JP2637763B2 - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JP2637763B2
JP2637763B2 JP63095077A JP9507788A JP2637763B2 JP 2637763 B2 JP2637763 B2 JP 2637763B2 JP 63095077 A JP63095077 A JP 63095077A JP 9507788 A JP9507788 A JP 9507788A JP 2637763 B2 JP2637763 B2 JP 2637763B2
Authority
JP
Japan
Prior art keywords
layer
conductivity type
electrode
semiconductor
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63095077A
Other languages
Japanese (ja)
Other versions
JPH01266781A (en
Inventor
晴彦 田淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63095077A priority Critical patent/JP2637763B2/en
Publication of JPH01266781A publication Critical patent/JPH01266781A/en
Application granted granted Critical
Publication of JP2637763B2 publication Critical patent/JP2637763B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1228DFB lasers with a complex coupled grating, e.g. gain or loss coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔概要〕 分布帰還型の半導体レーザ装置に関し、 レーザ発振の安定性が向上することを目的とし、 活性層又は該活性層に接する導波層の表面に、共振器
方向に周期性を持った凹凸を設け回折格子を形成した分
布帰還型の半導体レーザ装置において、該活性層に供給
する電流の電流密度を該共振器方向の中央部で高く両端
部で低くなるよう変化せしめる電流密度変化手段を有し
構成する。
DETAILED DESCRIPTION OF THE INVENTION [Summary] A distributed feedback semiconductor laser device is provided for improving the stability of laser oscillation, and has a resonator direction on a surface of an active layer or a waveguide layer in contact with the active layer. In a distributed feedback semiconductor laser device in which a diffraction grating is formed by forming irregularities having periodicity on the surface, the current density of the current supplied to the active layer is changed so as to be higher at the center in the resonator direction and lower at both ends. It has a current density changing means.

〔産業上の利用分野〕[Industrial applications]

本発明は半導体レーザ装置に関し、分布帰還型の半導
体レーザ装置に関する。
The present invention relates to a semiconductor laser device, and more particularly to a distributed feedback semiconductor laser device.

従来よりコヒーレント光通信用の光源とし半導体レー
ザ装置が用いられている。
Conventionally, a semiconductor laser device has been used as a light source for coherent optical communication.

分布帰還型半導体レーザ(DFBレーザ)は、安定な単
一波長発振が得られることから、コヒーレント光通信用
光源として有望である。しかしそのスペクトル線幅は10
〜100MHz程度と広く、コヒーレント光通信に用いるため
にこれを狭くすることが要望されている。
A distributed feedback semiconductor laser (DFB laser) is promising as a light source for coherent optical communication because a stable single-wavelength oscillation can be obtained. But its spectral linewidth is 10
It is as wide as about 100 MHz, and it is required to narrow it for use in coherent optical communication.

〔従来の技術〕[Conventional technology]

第5図(A)は従来のDFBレーザの各例の断面図を示
す。同図中、10は基板、11は導波層、12は活性層、13は
クラッド層、15,16は電極である。導波層11と基板10と
の境界は、共振器方向(Z方向)に周期的に凹凸を付け
て回折格子が構成されており、単一波長のコヒーレント
光を取り出す。
FIG. 5A is a sectional view of each example of a conventional DFB laser. In the figure, 10 is a substrate, 11 is a waveguide layer, 12 is an active layer, 13 is a cladding layer, and 15 and 16 are electrodes. A boundary between the waveguide layer 11 and the substrate 10 is periodically formed with irregularities in the resonator direction (Z direction) to form a diffraction grating, and coherent light of a single wavelength is extracted.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

DFBレーザのスペクトル線幅は、共振器長Lを長くす
ることにより狭くできる。しかし、共振器長Lを長くす
ると規格化した結合定数KL(但しKは結合定数)も大き
くなる。この規格化した結合定数KLは等価的な反射率に
対応しており、KLが大となることは、光が共振器内で中
央部に片寄った分布となることを示す。
The spectral line width of the DFB laser can be reduced by increasing the resonator length L. However, when the resonator length L is increased, the normalized coupling constant KL (where K is the coupling constant) also increases. The normalized coupling constant KL corresponds to the equivalent reflectance, and a large KL indicates that the light has a distribution that is biased toward the center in the resonator.

