incident surface of the electron beam. Each of the devices is arranged such that the outgoing molecular beams 3-1 to 3-4 exist in this plane. Molecular beam source 5-
If 1 to 5-4 are arranged, the growth rate of each molecular beam in the irradiation area 3 becomes uniform.

なお,電子銃及び螢光スクリーンは紙面にほぼ垂直な
方向に配置されるため,図には示されていない。
The electron gun and the fluorescent screen are not shown in the drawing because they are arranged in a direction substantially perpendicular to the paper surface.

実施例3: 成長速度を決定する元素が複数あるときの他の実施例
は次のとおりである。
Embodiment 3 Another embodiment when there are a plurality of elements for determining the growth rate is as follows.

第4図に示されるようにRHEED用の電子銃7−1〜7
−3と螢光スクリーン8−1〜8−3を複数個設け,任
意の分子線源5−1〜5−6について照射領域3内の成
長速度が最も均一になるように電子銃7と螢光スクリー
ン8の組を選ぶようにする。
As shown in FIG. 4, electron guns 7-1 to 7 for RHEED
-3 and a plurality of fluorescent screens 8-1 to 8-3 are provided. The electron gun 7 and the fluorescent screen are so arranged that the growth rate in the irradiation area 3 is the most uniform for any of the molecular beam sources 5-1 to 5-6. A set of light screens 8 is selected.

即ち,次のように選ぶ。 That is, the following is selected.

分子線源5−1,5−4に対しては,電子銃7−1と螢
光スクリーン8−1の組を選ぶ。
For the molecular beam sources 5-1 and 5-4, a set of an electron gun 7-1 and a fluorescent screen 8-1 is selected.

分子線源5−2,5−5に対しては,電子銃7−2と螢
光スクリーン8−2の組を選ぶ。
For the molecular beam sources 5-2 and 5-5, a combination of an electron gun 7-2 and a fluorescent screen 8-2 is selected.

分子線源5−3,5−6に対しては,電子銃7−3と螢
光スクリーン8−3の組を選ぶ。
For the molecular beam sources 5-3 and 5-6, a combination of an electron gun 7-3 and a fluorescent screen 8-3 is selected.

実施例4: 成長速度をモニタする元素が複数あるときの別の実施
例は次のとおりである。
Embodiment 4: Another embodiment in which there are a plurality of elements for monitoring the growth rate is as follows.

第5図に示されるように,RHEED用の電子銃7と螢光ス
クリーン8は1組しか設けられていないが,チャンバ内
に設けられた電子線の偏向コイル12−1〜12−6により
電子線の入射方向を変えて,モニタしようとする分子線
に垂直に入射するようにする。
As shown in FIG. 5, although only one set of the electron gun 7 for RHEED and the fluorescent screen 8 are provided, the electron guns are provided by electron beam deflection coils 12-1 to 12-6 provided in the chamber. Change the incident direction of the beam so that it is perpendicular to the molecular beam to be monitored.

例えば,分子線源5−1より出る分子線をモニタする
場合は,電子銃7より出射する電子線を偏向コイル12−
1,12−2により偏向して基板上に且つ前記の分子線に垂
直に入射させ,反射光を偏向コイル12−5,12−4により
偏向して螢光スクリーン8に受ける。
For example, when monitoring the molecular beam emitted from the molecular beam source 5-1, the electron beam emitted from the electron gun 7 is reflected by the deflection coil 12-.
The light is deflected by the light beams 12-1 and 12-2 so as to be incident on the substrate and perpendicularly to the molecular beam.

