JP2639290B2 - 回転機用無方向性電磁鋼板の製造方法 - Google Patents

回転機用無方向性電磁鋼板の製造方法

Info

Publication number
JP2639290B2
JP2639290B2 JP4265923A JP26592392A JP2639290B2 JP 2639290 B2 JP2639290 B2 JP 2639290B2 JP 4265923 A JP4265923 A JP 4265923A JP 26592392 A JP26592392 A JP 26592392A JP 2639290 B2 JP2639290 B2 JP 2639290B2
Authority
JP
Japan
Prior art keywords
less
temperature
iron loss
hot
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4265923A
Other languages
English (en)
Other versions
JPH06116640A (ja
Inventor
隆 田中
裕義 屋鋪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4265923A priority Critical patent/JP2639290B2/ja
Publication of JPH06116640A publication Critical patent/JPH06116640A/ja
Application granted granted Critical
Publication of JP2639290B2 publication Critical patent/JP2639290B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、回転機の鉄芯材料とし
て用いられる鉄損特性と励磁特性に優れた無方向性電磁
鋼板の製造方法に関する。
【0002】
【従来の技術】回転機用の電磁鋼板に対しては、機器の
電力損失低減および小型化のため、低鉄損化、低磁化力
化という磁気特性の改善が強く求められている。
【0003】回転機では、板面内のあらゆる方向に磁化
されることから、鉄損特性と励磁特性との異方性は極め
て小さくなければならない。従って、回転機用電磁鋼板
としては上記特性の異方性が少なく、板面内のあらゆる
方向の平均値としての磁気特性が低鉄損、低磁化力であ
ることが求められる。
【0004】特に大型回転機の場合、鉄芯の発熱が問題
となっており、発熱を抑えるために、とりわけ高Si系の
低鉄損材料が求められている。一方、電気学会論文誌D1
07(1987)、1153に示されているように、一般に高Si系の
電磁鋼板における磁化力は、一定の磁束密度で低Si系の
電磁鋼板のそれと比較すると高くなる傾向、すなわち励
磁特性 (励磁銅損に対応) が悪くなる傾向にある。した
がって、回転機の全損失で比較すると、大型回転機の場
合、必ずしも高Si系の電磁鋼板を用いることが有利とは
限らない場合もあり、さらにこの系の材料で励磁特性
(磁化力)を改善することも求められている。
【0005】鉄損、磁束密度あるいは励磁特性の測定
は、無方向性電磁鋼板の場合、通常はJIS C 2550に定め
られているように、圧延方向 (0 °) と圧延直角方向
(90°)とから短冊状試料を採取して行われるが、この方
法では回転機器のような板面内のあらゆる方向に磁化さ
れる機器の鉄芯の性能を正当に評価することができな
い。回転機器を対象とする場合には、その励磁状態に近
いリング試料での特性の評価が適切であり、この試験法
で良好な特性が得られることが重要である。
【0006】このようなことから、近年、リング試料で
測定しても良好な鉄損と磁束密度あるいは励磁特性が得
られる、板面内のあらゆる方向に特性の良好な無方向性
電磁鋼板の開発が進められるようになり、その製造方法
に関するいくつかの発明がある。