第5図(A)のDFBレーザの如く、Z方向の活性層12
全体に電極15から電流を注入し、かつKLが大となると、
光がZ方向の中央に集中して光強度分布は同図(B)の
実線Iに示す如くなる。
As shown in the DFB laser of FIG.
When current is injected from the electrode 15 to the whole and KL is large,
Light is concentrated at the center in the Z direction, and the light intensity distribution is as shown by a solid line I in FIG.

レーザ装置では、注入電流によって励起されたキャリ
アが再結合することにより発光し、発光した光が更にキ
ャリアの再結合をうながすことによってレーザ発振が生
じる。更にキャリアの再結合はその場所の光強度が大き
くなる程高い確率で起こる。このため、実線Iの如き光
強度分布であると、光強度の大なる部分でキャリア密度
が低下し、破線IIに示す如きキャリア密度分布となる。
In the laser device, the carrier excited by the injection current is recombined to emit light, and the emitted light further promotes the recombination of the carrier to generate laser oscillation. Further, carrier recombination occurs with a higher probability as the light intensity at the location increases. For this reason, if the light intensity distribution is as shown by the solid line I, the carrier density is reduced at the portion where the light intensity is large, and the carrier density distribution becomes as shown by the broken line II.

キャリア密度がZ方向の中央部で低下すると、その部
分の屈折率が上昇し、共振器内での屈折率は実線Iと同
様に変化する。ここで、DFBレーザの発振波長λDFBは、 λDFB=2n∧/m (1) (但し、nは屈折率、∧は回折格子の周期、mは自然数
である) と表わされ、屈折率が不均一であると、(1)式の屈折
率nが場所によって変化するために発振波長が不安定と
なる。
When the carrier density decreases at the center in the Z direction, the refractive index at that portion increases, and the refractive index in the resonator changes in the same manner as the solid line I. Here, the oscillation wavelength λ DFB of the DFB laser is expressed as λ DFB = 2n∧ / m (1) (where n is the refractive index, ∧ is the period of the diffraction grating, and m is a natural number). Is nonuniform, the oscillation wavelength becomes unstable because the refractive index n in equation (1) changes depending on the location.

これによって従来のDFBレーザは高光出力時に間欠的
なパルス発振を生じる等の不安定動作を起こすという問
題があった。
As a result, the conventional DFB laser has a problem of causing unstable operation such as intermittent pulse oscillation at high light output.

本発明は上記の点に鑑みなされたもので、レーザ発振
の安定性が向上する半導体レーザ装置を提供することを
目的とする。
The present invention has been made in view of the above points, and has as its object to provide a semiconductor laser device with improved stability of laser oscillation.

〔課題を解決するための手段〕[Means for solving the problem]