以上いずれの実施例においても,測定しようとする分
子線と入射電子線は垂直になるように構成され,照射領
域内における測定中の成長速度は均一となる。
In any of the above embodiments, the molecular beam to be measured and the incident electron beam are configured to be perpendicular to each other, and the growth rate during the measurement in the irradiation region becomes uniform.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば,RHEED振動の減衰
を抑制して,成長速度の正確な測定が可能となり,MBE成
長の精度向上に寄与することができる。
As described above, according to the present invention, it is possible to suppress the attenuation of the RHEED oscillation and accurately measure the growth rate, thereby contributing to the improvement of the MBE growth accuracy.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の原理を説明する平面図, 第2図は実施例のRHEED振動を示す図, 第3図は実施例2を説明する装置の断面図, 第4図は実施例3を説明する装置の平面図, 第5図は実施例4を説明する装置の平面図, 第6図は従来のMBE装置の模式断面図, 第7図(1)〜(3)は従来例によるRHEED振動を説明
する図である。 図において, 1は被成長基板, 2はRHEED用入射電子線, 3は電子線照射領域, 4は成長速度を決定する元素の分子線, 5は分子線源, 6はシャッタ, 7はRHEED用電子銃, 8は螢光スクリーン, 9は超高真空チャンバ, 10は基板ホルダ, 11はヒータ である。
FIG. 1 is a plan view for explaining the principle of the present invention, FIG. 2 is a diagram showing RHEED vibration of the embodiment, FIG. 3 is a cross-sectional view of an apparatus for explaining the embodiment 2, and FIG. FIG. 5 is a plan view of an apparatus for explaining Embodiment 4, FIG. 6 is a schematic cross-sectional view of a conventional MBE apparatus, and FIGS. 7 (1) to (3) are RHEEDs of a conventional example. It is a figure explaining a vibration. In the figure, 1 is a substrate to be grown, 2 is an incident electron beam for RHEED, 3 is an electron beam irradiation area, 4 is a molecular beam of an element which determines the growth rate, 5 is a molecular beam source, 6 is a shutter, and 7 is a RHEED. An electron gun, 8 is a fluorescent screen, 9 is an ultra-high vacuum chamber, 10 is a substrate holder, and 11 is a heater.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】反射高エネルギ電子線回折(RHEED)振動
の観察により結晶成長をモニタする装置を有し,被成長
基板に入射させる該装置の測定用電子線の入射面(入射
点に立てた法線と入射線を含む面)が,成長速度を決定
する元素の分子線の入射面に垂直になるように構成され
ていることを特徴とする分子線結晶成長装置。
An apparatus for monitoring crystal growth by observing reflected high energy electron beam diffraction (RHEED) vibration, and having an incident surface of an electron beam for measurement of the apparatus to be incident on a substrate to be grown An apparatus for growing a molecular beam crystal, wherein a plane including a normal line and an incident line is perpendicular to an incident surface of a molecular beam of an element for determining a growth rate.
JP17476088A 1988-07-13 1988-07-13 Molecular beam crystal growth equipment Expired - Lifetime JP2643328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17476088A JP2643328B2 (en) 1988-07-13 1988-07-13 Molecular beam crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17476088A JP2643328B2 (en) 1988-07-13 1988-07-13 Molecular beam crystal growth equipment

Publications (2)

Publication Number Publication Date
JPH0226890A JPH0226890A (en) 1990-01-29
JP2643328B2 true JP2643328B2 (en) 1997-08-20

Family

ID=15984194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17476088A Expired - Lifetime JP2643328B2 (en) 1988-07-13 1988-07-13 Molecular beam crystal growth equipment

Country Status (1)

Country Link
JP (1) JP2643328B2 (en)

Also Published As

Publication number Publication date
JPH0226890A (en) 1990-01-29

Similar Documents

Publication Publication Date Title
CN106298577A (en) A kind of method of monocrystal thin films sedimentation rate on-line determination and application
JP2643328B2 (en) Molecular beam crystal growth equipment
US6481369B1 (en) Thin film forming method and apparatus
US5082695A (en) Method of fabricating an x-ray exposure mask
KR950007482B1 (en) Method for vapor deposition
JPS5948786B2 (en) Molecular beam crystal growth method
JP2009221496A (en) Thin film deposition apparatus, and method of manufacturing thin film
JPS60137896A (en) Crucible for molecular beam source
JPS61280610A (en) Molecular beam epitaxial growing device
DE102021200213A1 (en) Warping measuring device, vapor deposition device and warping measuring method
JPS61186284A (en) Apparatus for molecular beam epitaxy
JPS63937B2 (en)
JPH08139147A (en) Method and apparatus for measuring deposition rate of epitaxial film
JPS6142125A (en) Mbe substrate and method for measuring temperature thereof
JPH0446363B2 (en)
JPH05186293A (en) Molecular beam source cell and method for growing crystal
JPH02218946A (en) Reflecting high speed electron beam diffraction apparatus
JPH02145765A (en) Film thickness monitor and vapor deposition device using same monitor
JPH0632696A (en) Method and device for monitoring vacuum deposition amount
JPS6150326A (en) Semiconductor crystal growing device
JPH0358645B2 (en)
JPS61127695A (en) Molecular beam crystal growth device
JPH01278496A (en) Thin film production method
JPH0316991A (en) Device for measuring molecular beam intensity distribution and molecular beam crystal growth device
JPS60225421A (en) Evaporation source crucible for molecular beam epitaxy