【0007】例えば、特開平 2−107719号公報において
は、 (Si+Al) で 4.5%以下、Mn:1.0 %以下の鋼素材
から、スラブ加熱温度1300〜1500℃、熱間圧延仕上温度
600〜800 ℃、さらに冷間圧延圧下率40〜85%を組み合
わせて製造する方法が提案されている。特開平 2−3103
16号公報では、Si: 0.3〜3%、Mn:0.25%以下、Al:
0.2 %以上の鋼素材から、冷間圧延前の熱延鋼板の結晶
粒径を50μm 以上とし、その後の冷間圧延を50〜80%で
行う方法が提案されている。特開平 3−24251号公報で
は、Si:3.3 %以下、Mn:0.2 %以下、Al:1.5 〜8%
の鋼素材から、中間焼成(焼鈍)をはさんで2回の冷間
圧延を行う方法が提案されている。
【0008】
【発明が解決しようとする課題】しかし、特開平 2−10
7719号公報に示される方法では、鋼スラブを1300〜1500
℃という高温で加熱しなければならないため、特に大型
回転機に用いられる高Si鋼では熱延板のスケール除去が
困難となり、また経済的にも不利である。
【0009】特開平 2−310316号公報に示される方法で
は、Si含有量が3%以下に制限されているため、大型回
転機のような極めて低い鉄損を要求される用途に適しな
いものしか得られない。
【0010】特開平 3−24251 号公報に示される方法で
は、中間焼鈍をはさんで2回の冷間圧延を行うため工程
が煩雑になり、また経済的にも不利である。
【0011】本発明の目的は、上記の問題点を解消する
ことができる鉄損特性と励磁特性に優れた回転機用無方
向性電磁鋼板の製造方法を提供することにある。
【0012】
【課題を解決するための手段】本発明の要旨は次の製造
方法にある。
【0013】重量%で、C:0.003 %以下、N:0.003
%以下、Si:3%を超え4%未満、sol.Al:1%を超え
2%未満、Mn:0.1 %未満およびS:0.001 %以下を含
有し、かつ(Mn/S)≧10を満足し、残部はFeおよび不
可避的不純物からなる鋼素材を、700 ℃以上800 ℃以下
の仕上げ温度で熱間圧延した後、600 ℃以下の温度で巻
取りを行い、次いで脱スケールの後に800 ℃以上の温度
で焼鈍し、その後更に85%以上の圧下率で1回の冷間圧
延を行った後、 900〜1100℃の温度で焼鈍を施すことを
特徴とする鉄損特性と励磁特性に優れた回転機用無方向
性電磁鋼板の製造方法。
【0014】本出願人は、特開昭64−55338 号公報にお
いて、Si:4%以下、Mn:0.2 %以下、Al:0.002 %未
満または 0.150〜1.0 %、S:0.006 %以下の鋼素材か
ら、圧延終了温度を700 ℃以上のフェライト域内の温度
として熱間圧延し、続いて600 ℃以下の温度で巻取りを
行い、次いで700 〜1000℃の温度で焼鈍を行い、更に85
%以上の圧下率で冷間圧延を行った後、焼鈍を施す無方
向性電磁鋼板の製造方法を提案した。この方法では、Mn
とSの低減および熱延板結晶粒径の粗大化、さらに85%
以上の高い圧下率で原則として1回の冷間圧延を施すこ
とにより板面内の磁気特性の異方性の低減を図ってい
る。
【0015】本発明者らはさらに、磁気特性に及ぼす各
種合金元素の影響を詳細に検討した結果、次の新知見を
得た。
【0016】Si含有量が3〜4%の高Si鋼においてsol.
Al含有量(以下、Alという) を1〜2%にすると、大型
回転機の設計磁束密度である 1.3T付近での鉄損特性と
励磁特性が一段と改善される。すなわち、 1.3T付近で
の励磁特性(磁化力)は、Al含有量が1〜2%の範囲で
はほぼ一定であり、一方、鉄損についてはAl含有量が1
%程度を境界として著しく減少する。そして、さらにMn
とSを共に低減させることが、高Si系の材料では磁気特
性の改善に有効である。
【0017】
【作用】本発明の基になった知見を図1、図2により説
明する。
【0018】図1は、ベース成分として、C:0.002
%、Si:3.4 %、Mn:0.03%、P:0.01%およびS:0.