上記問題の解決と目的の達成は、 一導電型の半導体クラッド層(20)上に一導電型導波
層(22)、活性層(24)、他導電型クラッド層(25)を
順次積層したダブルヘテロ接合と、前記半導体クラッド
層(20)と一導電型導波層(22)の境界に周期性を持っ
た凹凸を設けて形成した回折格子(23)を含むレーザ層
構造と、 一導電型の半導体クラッド層(20)の一導電型導波層
(22)と接する面の反対側の面に形成された第1の電極
(21)と、 他導電型クラッド層(25)の表面に形成された第2の
電極(26)とを有する分布帰還型半導体レーザにおい
て、 第2の電極を、光軸方向の長さが一定の複数の電極に
分割し、該分割した電極間の間隔が光軸方向の中央部で
は密で、両端部では粗になるように徐々に間隔を変えて
配置した半導体レーザ装置とするか、あるいは、 一導電型の第1の半導体クラッド層(20)上に一導電
型導波層(22)、活性層(24)、他導電型クラッド層
(25)を順次積層したダブルヘテロ接合と、前記半導体
クラッド層(20)と一導電型導波層(22)の境界に周期
性を持った凹凸を設けて形成した回折格子(23)を含む
レーザ層構造と、 一導電型の半導体クラッド層(20)の一導電型導波層
(22)と接する面の反対側の面に形成された第1の電極
(21)と、 第1の電極が形成された面とは反対側の面に形成され
た第2の電極(32)とを有する分布帰還型半導体レーザ
において、 他導電型クラッド層(25)と第2の電極(32)の間に
一導電型の半導体の逆接続層(30)を形成し、 且つ、該逆接続層(30)に、その間隔が光軸方向の中
央部では密で両端部では粗になるように徐々に間隔を変
えて配置した、光軸方向の長さが一定の複数の他導電型
領域(31)を形成した半導体レーザ装置とするか、ある
いは 一導電型の半導体クラッド層(20)上に一導電型導波
層(22)、活性層(24)、他導電型クラッド層(25)を
順次積層したダブルヘテロ接合と、前記半導体クラッド
層(20)と一導電型導波層(22)の境界に周期性を持っ
た凹凸を設けて形成した回折格子(23)を含むレーザ層
構造と、 一導電型の半導体クラッド層(20)の一導電型導波層
(22)と接する面の反対側の面に形成された第1の電極
(21)と、 他導電型クラッド層(34)の表面に形成された第2の
電極(32)とを有する分布帰還型半導体レーザにおい
て、 他導電型クラッド層(34)と活性層(24)の間に他導
電型クラッド層(34)よりも高い抵抗率を有し、且つ光
軸方向の中央部で薄く両端部では厚くなるように徐々に
厚さが変化する高抵抗クラッド層(33)を形成した半導
体レーザ装置とする事によって行われる。
To solve the above problems and achieve the object, one conductive type waveguide layer (22), active layer (24), and other conductive type clad layer (25) are sequentially laminated on one conductive type semiconductor clad layer (20). A laser layer structure including a double heterojunction and a diffraction grating (23) formed by providing periodic irregularities at the boundary between the semiconductor cladding layer (20) and the one conductivity type waveguide layer (22); The first electrode (21) formed on the surface opposite to the surface in contact with the one conductivity type waveguide layer (22) of the semiconductor cladding layer (20), and the surface of the other conductivity type cladding layer (25). In the distributed feedback semiconductor laser having the formed second electrode (26), the second electrode is divided into a plurality of electrodes having a constant length in the optical axis direction, and the interval between the divided electrodes is reduced. It is a semiconductor laser device that is arranged at gradually changing intervals so that it is dense at the center in the optical axis direction and coarse at both ends. Or a double hetero junction in which a waveguide layer (22), an active layer (24), and a cladding layer (25) of another conductivity type are sequentially stacked on a first semiconductor cladding layer (20) of one conductivity type. A laser layer structure including a diffraction grating (23) formed by providing periodic irregularities at the boundary between the semiconductor cladding layer (20) and the one conductivity type waveguide layer (22); A first electrode (21) formed on a surface opposite to a surface in contact with the one conductivity type waveguide layer (22) of the cladding layer (20); and a first electrode (21) formed on a surface opposite to the surface on which the first electrode is formed. In a distributed feedback semiconductor laser having a second electrode (32) formed on a surface, a reverse connection layer of a semiconductor of one conductivity type is provided between a cladding layer (25) of another conductivity type and the second electrode (32). (30) is formed, and the reverse connection layer (30) is gradually formed so that the interval is dense at the center in the optical axis direction and coarse at both ends. Either a semiconductor laser device in which a plurality of other conductive type regions (31) having a fixed length in the optical axis direction are formed at different intervals, or one conductive type semiconductor cladding layer (20) Heterojunction in which a semiconductor waveguide layer (22), an active layer (24), and another conductive type clad layer (25) are sequentially stacked, and a boundary between the semiconductor clad layer (20) and the one conductive type waveguide layer (22). A laser layer structure including a diffraction grating (23) formed with irregularities having periodicity on the other side, and a surface opposite to a surface in contact with the one conductivity type waveguide layer (22) of the one conductivity type semiconductor cladding layer (20). A distributed feedback semiconductor laser having a first electrode (21) formed on the surface of the other conductive type and a second electrode (32) formed on the surface of the other conductive type clad layer (34); Between the layer (34) and the active layer (24), having a higher resistivity than the other conductivity type cladding layer (34), and an optical axis This is performed by forming a semiconductor laser device having a high resistance cladding layer (33) whose thickness gradually changes so as to be thinner at the center in the direction and thicker at both ends.

〔作用〕[Action]

本発明装置においては、電流密度変化手段(26,31,3
3)によって、活性層(24)の電流密度が中央部で高く
両端部で低くなるよう連続的に変化しているため、キャ
リア密度分布が均一となり、屈折率が共振器の各部で均
一となって発振安定性が向上する。
In the device of the present invention, the current density changing means (26, 31, 3
Due to 3), the current density of the active layer (24) continuously changes so as to be higher at the center and lower at both ends, so that the carrier density distribution becomes uniform and the refractive index becomes uniform at each part of the resonator. As a result, oscillation stability is improved.

