JP2640586B2 - Semiconductor wafer electrical measuring device and parallelism adjusting device - Google Patents

Semiconductor wafer electrical measuring device and parallelism adjusting device

Info

Publication number
JP2640586B2
JP2640586B2 JP3125439A JP12543991A JP2640586B2 JP 2640586 B2 JP2640586 B2 JP 2640586B2 JP 3125439 A JP3125439 A JP 3125439A JP 12543991 A JP12543991 A JP 12543991A JP 2640586 B2 JP2640586 B2 JP 2640586B2
Authority
JP
Japan
Prior art keywords
semiconductor wafer
electrode
parallelism
parallelism adjusting
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3125439A
Other languages
Japanese (ja)
Other versions
JPH04328842A (en
Inventor
達文 楠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP3125439A priority Critical patent/JP2640586B2/en
Publication of JPH04328842A publication Critical patent/JPH04328842A/en
Application granted granted Critical
Publication of JP2640586B2 publication Critical patent/JP2640586B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は,C−V曲線などの半
導体ウエハの電気特性の測定を行なう電気測定装置,お
よび,その装置に利用される平行度調整装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric measuring device for measuring electric characteristics of a semiconductor wafer such as a CV curve, and a parallelism adjusting device used in the electric measuring device.

【0002】[0002]

【従来の技術】MIS構造の半導体のプロセスを評価す
る方法の1つとして,C−V測定による評価方法が用い
られている。従来のC−V測定では,半導体基板上の酸
化膜の表面上に電気測定用の電極を形成する必要があっ
たが,電極形成のプロセスは,半導体ウエハの電気特性
自体に影響を与えるばかりでなく。電極形成そのものに
手間と時間がかかるという問題があった。。そこで,本
出願人は,半導体ウエハの表面上に電極を形成すること
なく,C−V測定やC−t法などの電気特性評価を行な
うことのできる半導体ウエハの電気測定装置を開発し
た。図1は,本出願人が開発した半導体の電気測定装置
の概要を示す概念図である。図の(a)において,半導
体基板101の表面上には酸化膜102が形成されてお
り,裏面上には電極202が形成されている。酸化膜1
02の上方には,ギャップGeを隔てて測定用電極20
1が電極保持ユニット300によって保持されている。
酸化膜102と測定用電極201とのギャップGeは,
後述するように,約1μm以下になるように電極保持ユ
ニット300によって制御されている。
2. Description of the Related Art As one method of evaluating a process of a semiconductor having a MIS structure, an evaluation method based on CV measurement is used. In the conventional CV measurement, it was necessary to form electrodes for electrical measurement on the surface of an oxide film on a semiconductor substrate. However, the process of forming electrodes only affects the electrical characteristics of the semiconductor wafer itself. No. There is a problem that it takes time and effort to form the electrode itself. . Accordingly, the present applicant has developed a semiconductor wafer electric measurement device capable of performing electric characteristic evaluation such as CV measurement and Ct method without forming electrodes on the surface of the semiconductor wafer. FIG. 1 is a conceptual diagram showing an outline of a semiconductor electric measurement device developed by the present applicant. 1A, an oxide film 102 is formed on a front surface of a semiconductor substrate 101, and an electrode 202 is formed on a back surface. Oxide film 1
Above the measuring electrode 20 with a gap Ge therebetween.
1 is held by the electrode holding unit 300.
The gap Ge between the oxide film 102 and the measurement electrode 201 is
As will be described later, the thickness is controlled by the electrode holding unit 300 so as to be about 1 μm or less.

【0003】2つの電極201,202の間の静電容量
Ctは,図の(b)に示すように,半導体基板101の
静電容量Csと,酸化膜102の静電容量Ciと,ギャ
ップGeの静電容量Cgとの直列接続で表わされる。C
−V曲線は,半導体基板101の容量Csと,酸化膜1
02の容量Ciとの合成容量Ctaの電圧依存性であ
る。ギャップGeの値は,電極保持ユニット300によ
って正確に測定され,このギャップGeの値に基づいて
ギャップの静電容量Cgが計算により求められる。合成
容量Ctは測定部400で測定され,この合成容量Ct
からギャップの静電容量Cgを減算して容量Ctaを求
めることによりC−V曲線が決定される。
The capacitance Ct between the two electrodes 201 and 202 is, as shown in FIG. 1B, a capacitance Cs of the semiconductor substrate 101, a capacitance Ci of the oxide film 102, a gap Ge. In series with the capacitance Cg. C
The -V curve shows the capacitance Cs of the semiconductor substrate 101 and the oxide film 1
12 shows the voltage dependence of the combined capacitance Cta with the capacitance Ci of No. 02. The value of the gap Ge is accurately measured by the electrode holding unit 300, and the capacitance Cg of the gap is calculated based on the value of the gap Ge. The combined capacitance Ct is measured by the measuring section 400, and the combined capacitance Ct
The CV curve is determined by calculating the capacitance Cta by subtracting the capacitance Cg of the gap from.

【0004】[0004]

【発明が解決しようとする課題】ところで,上述の装置
を用いて半導体の電気測定を行なう場合に,測定用電極
201と半導体ウエハ表面との間が平行でないと,ギャ
ップGeの静電容量Cgの値がギャップGeに基づく計
算値からずれてしまい,電気測定を正確に行なう上で望
ましくない。そこで,電気測定装置には,測定用電極
(もしくはその保持面)と半導体ウエハ表面との間の平
行度を正確に調整する装置を備えておくことが望まし
い。
By the way, when electrical measurement of a semiconductor is performed using the above-described apparatus, unless the measurement electrode 201 and the surface of the semiconductor wafer are not parallel to each other, the capacitance Cg of the gap Ge is reduced. The value deviates from the calculated value based on the gap Ge, which is not desirable for accurate electrical measurement. Therefore, it is desirable that the electric measurement device be provided with a device for accurately adjusting the parallelism between the measurement electrode (or the holding surface) and the semiconductor wafer surface.

【0005】この発明は,上述の課題を解決するために
なされたものであり,電極の保持面と半導体ウエハ表面
との間の平行度を正確に調整することのできる装置を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has as its object to provide an apparatus capable of accurately adjusting the parallelism between an electrode holding surface and a semiconductor wafer surface. And

【0006】[0006]