0007%を含有する鋼素材で、Alを0.1 〜3%の範囲で変
化させた場合の鉄損(W13/50)と磁化力 (H) の変化を
示す図である。これらの鋼素材に対し、熱間圧延の仕上
温度を780 ℃、巻取温度を550 ℃とし、酸洗による脱ス
ケールを行った後、900 ℃で30秒間の連続焼鈍の後、圧
下率90%で0.5mm まで冷間圧延した。その後1050℃で30
秒間の連続焼鈍を実施し、得られた鋼板をJIS リング(
外径45mm、内径33mm) に加工し、リング試料での鉄損特
性と励磁特性を調査した。なおこれらの特性は実際の使
用条件に近い磁束密度Bが 1.3Tで評価した。
【0019】図示するように、磁化力については、Alが
2%未満ではほとんど変化しないが、2%以上になると
著しく増大する。磁化力を大きくするためには励磁電流
を多く流す必要があり、これは励磁銅損の悪化を意味す
る。一方、鉄損については、Alが1%までは急激に減少
し、1%を超えると減少の割合は緩やかとなり、ほとん
ど変化しない。すなわち、鉄損特性と励磁特性とのバラ
ンスが最も良くなるAlの範囲は1%を超え2%未満であ
ることがわかった。
【0020】これは次のような理由によるものと考えら
れる。すなわち、Alが1%を超えると磁気特性の向上に
有利な集合組織が発達し、本来Alの増加に伴う磁化力の
増大は見られない。鉄損については、電気抵抗の増分に
よる渦電流損の減少と集合組織の改善によるヒステリシ
ス損の減少が相乗して急激に減少する。しかしながら、
2%以上になるとAlによる集合組織の改善効果が緩和す
るため、Alの増加と共に磁力化は増大し、また鉄損の減
少は僅かとなる。
【0021】図2は、ベース成分として、C:0.002
%、Si:3.7 %、P:0.013 %、 Al:1.3 %を含有す
る鋼素材で、S含有量(以下、Sという)を0.0006%と
0.0024%の2水準として、Mn含有量(以下、Mnという)
を0.02〜0.32%の範囲で変化させた場合の鉄損 (W
13/50)と磁化力 (H) の変化を示す図である。これらの
鋼素材に対し、熱間圧延の仕上温度を760 ℃、巻取温度
を520 ℃とし、酸洗による脱スケールを行った後、860
℃で6時間の箱焼鈍の後、圧下率88%で0.5mm まで冷間
圧延し、その後1080℃で30秒間の連続焼鈍を実施し、得
られた鋼板について前記と同じ試験を行った。
【0022】図示するように、磁化力については、低S
の場合にはMnが 0.1%未満では、ほとんど変化しない
が、 0.1%以上では増大する傾向にある。一方、高Sの
場合にはMnが 0.2%までは、ほとんど変化しないが、
0.2%を超えるようになると急激に増大する傾向にあ
る。鉄損については、Mnの増加と共に僅かに増大する傾
向にある。またSが増えると著しく増大する。したがっ
て、大型回転機用の電磁鋼板に適するように磁化力と鉄
損を共に低くするには、Sを 0.001%以下、Mnを 0.1%
未満と低くする必要があることが認められた。
【0023】これは次のような理由によるものと考えら
れる。Mnを 0.1%よりも低くすると磁気特性の向上に有
利な集合組成が発達し、本来Mnの増加に伴うFe分の減少
による磁化力の増大は見られず、またSについては、そ
の含有量が増えるほどMnS などの析出物が増加するため
鉄損が増加する。
【0024】次に本発明の方法の対象となる鋼素材の組
成を前記のように限定した理由を説明する。
【0025】C:C含有量は鉄損低減の観点から少ない