〔実施例〕〔Example〕

第1図は本発明の半導体レーザ装置の第1実施例の断
面構造図を示す。
FIG. 1 is a sectional structural view of a first embodiment of the semiconductor laser device of the present invention.

同図中、20はn−InPの基板で厚さは例えば100μmで
あり、その下部にAuGeNiの電極21が設けられている。基
板20上にはn−InGaAsPの導波層22が設けられている。
この基板20と導波層22との境界はZ方向に周期的に凹凸
を付けて回折格子23を構成している。
In the figure, reference numeral 20 denotes an n-InP substrate having a thickness of, for example, 100 μm, and an AuGeNi electrode 21 provided below the substrate. On the substrate 20, an n-InGaAsP waveguide layer 22 is provided.
A boundary between the substrate 20 and the waveguide layer 22 is periodically provided with irregularities in the Z direction to form a diffraction grating 23.

導波層22上にはn−InGaAsPで導波層22とはバンドギ
ャップが僅かに異なる活性層24が設けられ、その上部に
p−InGaAsPのクラッド層25が設けられている。
An active layer 24 made of n-InGaAsP and having a band gap slightly different from that of the waveguide layer 22 is provided on the waveguide layer 22, and a p-InGaAsP cladding layer 25 is provided thereon.

クラッド層25上には、Ti/Pt/Auを層状に形成した複数
の電極26が設けられている。電流密度変化手段である電
極26はZ方向の幅が例えば5μmで一定であり、第2図
の実線IIIに示す如くZ方向中央部でのピッチが10μm
程度両端部でのピッチが30μm程度となるよう左右対称
かつ連続的にピッチが変化するよう形成されている。
On the cladding layer 25, a plurality of electrodes 26 formed of Ti / Pt / Au in layers are provided. The electrode 26 serving as a current density changing means has a constant width of, for example, 5 μm in the Z direction and a pitch of 10 μm at the center in the Z direction as shown by a solid line III in FIG.
It is formed so that the pitch changes symmetrically and continuously so that the pitch at both ends is about 30 μm.

ここで、電極21,26間に電極26を正として電圧を印加
すると、電極21,26間に流れる電流、即ち活性層24に供
給される電流の密度分布は破線IVに示す如く、共振器の
Z方向中央部で高く、両端部で低くなる。これによっ
て、第5図(B)の破線IIで示すキャリア密度分布が相
殺されて、結果としてキャリア密度はZ方向の各部で均
一となり、屈折率が各部で均一となる。
Here, when a voltage is applied between the electrodes 21 and 26 with the electrode 26 being positive, the density distribution of the current flowing between the electrodes 21 and 26, that is, the current supplied to the active layer 24 is indicated by a broken line IV, as shown in broken line IV. It is high at the center in the Z direction and low at both ends. This cancels out the carrier density distribution indicated by the broken line II in FIG. 5 (B), and as a result, the carrier density becomes uniform in each part in the Z direction, and the refractive index becomes uniform in each part.

従って、発振波長が安定し、高光出力時の間欠的なパ
ルス発振を防止でき、発振の安定性が向上する。
Accordingly, the oscillation wavelength is stabilized, intermittent pulse oscillation at the time of high light output can be prevented, and the stability of oscillation is improved.

第3図は本発明装置の第2実施例の断面構造図を示
す。同図中、第1図と同一部分には同一符号を付し、そ
の説明を省略する。
FIG. 3 shows a sectional structural view of a second embodiment of the apparatus of the present invention. In the figure, the same parts as those in FIG.

第3図中、クラッド層25の厚さは例えば1μmとさ
れ、その上に厚さ0.5μm程度のn−InGaAsPの逆接合層
30が設けられている。この逆接合層30にはクラッド層25
に達する複数のp型拡散部31が設けられている。電流密
度変化手段であるp型拡散部31はZ方向の幅が例えば5
μmで一定であり、第2図の実線IIIに示す如くZ方向
中央部でのピッチが10μm程度両端部でのピッチが30μ
m程度となるよう左右対称かつ連続的にピッチが変化す
るよう形成されている。
In FIG. 3, the thickness of the cladding layer 25 is, for example, 1 μm, and a reverse junction layer of n-InGaAsP having a thickness of about 0.5 μm is formed thereon.
30 are provided. This reverse bonding layer 30 has a cladding layer 25
Are provided. The p-type diffusion portion 31 as the current density changing means has a width in the Z direction of, for example, 5
The pitch at the center in the Z direction is about 10 μm and the pitch at both ends is 30 μm as shown by the solid line III in FIG.
The pitch is symmetrically and continuously changed so as to be about m.