【課題を解決するための手段】上述の課題を解決するた
め,請求項1に記載した半導体ウエハの電気測定装置
は,半導体ウエハの表面との間にギャップを隔てて所定
の電極保持面で保持される測定用電極と,前記測定用電
極と前記半導体ウエハとの間の電気特性を測定する測定
手段と,前記電極保持面において,測定用電極に対して
互いに対称な位置に設けられた互いに等しい形状のN個
(Nは3以上の整数)の平行度調整用電極と,前記N個
の平行度調整用電極に対して,周波数と起電力とが互い
に等しく位相が2π/Nづつ異なる対称N相交流信号を
印加する交流電源と,前記N個の平行度調整用電極のそ
れぞれと半導体ウエハとの間の静電容量を,前記対称N
相交流信号に基づいてそれぞれ測定するとともに,当該
静電容量の比較結果に基づいて,前記電極保持面と前記
半導体ウエハの表面との平行度を調整する平行度調整手
段と,を備える。
According to a first aspect of the present invention, there is provided an apparatus for measuring electric power of a semiconductor wafer, wherein the electric power is held on a predetermined electrode holding surface with a gap between the semiconductor wafer and the surface of the semiconductor wafer. A measuring electrode to be measured, measuring means for measuring electric characteristics between the measuring electrode and the semiconductor wafer, and equal means provided on the electrode holding surface at symmetrical positions with respect to the measuring electrode. Symmetry N having the same frequency and the same electromotive force and different phases by 2π / N with respect to the N (N is an integer of 3 or more) parallelism adjusting electrodes and the N parallelism adjusting electrodes having the same shape. The capacitance between each of the N parallelism adjusting electrodes and the semiconductor wafer and the AC power supply for applying a phase AC signal is expressed by the symmetric N
And a parallelism adjusting means for measuring parallelism signals and adjusting the parallelism between the electrode holding surface and the surface of the semiconductor wafer based on a comparison result of the capacitance.

【0007】また,請求項2に記載した平行度調整装置
は,半導体ウエハの表面との間にギャップを隔てて保持
される電極保持面と,前記電極保持面において,互いに
対称な位置に設けられた互いに等しい形状のN個(Nは
3以上の整数)の平行度調整用電極と,前記N個の平行
度調整用電極に対して,周波数と起電力とが互いに等し
く同位相のN個の交流信号を印加する交流電源と,前記
N個の平行度調整用電極のそれぞれと半導体ウエハとの
間の静電容量を,前記交流信号に基づいてそれぞれ測定
するとともに,当該静電容量の比較結果に基づいて,前
記電極保持面と前記半導体ウエハの表面との平行度を調
整する平行度調整手段と,を備える装置であってもよ
い。なお,請求項2の装置では,N個の平行度調整用電
極の内の1つを測定用電極として用いてもよく,また,
平行度調整用電極とは別に測定用電極を設けてもよい。
According to a second aspect of the present invention, there is provided a parallelism adjusting device provided at an electrode holding surface held with a gap between the electrode holding surface and a surface of a semiconductor wafer, and at symmetrical positions on the electrode holding surface. And N (N is an integer of 3 or more) parallelism adjusting electrodes having the same shape and N parallel electrodes having the same frequency and the same electromotive force with respect to the N parallelism adjusting electrodes. An AC power source for applying an AC signal, and the capacitance between each of the N parallelism adjusting electrodes and the semiconductor wafer are measured based on the AC signal, and a comparison result of the capacitance is measured. And a parallelism adjusting means for adjusting the parallelism between the electrode holding surface and the surface of the semiconductor wafer based on the above. In the device of claim 2, one of the N parallelism adjusting electrodes may be used as a measuring electrode.
A measuring electrode may be provided separately from the parallelism adjusting electrode.

【0008】[0008]

【作用】請求項1の発明では,N個の平行度調整用電極
は,互いに等しい形状を有し,かつ,測定用電極に対し
て互いに対称な位置に設けられているので,測定用電極
とN個の平行度調整用電極とで構成される等価回路は,
測定用電極を中心とする星形結線の対称負荷となる。そ
して,N個の平行度調整用電極に対称N相交流信号を印
加しているので,各平行度調整用電極における容量の測
定条件が等しくなり,かつ,測定用電極の電位が交流電
源の中性点の電位と等しく保たれる。したがって,平行
度調整用の交流信号を印加してもこれが測定用電極に対
する外乱となることがないので,測定用電極で正確な電
気測定を行ないつつ,平行度調整手段で平行度を調整す
ることができる。
According to the first aspect of the present invention, the N parallelism adjusting electrodes have the same shape and are provided at positions symmetrical to each other with respect to the measuring electrode. An equivalent circuit composed of N parallelism adjusting electrodes is
A symmetrical load with a star connection centered on the measurement electrode. Since a symmetrical N-phase AC signal is applied to the N parallelism adjusting electrodes, the measurement conditions of the capacitance at each parallelism adjusting electrode are equal, and the potential of the measuring electrode is equal to that of the AC power supply. It is kept equal to the potential of the gender point. Therefore, even if an AC signal for adjusting the parallelism is applied, it does not disturb the measuring electrode. Therefore, it is necessary to adjust the parallelism by the parallelism adjusting means while performing accurate electrical measurement with the measuring electrode. Can be.

【0009】また,請求項2の発明では,N個の平行度
調整用電極に対して,同位相のN個の交流信号を印加し
ているので,各平行度調整用電極における容量の測定条
件が等しい。したがって,平行度調整手段が各平行度調
整用電極における容量を比較することにより,平行度を
正確に調整することができる。
According to the second aspect of the present invention, since N alternating current signals having the same phase are applied to the N parallelism adjusting electrodes, the measurement condition of the capacitance of each parallelism adjusting electrode is applied. Are equal. Therefore, the parallelism can be accurately adjusted by the parallelism adjusting means comparing the capacitances of the respective parallelism adjusting electrodes.

【0010】[0010]

【実施例】A.装置の構成 図2は,この発明の実施例としての電気測定装置MDの
構成を示す図である。この電気測定装置MDは,半導体
ウエハ100を載置する試料台7と,試料台7の上方に
設置された断面台形状の架台3とを備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 is a diagram showing a configuration of an electric measurement device MD as an embodiment of the present invention. The electric measurement device MD includes a sample table 7 on which the semiconductor wafer 100 is mounted, and a mount 3 having a trapezoidal cross section installed above the sample table 7.

【0011】架台3には,レーザ発振器5と,プリズム
41と,受光センサ6とで構成される光学系が設置され
ている。架台3の下部にある2つの斜面は,互いになす
角度が90゜となるように形成されており,架台3の底
面にはプリズム41が固定されている。また,架台3の
一方の斜面の端部にはGaAlAsレーザなどのレーザ
発振器5が固定され,他方の斜面の端部にはフォトダイ
オードなどの受光センサ6が固定されている。
An optical system including a laser oscillator 5, a prism 41, and a light receiving sensor 6 is installed on the gantry 3. The two slopes at the bottom of the gantry 3 are formed so that the angle between them is 90 °, and a prism 41 is fixed to the bottom of the gantry 3. A laser oscillator 5 such as a GaAlAs laser is fixed to one end of the slope of the gantry 3, and a light receiving sensor 6 such as a photodiode is fixed to the end of the other slope.