方がよい。C含有量が 0.003%を超えると磁気時効によ
る鉄損増加が生じることから、 0.003%を上限とした。
【0026】N:N含有量も鉄損低減の観点から少ない
方がよい。N含有量が 0.003%を超えるとAlN などの窒
化物が生成し磁気特性が劣化することから、 0.003%を
上限とした。
【0027】Si:Siは固有抵抗を増加させ、渦電流損の
低下による鉄損低下に有効に寄与する元素であり、特に
低鉄損が要求される大型回転機用の場合では、3%を超
えて含有させる必要がある。一方、4%以上になると鋼
板が脆くなって冷間圧延時に板割れ等の問題を生じる。
よって、Si含有量の範囲を3%を超え4%未満とした。
【0028】sol.Al:Alは本発明において重要な意味を
もつ元素の一つである。前記のように1%を超えてAlを
含有させると磁気特性に有利な集合組織が発達し、磁化
力の増大は見られない。また鉄損については、電気抵抗
の増分による渦電流損の減少と集合組織の改善によるヒ
ステリシス損の減少が相乗して、急激に減少する。一
方、2%以上になるとAlによる集合組織の改善効果が飽
和するため、Alの増加と共に磁化力は増大し、鉄損の減
少は僅かとなる。すなわち、鉄損特性と励磁特性とのバ
ランスを最も良くするために、Alの範囲を1%を超え2
%未満とした。
【0029】Mn:Mnは本発明において重要な意味をもつ
元素の一つである。前記のように、従来はSによる熱間
脆性の防止、およびMnS の粗大化の促進の観点から、Mn
は、 0.2〜1.0 %まで許容するのが普通であったが、本
発明では 0.1%未満とする。
【0030】極低Sの条件の下において、Mnを 0.1%未
満とすれば、図2で説明したようにリング試料で 1.3T
の磁束密度において、低鉄損と低磁化力が同時に実現さ
れる。Mnが 0.1%以上では、図2から明らかなように磁
化力が増加する。よって、Mnは、 0.1%未満とした。
【0031】S:MnとMnS を形成し、焼鈍時の結晶粒成
長を妨げ、鉄損の低下を阻む方向に作用するとともに、
熱間脆性を引き起こす。また熱延鋼板の再結晶と結晶粒
成長を促進する上でも有害である。特に低鉄損が要求さ
れるため、Sは 0.001%以下とした。
【0032】Mn/S:前記のように単独でMnとSを限定
しても、Mn/Sが10未満では、熱間脆性をもたらすSを
MnS として固定することができない。熱間脆性の防止の
観点から、さらにMn/Sで10以上とした。
【0033】なおPは、特に限定する必要はないが、
0.1%を超えると鋼板が脆化し冷間圧延において破断が
生じ易くなるので、 0.1%以下とすることが望ましい。
【0034】次に製造工程および製造条件を前記のよう
に限定した理由を説明する。
【0035】上記のような組成の鋼素材は常法に従って
転炉等で溶製され、連続鋳造または造塊−分塊圧延を経
てスラブとされる。次いで、このスラブを熱間圧延し、
その後巻取りを行い、脱スケールの後に焼鈍を行い、1
回の冷間圧延を施して、焼鈍を実施する。熱間圧延以降
の各工程について次に詳述する。
【0036】熱間圧延、巻取り この工程は圧延仕上温度を700 ℃以上800 ℃以下とし、
巻取温度を600 ℃以下とすることを条件とする。
【0037】本発明の方法は既述した通り、熱延板の焼
鈍の階段で再結晶及び粒成長を促進させることにより、
磁気特性を向上させるところに重要なポイントがある。
熱延板の焼鈍時に再結晶及び粒成長を十分に促進させる
ためには、熱間圧延終了時に十分な歪が蓄積され、また