このp型拡散部31が設けられた逆接合層30上には電極
32が設けられ、各p型拡散部31と接続されている。
An electrode is provided on the reverse junction layer 30 provided with the p-type diffusion portion 31.
32 are provided and connected to each p-type diffusion unit 31.

この実施例においても、電流密度分布は第2図の破線
IVに示す如くなり、キャリア密度分布が均一となって発
振の安定性が向上する。また、第1図の構成では複数の
電極26の電源配線の設計が難かしいのに対し、この実施
例は製造上簡単である。
Also in this embodiment, the current density distribution is indicated by a broken line in FIG.
As shown in IV, the carrier density distribution becomes uniform and the oscillation stability is improved. Further, in the configuration of FIG. 1, it is difficult to design the power supply wiring of the plurality of electrodes 26, but this embodiment is simple in manufacturing.

第4図は本発明の装置の第3実施例の断面構造図を示
す。同図中、第1図と同一部分には同一符号を付し、そ
の説明を省略する。
FIG. 4 shows a sectional structural view of a third embodiment of the apparatus of the present invention. In the figure, the same parts as those in FIG.

第4図中、活性層24上には2層からなるクラッド層3
3,34が設けられている。クラッド層33,34は共にp−InG
aAsPであり、第1図のクラッド層25は低抵抗であるが、
クラッド層33は高抵抗でクラッド層34は低抵抗とされて
いる。このクラッド層33,34の境界は第2図の実線IIIと
同様であり、電流密度変化手段である高抵抗のクラッド
層33はZ方向中央部で薄く、両端部で厚くされている。
また、クラッド層34上には電極32が設けられている。
In FIG. 4, the cladding layer 3 composed of two layers is formed on the active layer 24.
3,34 are provided. Both cladding layers 33 and 34 are p-InG
aAsP, and the cladding layer 25 in FIG. 1 has low resistance,
The cladding layer 33 has a high resistance and the cladding layer 34 has a low resistance. The boundary between the cladding layers 33 and 34 is the same as the solid line III in FIG. 2, and the high-resistance cladding layer 33 as the current density changing means is thin at the center in the Z direction and thick at both ends.
An electrode 32 is provided on the cladding layer.

この実施例においても電流密度分布は第2図の破線IV
に示す如くなり、キャリア密度分布が均一となって発振
の安定性が向上する。
Also in this embodiment, the current density distribution is indicated by broken line IV in FIG.
The carrier density distribution becomes uniform and the oscillation stability is improved.

なお、第1図,第3図において電極26、p型拡散部31
夫々のピッチを一定とし、幅を中央部で大となり両端部
で小となるよう連続的に変化しても良い。
1 and 3, the electrode 26, the p-type diffusion portion 31
The respective pitches may be fixed, and the width may be continuously changed so that the width is large at the center and small at both ends.

〔発明の効果〕〔The invention's effect〕

上述の如く、本発明の半導体レーザ装置によれば、発
振の安定性が向上し、高光出力時にパルス発振を起こす
ことを防止でき、実用上きわめて有用である。
As described above, according to the semiconductor laser device of the present invention, the stability of oscillation is improved, and it is possible to prevent the occurrence of pulse oscillation at high light output, which is extremely useful in practical use.

【図面の簡単な説明】[Brief description of the drawings]