【0012】半導体ウエハ100の電気測定を行なう際
には,プリズムの底面41aと半導体ウエハ100の表
面とのギャップが約1μm以下に保たれる。レーザ発振
器5とプリズム41と受光センサ6とで構成される光学
系は,このギャップを精密に測定するための光学測定系
である。この光学測定系は,レーザ発振器5から発振さ
れたレーザ光がプリズム41の底面41aで幾何学的な
全反射条件で反射する際の,レーザ光のトンネリング現
象を利用しており,受光センサ6と光量測定器12で測
定される光量に基づいてギャップの値を測定している。
ただし,ここではその詳細は省略する。
When electric measurement of the semiconductor wafer 100 is performed, the gap between the bottom surface 41a of the prism and the surface of the semiconductor wafer 100 is kept at about 1 μm or less. The optical system including the laser oscillator 5, the prism 41, and the light receiving sensor 6 is an optical measurement system for accurately measuring the gap. This optical measurement system utilizes the tunneling phenomenon of laser light when the laser light emitted from the laser oscillator 5 is reflected on the bottom surface 41a of the prism 41 under geometric total reflection conditions. The value of the gap is measured based on the light amount measured by the light amount measuring device 12.
However, the details are omitted here.

【0013】プリズム41は,ほうけい酸塩ガラス(B
K7)でつくられており,その底面41aには後述する
測定用電極201と平行度調整用電極111〜113と
が形成されている。また,プリズム41の底面41a
は,半導体ウエハ100を載置する試料台7の表面と平
行な平面(xy平面)にほぼ平行に設置されている。プ
リズム41は,その入射面41bと出射面41cとが互
いに90゜をなすように形成されており,また,これら
の面41b,41cが底面41aとなす角度はそれぞれ
45゜である。プリズム41の下方には,微小なギャッ
プを介して半導体ウエハ100が試料台7上に保持され
ており,半導体ウエハ100の表面がプリズム41の底
面41aとほぼ平行になるように設定されている。
The prism 41 is made of borosilicate glass (B
K7), on the bottom surface 41a of which are formed a measuring electrode 201 and parallelism adjusting electrodes 111 to 113 to be described later. Also, the bottom surface 41a of the prism 41
Is set substantially parallel to a plane (xy plane) parallel to the surface of the sample stage 7 on which the semiconductor wafer 100 is mounted. The prism 41 is formed so that its incident surface 41b and its outgoing surface 41c are at 90 ° to each other, and the angle between these surfaces 41b and 41c and the bottom surface 41a is 45 °. Below the prism 41, the semiconductor wafer 100 is held on the sample table 7 via a minute gap, and the surface of the semiconductor wafer 100 is set so as to be substantially parallel to the bottom surface 41a of the prism 41.

【0014】試料台7は,xyテーブル31の上に立設
された3台の圧電アクチュエータ21〜23に支持され
ている。xyテーブル31は,x軸駆動モータ32xと
y軸駆動モータ32yとにそれぞれ駆動されてxy平面
上を移動する。また,xyテーブル31は,基台33の
上に立設された垂直コラム34によって支持されてお
り,z軸駆動モータ32zによって駆動されてz軸方向
に移動する。圧電アクチュエータ21〜23には位置制
御装置11が接続されており,また,受光センサ6には
光量測定器12が,プリズム41の底面41aの各電極
と金属製の試料台7にはLCRメータ13が接続されて
いる。LCRメータ13は,各電極と試料台7との間の
容量やコンダクタンスを測定する機器である。
The sample stage 7 is supported by three piezoelectric actuators 21 to 23 erected on an xy table 31. The xy table 31 is driven by an x-axis drive motor 32x and a y-axis drive motor 32y, and moves on an xy plane. The xy table 31 is supported by a vertical column 34 erected on a base 33, and is driven by a z-axis drive motor 32z to move in the z-axis direction. A position controller 11 is connected to the piezoelectric actuators 21 to 23, a light amount measuring device 12 is connected to the light receiving sensor 6, and an LCR meter 13 is connected to each electrode on the bottom surface 41 a of the prism 41 and the metal sample table 7. Is connected. The LCR meter 13 is a device that measures the capacitance and conductance between each electrode and the sample table 7.

【0015】位置制御装置11と光量測定器12とLC
Rメータ13とは,ホストコントローラ14に接続され
ており,このホストコントローラ14によって測定装置
全体の制御や,得られたデータの処理が行なわれる。な
お,ホストコントローラ14としては,例えばパーソナ
ルコンピュータが用いられる。試料台7をプリズム41
に近づける場合には,まずz軸駆動モータ32zによっ
て試料台7を上昇させ,試料台7の表面が初期位置セン
サ35の高さにきたところでいったん停止する。その後
は,圧電アクチュエータ21〜23を用いて試料台7の
高さを微調節する。なお,圧電アクチュエータ21〜2
3とモータ32z,32y,32zとは,いずれも位置
制御装置11によって制御される。
Position control device 11, light quantity measuring device 12, LC
The R meter 13 is connected to a host controller 14, which controls the entire measuring device and processes the obtained data. As the host controller 14, for example, a personal computer is used. The sample stage 7 is prism 41
, The sample stage 7 is first raised by the z-axis drive motor 32z, and once stopped when the surface of the sample stage 7 reaches the height of the initial position sensor 35. After that, the height of the sample stage 7 is finely adjusted using the piezoelectric actuators 21 to 23. The piezoelectric actuators 21 and 2
3 and the motors 32z, 32y, 32z are all controlled by the position control device 11.

【0016】図3は,この電気測定装置MDのプリズム
41の底面41aを示す図である。プリズム41の底面
41aには,電気測定用の電極201と,平行度調整用
の3つの電極111〜113が形成されている。また,
電極201,111〜113にはそれぞれ導線201
a,111a〜113aが接続されている。圧電アクチ
ュエータ21〜23は,図3に破線で示すように,各電
極111〜113の中心部の外側の位置にそれぞれ設置
されている。これらの圧電アクチュエータ21〜23
は,位置制御装置11によって互いに独立に駆動され,
これによって,試料台7の上に載置された半導体ウエハ
100の表面と測定用電極201の表面との平行度が調
整される。
FIG. 3 is a diagram showing the bottom surface 41a of the prism 41 of the electric measuring device MD. An electrode 201 for electric measurement and three electrodes 111 to 113 for adjusting parallelism are formed on the bottom surface 41 a of the prism 41. Also,
The conductor 201 is connected to the electrodes 201, 111 to 113, respectively.
a, 111a to 113a are connected. The piezoelectric actuators 21 to 23 are installed at positions outside the center of each of the electrodes 111 to 113, respectively, as indicated by broken lines in FIG. These piezoelectric actuators 21 to 23
Are driven independently of each other by the position control device 11,
As a result, the parallelism between the surface of the semiconductor wafer 100 placed on the sample table 7 and the surface of the measurement electrode 201 is adjusted.

【0017】平行度調整用電極111〜113は,等分
割されたリング状の形状をそれぞれ有している。これら
の電極の形状は,それぞれ円形としてもよいが,図3の
ように分割したリング状にすれば,より小さな領域内
に,より面積の大きな電極を形成することができるとい
う利点がある。
Each of the parallelism adjusting electrodes 111 to 113 has an equally divided ring shape. Each of these electrodes may have a circular shape. However, if the electrodes are divided into ring shapes as shown in FIG. 3, there is an advantage that an electrode having a larger area can be formed in a smaller region.