その歪エネルギーが巻取りを経た後まで解放されずに残
っていなければならない。熱間圧延は、このような観点
から圧延仕上温度を800 ℃以下とし、巻取りはできるだ
け歪エネルギーが解放されない低い温度とするのが良
い。この場合、圧延仕上温度は、熱延板の焼鈍時の再結
晶及び粒成長の意味からは、800 ℃以下の温度とする上
限限定だけで十分であるが、現実には圧延仕上温度が70
0 ℃を下回ると、圧延負荷が大きくなりすぎ通常の圧延
機では操業が困難となる。以上のことから、熱間圧延仕
上温度は700 ℃以上800 ℃以下とした。
【0038】巻取温度については、600 ℃を超える場合
には、鋼板内部の歪エネルギーの開放が進むとともに再
結晶も生じ始めて、その後の熱延板の焼鈍時の結晶粒成
長性が悪くなる。従って、巻取り温度は600 ℃以下とし
た。下限は、歪エネルギーの解放抑制という観点から設
ける必要はない。
【0039】脱スケール 脱スケールは酸洗いで行う場合が多いが、種々の機械的
な脱スケール法、例えばショットブラストやロールベン
ダ等の組合せで行っても良い。脱スケールは熱延板の焼
鈍の前に実施する。
【0040】熱延板の焼鈍 この工程は、前記の熱間圧延、巻取りを経た熱延板を再
結晶させ、さらに結晶粒を成長させるために施すもので
ある。
【0041】焼鈍の方法としては、箱焼鈍、連続焼鈍の
いずれでも採用できる。再結晶と結晶粒の成長を安定し
て完了させるには、箱焼鈍の場合800 ℃以上、連続焼鈍
の場合850 ℃以上の温度とする必要がある。焼鈍温度を
800 ℃以上としたのはこれに基づいている。上限につい
ては特に限定する必要はないが、磁気特性改善の効果と
設備費とのバランスの観点から自ずと定まる。すなわ
ち、本来焼鈍温度はその効果の点からは高い方が有利で
あるが、800 ℃を遙に超える温度に設定するには非常に
高価な設備が必要となり、またそうしてもこの場合設備
費に見合うだけの特性改善の効果が見込めない。一般に
は、箱焼鈍の場合は950 ℃以下、連続焼鈍の場合は1000
℃以下が望ましい。
【0042】冷間圧延 冷間圧延の圧下率は本発明の重要な条件の一つであり、
85%以上とする必要がある。このような高い圧下率で冷
間圧延を行うことにより、製品での磁気特性の板面内異
方性が減少する。上限はもっぱら操業上の制約から決ま
るので限定しない。例えば、板厚が0.5mm の最も一般的
な製品の場合、95%の圧下率を採ろうとすれば熱延板板
厚は10mmであることが必要となるので、この程度が実操
業の限界であり、これ以上の圧下率での冷間圧延は事実
上不可能といえる。
【0043】冷間圧延後の焼鈍 この焼鈍は、上記冷間圧延後の加工組織を再結晶させる
と共に再結晶粒を十分に粒成長させることを目的とする
もので、普通連続焼鈍が採用される。
【0044】焼鈍温度としては900 ℃以上1100℃以下と
する。900 ℃未満の低い温度では再結晶しないか、ある
いは再結晶しても粒成長が十分起こらない。一方、1100
℃を超えると粒成長しすぎて、かえって磁気特性、特に
鉄損が悪化する。
【0045】なお、電磁鋼板を製造する場合、通常は上
記の焼鈍後さらに絶縁コーティングを付与する。本発明
の方法においても、製造の最終工程としてこのコーティ
ング工程を追加することは可能である。
【0046】
【実施例】表1(1) に示す各化学組成の鋼を転炉で溶製
し、これを連続鋳造により鋳片となし、続いて熱間圧
延、熱延板焼鈍、冷間圧延および連続焼鈍を行った。製
造工程とその条件を表1(2) に示す。なお最終板厚は0.
5mm とした。
【0047】得られた各鋼板から、外径80mm、内径60mm
の打ち抜きリング試験片を採取して、磁束密度Bが 1.3
Tのときの磁化力と鉄損の二つの特性を調査した。結果
を表1(2) の右欄に示す。
【0048】No.1〜No.6は、本発明で定める範囲内の成
分及び製造条件で製造した場合であるが、磁化力は190
A/m以下、鉄損は1.6 W/kg 以下であり、共に良好な特
性を示している。
【0049】一方、No.7〜No.11 は、No.6と同じ成分系
であるが、製造条件のいずれかがそれぞれ本発明で定め
る範囲外であり、いずれも本発明例のNo.6と比べて磁化
力、鉄損共に悪い。No.7では、熱延の仕上温度が高すぎ
て熱延板に歪エネルギーの蓄積がなく、熱延板焼鈍時に
再結晶及び粒成長が十分に行われなかったため、特性の
向上が見られない。No.8では、熱間圧延の巻取温度が高
すぎるため、No.7と同じ理由で特性の向上が見られな
い。No.9では、熱延板の焼鈍温度が低すぎるため粒成長
が十分起こらず特性は向上していない。No.11 では、冷
間圧延後の連続焼鈍温度が低すぎるため、十分な粒成長
が起こらず特性の向上が見られない。
【0050】さらに、No.12 〜No.20 は、No.6と同じ製
造条件であるが、成分系がそれぞれ本発明で定める範囲
外であり、いずれも本発明例のNo.6と比べて、特性が劣
るか、または板に製造できない。
【0051】No.12 では、C含有量が高すぎるため磁化
力、鉄損共に悪い。No.13 では、Si含有量が低すぎるた
め鉄損が悪い。No.14 では、Si含有量が高すぎるため冷
間圧延時に破断した。No.15 では、Mn含有量が高すぎる
ため特性に不利な集合組織が発達し、特に磁化力が悪
い。No.16 では、S含有量が高すぎてMnS などの析出物
が増加したため、特に鉄損が悪い。
【0052】No.17 では、sol.Al含有量が高すぎるた
め、Alによる集合組織の改善効果が飽和し、磁化力が悪
い。No.18 では、sol.Al量が含有量が低すぎるため、特
性に有利な集合組織が発達しきれず、特に鉄損が悪い。
No.19 では、N含有量が高すぎるため磁化力、鉄損共に
悪い。No.20 では、Mn/Sの値が10よりも低いため熱間
圧延時に破断した。
【0053】
【表1(1)】
【0054】
【表1(2)】
【0055】表2は、No.6(本発明例)とNo.10(比較
例)とについて、一般に行われるエプスタイン試験片
(幅30mm×長さ280mm)での、磁束密度Bが 1.3Tにおけ
る3種類の圧延方向の磁化力の変動 (異方性) を比較し
て示すものである。冷間圧延の圧下率が低いNo.10 で
は、リング試験片での特性の劣化はNo.6と比べて僅かで
あるが、表2に示すようにこの試験片での圧延方向によ
る磁化力の異方性は、No.10の方が遙に大きいことが明
らかである。
【0056】
【表2】
【0057】
【発明の効果】本発明の方法によれば、大型回転機の設
計磁束密度 1.3T付近で、板面のあらゆる方向に低鉄損
かつ低磁化力の優れた磁気特性を有する無方向性電磁鋼
板を製造することが可能であり、しかも従来技術のよう
に高温のスラブ加熱や2回冷間圧延などの煩雑かつ困難
な工程を経る必要がない。
【図面の簡単な説明】
【図1】sol.Al含有量と磁化力および鉄損との関係を示
す図である。
【図2】2種類のSレベルにおけるMn含有量と磁化力お
よび鉄損との関係を示す図である。

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】重量%で、C:0.003 %以下、N:0.003
    %以下、Si:3%を超え4%未満、sol.Al:1%を超え
    2%未満、Mn:0.1 %未満およびS:0.001 %以下を含
    有し、かつ(Mn/S)≧10を満足し、残部はFeおよび不
    可避的不純物からなる鋼素材を、700 ℃以上800 ℃以下
    の仕上げ温度で熱間圧延した後、600 ℃以下の温度で巻
    取りを行い、次いで脱スケールの後に800 ℃以上の温度
    で焼鈍し、その後更に85%以上の圧下率で1回の冷間圧
    延を行った後、 900〜1100℃の温度で焼鈍を施すことを
    特徴とする鉄損特性と励磁特性に優れた回転機用無方向
    性電磁鋼板の製造方法。