第1図,第3図,第4図夫々は本発明装置の各実施例の
断面構造図、 第2図は本発明装置を説明するための図、 第5図は従来装置を説明するための図である。 図において、 20は基板、 21,26,32は電極、 22は導波層、 24は活性層、 25,33,34はクラッド層、 30は逆接合層、 31はp型拡散部 を示す。
1, 3, and 4 are sectional structural views of each embodiment of the device of the present invention, FIG. 2 is a diagram for explaining the device of the present invention, and FIG. 5 is a diagram for explaining a conventional device. FIG. In the figure, 20 is a substrate, 21, 26, and 32 are electrodes, 22 is a waveguide layer, 24 is an active layer, 25, 33, and 34 are cladding layers, 30 is a reverse junction layer, and 31 is a p-type diffusion portion.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一導電型の半導体クラッド層(20)上に一
導電型導波層(22)、活性層(24)、他導電型クラッド
層(25)を順次積層したダブルヘテロ接合と、前記半導
体クラッド層(20)と一導電型導波層(22)の境界に周
期性を持った凹凸を設けて形成した回折格子(23)を含
むレーザ層構造と、 一導電型の半導体クラッド層(20)の一導電型導波層
(22)と接する面の反対側の面に形成された第1の電極
(21)と、 他導電型クラッド層(25)の表面に形成された第2の電
極(26)とを有する分布帰還型半導体レーザにおいて、 第2の電極を、光軸方向の長さが一定の複数の電極に分
割し、該分割した電極間の間隔が光軸方向の中央部では
密で、両端部では粗になるように徐々に間隔を変えて配
置したことを特徴とする半導体レーザ装置。
A double heterojunction in which a one conductivity type waveguide layer (22), an active layer (24), and another conductivity type clad layer (25) are sequentially laminated on a one conductivity type semiconductor clad layer (20); A laser layer structure including a diffraction grating (23) formed by providing periodic irregularities at the boundary between the semiconductor cladding layer (20) and the one conductivity type waveguide layer (22); (20) a first electrode (21) formed on a surface opposite to a surface in contact with the one conductivity type waveguide layer (22), and a second electrode formed on the surface of the other conductivity type clad layer (25). In the distributed feedback semiconductor laser having the electrode (26), the second electrode is divided into a plurality of electrodes having a constant length in the optical axis direction, and the interval between the divided electrodes is set at the center in the optical axis direction. A semiconductor laser device characterized in that the intervals are gradually changed so that the portions are dense and the ends are coarse.
【請求項2】一導電型の第1の半導体クラッド層(20)
上に一導電型導波層(22)、活性層(24)、他導電型ク
ラッド層(25)を順次積層したダブルヘテロ接合と、前
記半導体クラッド層(20)と一導電型導波層(22)の境
界に周期性を持った凹凸を設けて形成した回折格子(2
3)を含むレーザ層構造と、 一導電型の半導体クラッド層(20)の一導電型導波層
(22)と接する面の反対側の面に形成された第1の電極
(21)と、 第1の電極が形成された面とは反対側の面に形成された
第2の電極(32)とを有する分布帰還型半導体レーザに
おいて、 他導電型クラッド層(25)と第2の電極(32)の間に一
導電型の半導体の逆接続層(30)を形成し、 且つ、該逆接続層(30)に、その間隔が光軸方向の中央
部では密で両端部では粗になるように徐々に間隔を変え
て配置した、光軸方向の長さが一定の複数の他導電型領
域(31)を形成したことを特徴とする半導体レーザ装
置。
2. A first semiconductor cladding layer of one conductivity type (20).
A double-heterojunction in which a one-conductivity-type waveguide layer (22), an active layer (24), and another-conductivity-type clad layer (25) are sequentially stacked thereon; A diffraction grating (2) formed with periodic irregularities at the boundary of (22)
3) a laser layer structure including: a first electrode (21) formed on a surface opposite to a surface in contact with the one conductivity type waveguide layer (22) of the one conductivity type semiconductor cladding layer (20); In a distributed feedback semiconductor laser having a second electrode (32) formed on a surface opposite to a surface on which a first electrode is formed, a cladding layer (25) with another conductivity type and a second electrode (32). A reverse connection layer (30) of a semiconductor of one conductivity type is formed between 32), and the distance between the reverse connection layer (30) is dense at the center in the optical axis direction and coarse at both ends. A semiconductor laser device comprising a plurality of other conductivity type regions (31) having a constant length in the optical axis direction and arranged at gradually changing intervals as described above.
【請求項3】一導電型の半導体クラッド層(20)上に一
導電型導波層(22)、活性層(24)、他導電型クラッド
層(25)を順次積層したダブルヘテロ接合と、前記半導
体クラッド層(20)と一導電型導波層(22)の境界に周
期性を持った凹凸を設けて形成した回折格子(23)を含
むレーザ層構造と、 一導電型の半導体クラッド層(20)の一導電型導波層
(22)と接する面の反対側の面に形成された第1の電極
(21)と、 他導電型クラッド層(34)の表面に形成された第2の電
極(32)とを有する分布帰還型半導体レーザにおいて、 他導電型クラッド層(34)と活性層(24)の間に他導電
型クラッド層(34)よりも高い抵抗率を有し、且つ光軸
方向の中央部で薄く両端部では厚くなるように徐々に厚
さが変化する高抵抗クラッド層(33)を形成したことを
特徴とする半導体レーザ装置。
3. A double hetero junction in which a one-conductivity-type waveguide layer (22), an active layer (24), and another-conductivity-type clad layer (25) are sequentially laminated on a one-conductivity-type semiconductor clad layer (20); A laser layer structure including a diffraction grating (23) formed by providing periodic irregularities at the boundary between the semiconductor cladding layer (20) and the one conductivity type waveguide layer (22); (20) a first electrode (21) formed on a surface opposite to a surface in contact with the one conductivity type waveguide layer (22), and a second electrode formed on the surface of the other conductivity type cladding layer (34). A distributed feedback semiconductor laser having an electrode (32) having a higher resistivity than the other conductive type clad layer (34) between the other conductive type clad layer (34) and the active layer (24); A high-resistance cladding layer (33) whose thickness changes gradually so that it is thinner at the center in the optical axis direction and thinner at both ends The semiconductor laser device according to claim.
JP63095077A 1988-04-18 1988-04-18 Semiconductor laser device Expired - Fee Related JP2637763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63095077A JP2637763B2 (en) 1988-04-18 1988-04-18 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63095077A JP2637763B2 (en) 1988-04-18 1988-04-18 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH01266781A JPH01266781A (en) 1989-10-24
JP2637763B2 true JP2637763B2 (en) 1997-08-06