【0018】なお,プリズム41の底面41aは,この
発明における電極保持面に相当する。また,この発明に
おける平行度調整手段は,3つの圧電アクチュエータ2
1〜23と,位置制御装置11と,LCRメータ13
と,ホストコントローラ14とで実現されている。図1
における電極保持ユニット300は,圧電アクチュエー
タ21〜23と、架台3と、プリズム41と、レーザ発
振器5と、受光センサ6と、位置制御装置11と、光量
測定器12と、ホストコントローラ14とで実現されて
いる。
The bottom surface 41a of the prism 41 corresponds to the electrode holding surface in the present invention. Further, the parallelism adjusting means according to the present invention comprises three piezoelectric actuators 2.
1 to 23, the position control device 11, and the LCR meter 13
And the host controller 14. FIG.
The electrode holding unit 300 is realized by the piezoelectric actuators 21 to 23, the gantry 3, the prism 41, the laser oscillator 5, the light receiving sensor 6, the position control device 11, the light quantity measuring device 12, and the host controller 14. Have been.

【0019】B.平行度調整用電極の等価回路 図4は,平行度調整用電極111〜113と,測定用電
極201と,半導体ウエハ100とを含む等価回路を示
す模式図である。図4の(a)は,平行度調整用電極1
11〜113(図中,S,T,Uの文字をそれぞれ記し
ている。)と半導体ウエハ100(図中,Wの文字を記
している。)との間の等価回路を示す。平行度調整用電
極111〜113と半導体ウエハ100との距離は非常
に短くなるように(約1μm以下に)調整されるので,
各電極111〜113と半導体ウエハ100とはそれぞ
れコンダクタンスGとキャパシタンスCとで結合されて
いると見なすことができる。
B. FIG. 4 is a schematic diagram showing an equivalent circuit including the parallelism adjusting electrodes 111 to 113, the measuring electrode 201, and the semiconductor wafer 100. FIG. 4A shows a parallelism adjusting electrode 1.
The equivalent circuit between the semiconductor wafer 100 (indicated by the letter W in the figure) and the semiconductor wafer 100 (indicated by the letters S, T, U in the figure) is shown. Since the distance between the parallelism adjusting electrodes 111 to 113 and the semiconductor wafer 100 is adjusted to be very short (to about 1 μm or less),
Each of the electrodes 111 to 113 and the semiconductor wafer 100 can be considered to be coupled by a conductance G and a capacitance C, respectively.

【0020】同様に,図4の(b)に示すように,測定
用電極201(図中,Mの文字を記している。)と半導
体ウエハ100との間もコンダクタンスGとキャパシタ
ンスCとで結合されていると見なすことができる。した
がって,測定用電極201と平行度調整用電極111〜
113との間の等価回路は,(a)の等価回路と(b)
の等価回路を半導体ウエハ100の部分で直列に接続し
た回路となる。図4の(c)は,測定用電極201と平
行度調整用電極111〜113との間の等価回路を示し
ている。すなわち,測定用電極201と平行度調整用電
極111〜113は,測定用電極201を中心として,
コンダクタンスGとキャパシタンスCとで結合されたY
形結線の対称負荷を構成している。
Similarly, as shown in FIG. 4B, the conductance G and the capacitance C are coupled between the measurement electrode 201 (indicated by the letter M in the figure) and the semiconductor wafer 100. Can be regarded as being. Therefore, the measuring electrode 201 and the parallelism adjusting electrodes 111 to
113, the equivalent circuit of (a) and (b)
Are connected in series at the semiconductor wafer 100. FIG. 4C shows an equivalent circuit between the measurement electrode 201 and the parallelism adjustment electrodes 111 to 113. That is, the measurement electrode 201 and the parallelism adjustment electrodes 111 to 113 are
Y coupled by conductance G and capacitance C
It constitutes a symmetrical load of the form connection.

【0021】なお,各電極111,112,113,2
01の間の距離も例えば約1mmに設定されるので,こ
れらの電極は直接的にも(すなわち,半導体ウエハを介
さずに)電気的に結合されているが,これらの電気的結
合も図4(c)の等価回路で表わすことができる。
The electrodes 111, 112, 113, 2
Since the distance between the electrodes 01 and 01 is also set to, for example, about 1 mm, these electrodes are also electrically connected directly (that is, not through a semiconductor wafer), but these electrical connections are also made in FIG. It can be represented by the equivalent circuit of (c).

【0022】ところで,半導体ウエハのC−V測定に際
しては,平行度調整用電極111〜113の容量をLC
Rメータ13で測定し,それらの値が一致するように圧
電アクチュエータ21〜23を制御することによって,
半導体ウエハ100と測定用電極201との平行度が保
たれる。そして,測定用電極201を用いてC−V曲線
を測定する。
When the CV measurement of a semiconductor wafer is performed, the capacitance of the parallelism adjusting electrodes 111 to 113 is determined by LC
By measuring with the R meter 13 and controlling the piezoelectric actuators 21 to 23 so that their values match,
The parallelism between the semiconductor wafer 100 and the measurement electrode 201 is maintained. Then, a CV curve is measured using the measurement electrode 201.

【0023】平行度調整のための容量測定とC−V曲線
を得るための容量測定とは,どちらも交流印加信号に対
する静電容量の特性を利用した測定である。したがっ
て,平行度調整用電極111〜113で容量を測定して
平行度を保ちつつ,測定用電極201でC−V曲線を測
定しようとすると,通常は平行度調整用電極111〜1
13に印加した交流信号が,上述のコンダクタンスGと
キャパシタンスCとを介して測定用電極201に外乱と
して加えられてしまう。したがって,正確なC−V測定
を行なうのは困難である。
The capacitance measurement for adjusting the parallelism and the capacitance measurement for obtaining the CV curve are both measurements using the characteristics of the capacitance with respect to the AC applied signal. Therefore, when trying to measure the CV curve with the measuring electrode 201 while measuring the capacitance with the parallelism adjusting electrodes 111 to 113 and keeping the parallelism, usually the parallelism adjusting electrodes 111 to 113 are used.
The AC signal applied to 13 is applied as a disturbance to the measurement electrode 201 via the conductance G and the capacitance C described above. Therefore, it is difficult to perform an accurate CV measurement.

【0024】一方,C−V測定の間に平行度の調整を行
なわないようにすれば,上述のような問題は生じない。
ところが,圧電アクチュエータ21〜23としてピエゾ
素子のように印加電圧に応じた伸縮特性を有する素子を
用いる場合には,C−V測定の間も平行度の調整を続け
ている必要がある。これは,ピエゾ素子では過渡現象が
無視できないため,印加電圧を一定にしてもサブミクロ
ン単位で素子が伸縮してしまうことがあるからである。
On the other hand, if the parallelism is not adjusted during the CV measurement, the above-described problem does not occur.
However, when an element having expansion and contraction characteristics according to an applied voltage, such as a piezo element, is used as the piezoelectric actuators 21 to 23, it is necessary to keep adjusting the parallelism during the CV measurement. This is because a transient phenomenon cannot be ignored in a piezo element, and the element may expand and contract in sub-micron units even when the applied voltage is constant.

【0025】この実施例は,上述のような点を考慮し,
平行度調整用電極111〜113に交流信号を印加して
も測定用電極201に対する外乱とならないように工夫
したものである。図5に平行度調整用電極111〜11
3と交流電源130の基本的接続関係を示している。交
流電源130は,いわゆるY形結線の3相交流を発生す
る電源であり,等しい線間電圧を有し,かつ,それぞれ
の位相が120゜づつ異なる3つの交流信号を出力す
る。平行度調整用電極111〜113と測定用電極20
1も,図4の(c)に示すようにY形結線の負荷として
表わされる。そして,図5に示すように,交流電源13
0の各出力線が各平行度調整用電極111〜113に接
続される。
This embodiment takes the above points into consideration,
It is designed so that even if an AC signal is applied to the parallelism adjusting electrodes 111 to 113, it does not cause disturbance to the measuring electrode 201. FIG. 5 shows the parallelism adjusting electrodes 111 to 11.
3 shows a basic connection relationship between the AC power supply 3 and the AC power supply 130. The AC power supply 130 is a power supply that generates a so-called Y-connection three-phase AC, has the same line voltage, and outputs three AC signals whose phases are different by 120 °. Parallelism adjusting electrodes 111-113 and measuring electrode 20
1 is also represented as a Y-shaped connection load as shown in FIG. Then, as shown in FIG.
0 output lines are connected to the respective parallelism adjusting electrodes 111 to 113.

【0026】平行度調整用電極111〜113は同じ形
状を有しているので,平行度が保たれている場合には測
定用電極201と各平行度調整用電極111〜113と
の間のインピーダンスは等しくなり,これらの等価回路
は対称Y形負荷となる。したがって,図5のように結線
すれば,平行度が保たれている時には測定用電極201
の電位は交流電源130の中性点NPと同電位となる。
この結果,平行度調整用電極111〜113に印加され
る交流信号が測定用電極201に外乱として加えられる
ことが無い。
Since the parallelism adjusting electrodes 111 to 113 have the same shape, the impedance between the measuring electrode 201 and each of the parallelism adjusting electrodes 111 to 113 is maintained when the parallelism is maintained. Are equal, and these equivalent circuits have symmetric Y-type loads. Therefore, if the connection is made as shown in FIG. 5, the measurement electrode 201 is kept when the parallelism is maintained.
Is the same as the neutral point NP of the AC power supply 130.
As a result, the AC signal applied to the parallelism adjusting electrodes 111 to 113 is not applied to the measuring electrode 201 as a disturbance.

【0027】図6は,平行度調整用電極111〜113
と交流電源130の実際の接続関係を示す図である。3
相交流電源130の3つの送電線130a〜130cは
それぞれ抵抗Rを介して平行度調整用電極111〜11
3に接続されている。また,3相交流電源130の中性
点NPと,半導体ウエハの裏面の電極202(図1参
照)とは接地されている。
FIG. 6 shows the parallelism adjusting electrodes 111 to 113.
FIG. 4 is a diagram showing an actual connection relationship between the power supply and the AC power supply 130. 3
The three power transmission lines 130a to 130c of the phase AC power supply 130 are respectively connected to the parallelism adjusting electrodes 111 to 11 via resistors R.
3 is connected. Further, the neutral point NP of the three-phase AC power supply 130 and the electrode 202 (see FIG. 1) on the back surface of the semiconductor wafer are grounded.

【0028】各平行度調整用電極111〜113に現わ
れる信号Sm1〜Sm3は,測定信号としてそれぞれ容
量メータ131〜133に与えられる。また,各送電線
130a〜130cの信号Sa1〜Sa3も,印加信号
としてそれぞれ容量メータ131〜133に与えられ
る。容量メータ131〜133は,これらの測定信号と
印加信号とに基づいて,各平行度調整用電極111〜1
13と半導体ウエハとの間の容量をそれぞれ測定する。
なお,各平行度調整用電極111〜113に接続されて
いる抵抗Rは,容量メータ131〜133の構成要素の
一部であるが,図5との対応関係を明確にするために,
容量メータとは別に描いている。また,3相交流電源1
30と容量メータ131〜133は,図2に示すLCR
メータ13の構成要素の一部である。
The signals Sm1 to Sm3 appearing on the parallelism adjusting electrodes 111 to 113 are given to the capacitance meters 131 to 133 as measurement signals, respectively. The signals Sa1 to Sa3 of the transmission lines 130a to 130c are also supplied to the capacity meters 131 to 133 as applied signals. Based on these measurement signals and applied signals, the capacity meters 131 to 133 are provided with the respective parallelism adjusting electrodes 111 to 1.
The capacitance between the semiconductor wafer 13 and the semiconductor wafer is measured.
The resistors R connected to the parallelism adjusting electrodes 111 to 113 are a part of the constituent elements of the capacitance meters 131 to 133. In order to clarify the correspondence with FIG.
It is drawn separately from the capacity meter. In addition, three-phase AC power supply 1
30 and the capacity meters 131 to 133 are the LCR shown in FIG.
It is a part of the components of the meter 13.

【0029】C.平行度と容量との関係 図7は,プリズム41の底面の傾きと各平行度調整用電
極111〜113の容量Ceとの関係を示すグラフであ
る。図の(a)に示す平行度調整用電極111〜113
の寸法は,以下の通りである。 内径r0=0.08cm 外径r1=0.12cm 電極間の隙間△g=0.07cm
C. FIG. 7 is a graph showing the relationship between the inclination of the bottom surface of the prism 41 and the capacitance Ce of each of the parallelism adjusting electrodes 111 to 113. Parallelism adjusting electrodes 111 to 113 shown in FIG.
Are as follows. Inner diameter r0 = 0.08cm Outer diameter r1 = 0.12cm Gap between electrodes Δg = 0.07cm

【0030】図7(b)の結果は,図の(a)および
(c)に示すように,軸αを中心にしてプリズムの底面
を傾けた条件で各電極の容量を算出したものである。軸
αは,電極112と113との鏡面対称の軸である。プ
リズム41が角度θだけ傾いているとき,図の(c)に
示すように,電極111〜113の表面が半導体ウエハ
100の表面と平行になる位置(図中の破線の位置)か
らはずれる。この時,電極111〜113の端部がその
平行位置からずれる距離△dを図7の(c)の横軸とし
ている。
The results of FIG. 7 (b) are obtained by calculating the capacitance of each electrode under the condition that the bottom of the prism is tilted about the axis α, as shown in FIGS. 7 (a) and 7 (c). . The axis α is an axis of mirror symmetry between the electrodes 112 and 113. When the prism 41 is tilted by the angle θ, the surfaces of the electrodes 111 to 113 deviate from positions where the surfaces of the electrodes 111 to 113 are parallel to the surface of the semiconductor wafer 100 (the positions indicated by broken lines in the drawing), as shown in FIG. At this time, the distance Δd at which the ends of the electrodes 111 to 113 deviate from their parallel positions is taken as the horizontal axis in FIG.

【0031】平行度調整用電極111〜113の容量C
eは,上述のように,LCRメータ13の容量メータ1
31〜133を用いて測定する。LCRメータ13やホ
ストコントローラ14を含めた容量測定系の精度を0.
1pF程度にすることは,比較的容易である。容量測定
系の精度を0.1pFとすると,図7(b)から,距離
△dが0.01μm以下となるように平行度を調節でき
ることがわかる。なお,距離△dが0.01μmの時,
プリズム表面の傾き角θは約0.0005゜であり,無
視できる程度である。
The capacitance C of the parallelism adjusting electrodes 111 to 113
e is the capacity meter 1 of the LCR meter 13 as described above.
It measures using 31-133. The accuracy of the capacity measurement system including the LCR meter 13 and the host controller 14 is set to 0.
It is relatively easy to make it about 1 pF. Assuming that the accuracy of the capacitance measurement system is 0.1 pF, it can be seen from FIG. 7B that the parallelism can be adjusted so that the distance Δd is 0.01 μm or less. When the distance △ d is 0.01 μm,
The inclination angle θ of the prism surface is about 0.0005 °, which is negligible.

【0032】図8は,軸αと直角な軸βを中心にしてプ
リズム41が傾いている場合における距離△dと各平行
度調整用電極の容量Ceとの関係を示すグラフである。
この場合にも,図7の場合と同様に,容量測定系の精度
を0.1pFとすれば,距離△dが0.01μm以下と
なるように平行度を調節することができる。
FIG. 8 is a graph showing the relationship between the distance Δd and the capacitance Ce of each parallelism adjusting electrode when the prism 41 is tilted about an axis β perpendicular to the axis α.
In this case, as in the case of FIG. 7, if the accuracy of the capacitance measuring system is set to 0.1 pF, the parallelism can be adjusted so that the distance Δd is 0.01 μm or less.

【0033】このように,プリズムの底面に平行度調整
用の電極を3つ設けて,それらに3相交流信号を印加し
て容量を測定し,それらの容量値が互いにほぼ等しくな
るように3台の圧電アクチュエータ21〜23を駆動す
れば,プリズムの底面(すなわち,測定用電極201の
表面)と半導体ウエハ100の表面との平行度を精度よ
く調節することが可能である。なお,このとき各平行度
調整用電極の容量値を正確に求める必要はなく,それら
の値が互いに等しくなるように圧電アクチュエータを制
御すればよい。
As described above, three electrodes for adjusting the degree of parallelism are provided on the bottom surface of the prism, a three-phase AC signal is applied thereto, and the capacitance is measured. The three electrodes are adjusted so that their capacitance values become substantially equal to each other. When the piezoelectric actuators 21 to 23 are driven, the parallelism between the bottom surface of the prism (that is, the surface of the measurement electrode 201) and the surface of the semiconductor wafer 100 can be adjusted with high accuracy. At this time, it is not necessary to accurately determine the capacitance value of each parallelism adjusting electrode, and it is sufficient to control the piezoelectric actuator so that these values become equal to each other.

【0034】このように,平行度調整用電極111〜1
13に3相交流信号を印加すれば,測定用電極201の
電位が3相交流電源の中性点NPと等しい電位に保たれ
るので,平行度調整用電極に印加する交流信号が測定用
電極に対する外乱になることがない。したがって,平行
度を調整しつつ,C−V測定などの電気測定を正確に行
なうことができるという利点がある。
As described above, the parallelism adjusting electrodes 111 to 1
When a three-phase AC signal is applied to the electrode 13, the potential of the measuring electrode 201 is maintained at the same potential as the neutral point NP of the three-phase AC power supply. There is no disturbance to. Therefore, there is an advantage that electrical measurement such as CV measurement can be accurately performed while adjusting the parallelism.

【0035】また,上記実施例では3相交流電源の中性
点NPも半導体ウエハの裏面の電極202も共に接地さ
れているので,平行度が保たれていれば,電極202と
測定用電極201との間を(すなわち,半導体ウエハの
中を)電流が流れることがない。この点も,測定用電極
を用いた電気測定を正確に行なう上の利点となってい
る。
In the above embodiment, since the neutral point NP of the three-phase AC power supply and the electrode 202 on the back surface of the semiconductor wafer are both grounded, if the parallelism is maintained, the electrode 202 and the measuring electrode 201 are maintained. (Ie, through the semiconductor wafer). This is also an advantage in performing accurate electrical measurement using the measurement electrode.

【0036】さらに,電極202と測定用電極201と
の間を電流が流れることがないので,導電性の試料台7
を電極202として用いる場合に,半導体ウエハ100
の裏面と試料台7との間のインピーダンスを小さくしな
くても平行度を正確に調整できる。すなわち,半導体ウ
エハ100と試料台7との密着性にあまり注意すること
なく導電性の試料台7を電極202として用いることが
できるという利点がある。
Further, since no current flows between the electrode 202 and the measuring electrode 201, the conductive sample stage 7
When the semiconductor wafer 100 is used as the electrode 202,
The parallelism can be accurately adjusted without reducing the impedance between the back surface of the sample and the sample table 7. That is, there is an advantage that the conductive sample stage 7 can be used as the electrode 202 without paying much attention to the adhesion between the semiconductor wafer 100 and the sample stage 7.

【0037】D.変形例 なお,この発明は上記実施例に限られるものではなく,
その要旨を逸脱しない範囲において種々の態様において
実施することが可能であり,例えば次のような変形も可
能である。
D. Modifications The present invention is not limited to the above embodiment,
The present invention can be implemented in various modes without departing from the gist of the present invention. For example, the following modifications can be made.

【0038】(1)平行度調整用電極としては,一般
に,N個(Nは3以上の整数)の互いに等しい形状の電
極を,測定用電極に対して互いに対称な位置に設ければ
よい。この場合に,各電極に印加される交流印加信号
は,周波数と起電力とが互いに等しく位相が2π/Nづ
つ異なる対称N相信号とする。こうすれば,上記実施例
と同様な効果がある。
(1) As the electrodes for adjusting the parallelism, generally N (N is an integer of 3 or more) electrodes having the same shape may be provided at symmetrical positions with respect to the measurement electrodes. In this case, the AC applied signal applied to each electrode is a symmetric N-phase signal having the same frequency and electromotive force and different phases by 2π / N. This has the same effect as the above embodiment.

【0039】(2)電気測定を行なっている間に平行度
が崩れる心配が無い場合には,位相差の無い(すなわち
同位相の)N個の交流信号をN個の平行度調整用電極に
印加してもよい。この場合には,まず平行度調整用電極
を用いて平行度を調整し,その平行度を保持したまま,
平行度調整用電極に信号を印加することなく測定用電極
を用いて電気測定を行なう。ただし,上述のように対称
N相信号を用いるようにすれば,測定用電極に外乱を与
えることがなく,かつ,半導体ウエハに平行度調整の印
加信号に起因する電流が流れないので,平行度を調整し
つつ電気測定を高精度で行なうことができるという利点
がある。なお,同位相の交流信号を平行度調整用電極に
印加する場合には,測定用電極の形状と平行度調整用電
極の形状とを等しくすれば,平行度調整用電極を測定用
電極としても利用できるので,N個の平行度調整用電極
の内の1つを測定用電極として利用することもできる。
(2) If there is no concern that the parallelism will be lost during the electrical measurement, N AC signals having no phase difference (ie, having the same phase) are applied to the N parallelism adjusting electrodes. It may be applied. In this case, the parallelism is first adjusted using the parallelism adjusting electrode, and the parallelism is maintained.
Electrical measurement is performed using the measurement electrode without applying a signal to the parallelism adjustment electrode. However, if the symmetrical N-phase signal is used as described above, no disturbance is applied to the measuring electrode, and no current due to the applied signal for the parallelism adjustment flows through the semiconductor wafer. There is an advantage that the electrical measurement can be performed with high accuracy while adjusting the temperature. When an AC signal having the same phase is applied to the parallelism adjusting electrode, if the shape of the measuring electrode and the shape of the parallelism adjusting electrode are made equal, the parallelism adjusting electrode can be used as the measuring electrode. Since it can be used, one of the N parallelism adjusting electrodes can be used as a measuring electrode.

【0040】(3)この発明は,C−V測定に限らず,
一般に,測定用電極と半導体基板との間の電気特性を測
定する装置に利用される平行度調整装置に適用できる。
他の電気測定としては,例えば,ゼルブスト法によって
合成容量Ctaの時間依存性を調べることにより,半導
体表面近傍の特性を評価するものなどがある。また,L
CRメータ13によってコンダクタンスを測定すれば,
半導体基板101と酸化膜102との界面における界面
準位などを評価することも可能である。さらに,半導体
基板の洗浄処理,熱酸化処理,酸化膜の安定化熱処理等
の各処理の間に,半導体ウエハに酸化膜が形成されてい
ない状態でC−V測定を実行すれば,これらの各処理の
良否を判定することができる。
(3) The present invention is not limited to CV measurement,
In general, the present invention can be applied to a parallelism adjusting device used for a device for measuring electric characteristics between a measurement electrode and a semiconductor substrate.
As another electrical measurement, for example, there is a method of evaluating the characteristics near the semiconductor surface by examining the time dependency of the combined capacitance Cta by the Zerubst method. Also, L
If the conductance is measured by the CR meter 13,
It is also possible to evaluate an interface state and the like at an interface between the semiconductor substrate 101 and the oxide film 102. Further, during the respective processes such as the cleaning process of the semiconductor substrate, the thermal oxidation process, and the heat treatment for stabilizing the oxide film, if the CV measurement is executed in a state where the oxide film is not formed on the semiconductor wafer, each of these processes can be performed. The quality of the processing can be determined.

【0041】[0041]

【発明の効果】以上説明したように,請求項1の電気測
定装置では,N個の平行度調整用電極は,互いに等しい
形状を有し,かつ,測定用電極に対して互いに対称な位
置に設けられているので,測定用電極とN個の平行度調
整用電極とで構成される等価回路は,測定用電極を中心
とする星形結線の対称負荷となる。そして,N個の平行
度調整用電極に対称N相交流信号を印加しているので,
各平行度調整用電極における容量の測定条件が等しくな
り,かつ,測定用電極の電位が交流電源の中性点の電位
と等しく保たれる。したがって,平行度調整用の交流信
号を印加してもこれが測定用電極に対する外乱となるこ
とがないので,測定用電極で正確な電気測定を行ないつ
つ,平行度調整手段で平行度を調整することができると
いう効果がある。
As described above, in the electric measuring apparatus according to the first aspect, the N parallelism adjusting electrodes have the same shape as each other and are located at positions symmetrical to each other with respect to the measuring electrodes. Since it is provided, an equivalent circuit composed of the measuring electrode and the N parallelism adjusting electrodes has a symmetric load of a star connection centering on the measuring electrode. Since a symmetric N-phase AC signal is applied to the N parallelism adjusting electrodes,
The measurement condition of the capacitance in each parallelism adjusting electrode becomes equal, and the potential of the measuring electrode is kept equal to the potential of the neutral point of the AC power supply. Therefore, even if an AC signal for adjusting the parallelism is applied, it does not disturb the measuring electrode. Therefore, it is necessary to adjust the parallelism by the parallelism adjusting means while performing accurate electrical measurement with the measuring electrode. There is an effect that can be.

【0042】また,請求項2の平行度調整装置では,N
個の平行度調整用電極に対して,同位相のN個の交流信
号を印加しているので,各平行度調整用電極における容
量の測定条件が等しい。したがって,平行度調整手段が
各平行度調整用電極における容量を比較することによ
り,平行度を正確に調整することができるという効果が
ある。
Also, in the parallelism adjusting device according to the second aspect, N
Since N AC signals having the same phase are applied to the parallelism adjusting electrodes, the measurement conditions of the capacitances at the respective parallelism adjusting electrodes are equal. Therefore, there is an effect that the parallelism can be accurately adjusted by the parallelism adjusting means comparing the capacitances of the respective parallelism adjusting electrodes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】半導体の電気測定方法の概要を示す概念図。、FIG. 1 is a conceptual diagram showing an outline of a method for measuring electricity of a semiconductor. ,

【図2】この発明の一実施例としての電気測定装置の構
成を示す図。
FIG. 2 is a diagram showing a configuration of an electricity measuring device as one embodiment of the present invention.

【図3】実施例における電極の配置を示す図。FIG. 3 is a diagram showing an arrangement of electrodes in the embodiment.

【図4】電極間の等価回路を示す説明図。FIG. 4 is an explanatory diagram showing an equivalent circuit between electrodes.

【図5】交流電源と平行度調整用電極の基本的接続関係
を示す図。
FIG. 5 is a diagram showing a basic connection relationship between an AC power supply and a parallelism adjusting electrode.

【図6】交流電源と平行度調整用電極と容量メータとの
接続関係を示す図。
FIG. 6 is a diagram showing a connection relationship between an AC power supply, a parallelism adjustment electrode, and a capacitance meter.

【図7】プリズムの底面の傾きと平行度調整用電極の容
量との関係を示すグラフ。
FIG. 7 is a graph showing the relationship between the inclination of the bottom surface of a prism and the capacitance of a parallelism adjusting electrode.

【図8】プリズムの傾きと各平行度調整用電極の容量と
の関係を示すグラフ。
FIG. 8 is a graph showing the relationship between the inclination of a prism and the capacitance of each parallelism adjusting electrode.

【図9】電極の他の配置を示す図。FIG. 9 is a diagram showing another arrangement of electrodes.

【符号の説明】[Explanation of symbols]

3 架台 41 プリズム 41a 底面 5 レーザ発振器 6 受光センサ 7 試料台 21〜23 圧電アクチュエータ 100 半導体ウエハ 101 半導体基板 102 酸化膜 111〜113 平行度調整用電極 130 3相交流電源 131〜133 容量メータ 201 測定用電極 Reference Signs List 3 base 41 prism 41a bottom surface 5 laser oscillator 6 light receiving sensor 7 sample table 21-23 piezoelectric actuator 100 semiconductor wafer 101 semiconductor substrate 102 oxide film 111-113 parallelism adjusting electrode 130 three-phase AC power supply 131-133 capacity meter 201 measurement electrode

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体ウエハの電気特性の測定を行なう
装置であって,半導体ウエハの表面との間にギャップを
隔てて所定の電極保持面で保持される測定用電極と,前
記測定用電極と前記半導体ウエハとの間の電気特性を測
定する測定手段と,前記電極保持面において,測定用電
極に対して互いに対称な位置に設けられた互いに等しい
形状のN個(Nは3以上の整数)の平行度調整用電極
と,前記N個の平行度調整用電極に対して,周波数と起
電力とが互いに等しく位相が2π/Nづつ異なる対称N
相交流信号を印加する交流電源と,前記N個の平行度調
整用電極のそれぞれと半導体ウエハとの間の静電容量
を,前記対称N相交流信号に基づいてそれぞれ測定する
とともに,当該静電容量の比較結果に基づいて,前記電
極保持面と前記半導体ウエハの表面との平行度を調整す
る平行度調整手段と,を備えることを特徴とする半導体
ウエハの電気測定装置。
An apparatus for measuring electrical characteristics of a semiconductor wafer, comprising: a measurement electrode held on a predetermined electrode holding surface with a gap between the semiconductor electrode and a surface of the semiconductor wafer; Measuring means for measuring electric characteristics between the semiconductor wafer and N pieces of the same shape (N is an integer of 3 or more) provided at symmetrical positions with respect to the measuring electrode on the electrode holding surface; And the N parallelism adjusting electrodes, the frequency and the electromotive force are equal to each other and the phases are different by 2π / N.
An AC power source for applying a phase AC signal, and the capacitance between each of the N parallelism adjusting electrodes and the semiconductor wafer are measured based on the symmetric N-phase AC signal. An electrical measurement apparatus for a semiconductor wafer, comprising: a parallelism adjusting unit that adjusts the parallelism between the electrode holding surface and the surface of the semiconductor wafer based on a comparison result of the capacitance.
【請求項2】 半導体ウエハの電気測定装置のための平
行度調整装置であって,半導体ウエハの表面との間にギ
ャップを隔てて保持される電極保持面と,前記電極保持
面において,互いに対称な位置に設けられた互いに等し
い形状のN個(Nは3以上の整数)の平行度調整用電極
と,前記N個の平行度調整用電極に対して,周波数と起
電力とが互いに等しく同位相のN個の交流信号を印加す
る交流電源と,前記N個の平行度調整用電極のそれぞれ
と半導体ウエハとの間の静電容量を,前記交流信号に基
づいてそれぞれ測定するとともに,当該静電容量の比較
結果に基づいて,前記電極保持面と前記半導体ウエハの
表面との平行度を調整する平行度調整手段と,を備える
ことを特徴とする平行度調整装置。
2. A parallelism adjusting device for a semiconductor wafer electric measuring device, wherein an electrode holding surface held with a gap between the electrode holding surface and a surface of the semiconductor wafer, and a symmetry between the electrode holding surface and the electrode holding surface. (N is an integer of 3 or more) having the same shape and having the same frequency and the same electromotive force with respect to the N parallelism adjusting electrodes provided at different positions. An AC power supply for applying N AC signals of the phase and capacitance between each of the N parallelism adjusting electrodes and the semiconductor wafer are measured based on the AC signal, and the static electricity is measured. A parallelism adjusting device comprising: a parallelism adjusting unit that adjusts the parallelism between the electrode holding surface and the surface of the semiconductor wafer based on a comparison result of the capacitance.
JP3125439A 1991-04-26 1991-04-26 Semiconductor wafer electrical measuring device and parallelism adjusting device Expired - Lifetime JP2640586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3125439A JP2640586B2 (en) 1991-04-26 1991-04-26 Semiconductor wafer electrical measuring device and parallelism adjusting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3125439A JP2640586B2 (en) 1991-04-26 1991-04-26 Semiconductor wafer electrical measuring device and parallelism adjusting device

Publications (2)

Publication Number Publication Date
JPH04328842A JPH04328842A (en) 1992-11-17
JP2640586B2 true JP2640586B2 (en) 1997-08-13

Family

ID=14910118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3125439A Expired - Lifetime JP2640586B2 (en) 1991-04-26 1991-04-26 Semiconductor wafer electrical measuring device and parallelism adjusting device

Country Status (1)

Country Link
JP (1) JP2640586B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3688467B2 (en) 1997-08-20 2005-08-31 大日本スクリーン製造株式会社 Impurity amount measuring method and apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2690908B2 (en) * 1987-09-25 1997-12-17 株式会社日立製作所 Surface measuring device

Also Published As

Publication number Publication date
JPH04328842A (en) 1992-11-17

Similar Documents

Publication Publication Date Title
US4532402A (en) Method and apparatus for positioning a focused beam on an integrated circuit
US5233291A (en) Method of and apparatus for measuring electric characteristics of semiconductor wafer
US20020006740A1 (en) Real-time in-line testing of semiconductor wafers
JP2002148012A (en) Apparatus and method for measurement of film thickness
JP7280956B2 (en) Probe system and method for calibrating capacitive height sensing measurements
JP2640586B2 (en) Semiconductor wafer electrical measuring device and parallelism adjusting device
JP2772495B2 (en) Capacity measuring device
JP2009192497A (en) Surface potential measuring method and surface electrometer
US20070216418A1 (en) Surface voltmeter and surface voltage measurement method
JPH0429344A (en) Tester for semiconductor integrated circuit and method of controlling probe position of this tester
JPH06300509A (en) Device for measuring thickness of insulating coating film or insulating member and measuring method
US7019538B2 (en) Electrostatic capacitance sensor type measurement apparatus
JP2897080B2 (en) Displacement meter adjusting method and device
Morimura et al. Small-angle measuring device utilizing moiré fringe
JP3516875B2 (en) Interferometer
JP3445787B2 (en) Physical quantity measurement device
JP3005233B2 (en) Signal waveform detector
JP3121587U (en) Ultra high viscosity measuring device
JP2904656B2 (en) Semiconductor wafer charge measurement method
JP2797585B2 (en) Scanning tunneling spectrometer
JP2005172700A (en) Capacitance thickness measuring method
JPH08320325A (en) Apparatus for measuring physical quantity
JPH03211449A (en) Measuring instrument for thermal expansion quantity of semiconductor integrated circuit
JPH08114606A (en) Measuring instrument for physical quantity
JPH05335392A (en) Sensor for noncontact electric measurement of semiconductor water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 14

EXPY Cancellation because of completion of term