JP4265923A 1992-10-05 1992-10-05 回転機用無方向性電磁鋼板の製造方法 Expired - Lifetime JP2639290B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4265923A JP2639290B2 (ja) 1992-10-05 1992-10-05 回転機用無方向性電磁鋼板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4265923A JP2639290B2 (ja) 1992-10-05 1992-10-05 回転機用無方向性電磁鋼板の製造方法

Publications (2)

Publication Number Publication Date
JPH06116640A JPH06116640A (ja) 1994-04-26
JP2639290B2 true JP2639290B2 (ja) 1997-08-06

Family

ID=17423970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4265923A Expired - Lifetime JP2639290B2 (ja) 1992-10-05 1992-10-05 回転機用無方向性電磁鋼板の製造方法

Country Status (1)

Country Link
JP (1) JP2639290B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189976A (ja) * 2007-02-02 2008-08-21 Nippon Steel Corp 圧縮応力による鉄損劣化の小さい無方向性電磁鋼板およびその製造方法
JP6679958B2 (ja) * 2016-02-02 2020-04-15 日本製鉄株式会社 無方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
JPH06116640A (ja) 1994-04-26

Similar Documents

Publication Publication Date Title
JP4855222B2 (ja) 分割コア用無方向性電磁鋼板
JP5437476B2 (ja) 無方向性電磁鋼板の製造方法
EP3572545A1 (en) Non-oriented electromagnetic steel sheet and production method therefor
JP3305806B2 (ja) 高張力無方向性電磁鋼板の製造方法
KR20200020013A (ko) 무방향성 전자 강판 및 그 제조 방법
JP2004197217A (ja) 全周磁気特性の優れた無方向性電磁鋼板及びその製造方法
JP4358550B2 (ja) 圧延方向とその板面内垂直方向磁気特性の優れた無方向性電磁鋼板の製造方法
JPS63224801A (ja) 無方向性高Si鋼板の製造方法
JP2000129410A (ja) 磁束密度の高い無方向性電磁鋼板
JP2970423B2 (ja) 無方向性電磁鋼板の製造方法
JP2639290B2 (ja) 回転機用無方向性電磁鋼板の製造方法
JP5614063B2 (ja) 高周波鉄損の優れた高張力無方向性電磁鋼板
JP3492075B2 (ja) 熱伝導率に優れる無方向性電磁鋼板およびその製造方法
JP2874564B2 (ja) 磁気特性の優れた無方向性電磁鋼板の製造方法
JP3483265B2 (ja) 磁束密度が高くかつ鉄損が低い無方向性電磁鋼板の製造方法
JP3379055B2 (ja) 磁束密度が高くかつ鉄損が低い無方向性電磁鋼板の製造方法
KR101110257B1 (ko) 자속밀도가 우수한 무방향성 전기강판 및 그 제조방법
JP2001181806A (ja) 透磁率に優れた無方向性電磁鋼板とその熱延板およびその製造方法
JP2005187846A (ja) 無方向性電磁鋼板およびその製造方法
JP4292805B2 (ja) 磁気特性に優れた無方向性電磁鋼板の製造方法
WO2024214371A1 (ja) 無方向性電磁鋼板
WO2024214370A1 (ja) 無方向性電磁鋼板
JPH06104865B2 (ja) 無方向性電磁鋼板の製造方法
JP2870817B2 (ja) 磁気特性の優れたセミプロセス無方向性電磁鋼板の製造方法
KR100501000B1 (ko) 응력제거소둔후철손이낮은무방향성전기강판및그제조방법