Family

ID=14127902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63095077A Expired - Fee Related JP2637763B2 (en) 1988-04-18 1988-04-18 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2637763B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW289175B (en) * 1995-04-07 1996-10-21 Mitsubishi Electric Corp
GB2427752A (en) * 2005-06-28 2007-01-03 Bookham Technology Plc High power semiconductor laser diode
JP2010040561A (en) * 2008-07-31 2010-02-18 Sumitomo Electric Ind Ltd Semiconductor laser element
JP5418359B2 (en) * 2010-03-26 2014-02-19 沖電気工業株式会社 Distributed feedback laser diode
EP3776762B1 (en) * 2018-03-26 2024-09-04 Lawrence Livermore National Security, LLC Engineered current-density profile diode laser
US20210344172A1 (en) * 2018-11-19 2021-11-04 Mitsubishi Electric Corporation Optical semiconductor device and method of manufacturing optical semiconductor device

Also Published As

Publication number Publication date
JPH01266781A (en) 1989-10-24

Similar Documents

Publication Publication Date Title
JP2768940B2 (en) Single wavelength oscillation semiconductor laser device
US5345466A (en) Curved grating surface emitting distributed feedback semiconductor laser
JPS61160987A (en) Integrated semiconductor photo element and manufacture thereof
US5241556A (en) Chirped grating surface emitting distributed feedback semiconductor laser
JP2637763B2 (en) Semiconductor laser device
JP5625459B2 (en) Semiconductor laser device and manufacturing method thereof
JPS6332988A (en) Distributed feedback semiconductor laser
US4665527A (en) Distributed feedback semiconductor laser
US20130308665A1 (en) Tunable semiconductor laser device and method for operating a tunable semiconductor laser device
JPH1197799A (en) Fabrication of semiconductor device
JP3672272B2 (en) Optical semiconductor device
JPH05145169A (en) Semiconductor distributed feedback laser apparatus
JPS6449293A (en) Semiconductor laser with variable wavelength
GB2164206A (en) A semiconductor laser array device
JPS6184890A (en) Semiconductor laser
US4771433A (en) Semiconductor laser device
JPS5948975A (en) Semiconductor light emitting element
JPS62217689A (en) Semiconductor light-emitting device
JPH1051066A (en) Distributed feedback type semiconductor laser device
JPH1168224A (en) Semiconductor laser and manufacture thereof
JPH06177481A (en) Semiconductor laser device
JPH0656907B2 (en) Method for manufacturing semiconductor light emitting device
JPH04305991A (en) Semiconductor laser element
JPS62142382A (en) Integrated type semiconductor laser device
JPS62165989A (en) Distributed feedback type semiconductor laser element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees