JP2637405B2 - Rust-proof electrical steel sheet with insulating coating - Google Patents

Rust-proof electrical steel sheet with insulating coating

Info

Publication number
JP2637405B2
JP2637405B2 JP61286728A JP28672886A JP2637405B2 JP 2637405 B2 JP2637405 B2 JP 2637405B2 JP 61286728 A JP61286728 A JP 61286728A JP 28672886 A JP28672886 A JP 28672886A JP 2637405 B2 JP2637405 B2 JP 2637405B2
Authority
JP
Japan
Prior art keywords
steel sheet
rust
insulating coating
electrical steel
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61286728A
Other languages
Japanese (ja)
Other versions
JPS63140038A (en
Inventor
浩 宍戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP61286728A priority Critical patent/JP2637405B2/en
Publication of JPS63140038A publication Critical patent/JPS63140038A/en
Application granted granted Critical
Publication of JP2637405B2 publication Critical patent/JP2637405B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、方向性電磁鋼板の中でも錆びない電磁鋼
板の特性向上のために、鋼板表面に無機質の絶縁被膜を
被成した防錆電磁鋼板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to a rust-preventive magnetic steel sheet having a steel sheet surface coated with an inorganic insulating film in order to improve the properties of a magnetic steel sheet that does not rust among oriented magnetic steel sheets. It is about.

(従来の技術) 変圧器や電動機などの電気機器は、近年の電気産業の
発達により、より高度の特性が要求されている。ところ
で、上記の鉄心として用いられてきたけい素鋼板は、非
常に錆び易いために以下に述べるような問題があった。
(Prior Art) Electric devices such as transformers and electric motors have been required to have higher characteristics due to the recent development of the electric industry. By the way, the silicon steel sheet used as the above-mentioned iron core has a problem as described below because it is very easy to rust.

すなわち従来のけい素鋼板は、切断破面が非常にさび
易く、さびると透磁率の劣化等の不利があった。とくに
最近では、電動機の効率向上の観点からステーターとロ
ーターとのギャップ間隔を極めて小さくとるようになっ
てきているが、このときローターとステータの積層端面
が錆びると、ギャップがつまってしまうと同時に、透磁
率低下により一層の性能の劣化を招いていた。上記の問
題の解決策としては、ギャップ端面にペンキを塗布する
ことが考えられが、かかる処置を施した場合は、ペンキ
塗布厚のため実質的にギャップを小さくとることはでき
なかった。
That is, the conventional silicon steel sheet has a disadvantage that the cut fracture surface is very easily rusted, and if rusted, the magnetic permeability deteriorates. Particularly recently, from the viewpoint of improving the efficiency of the motor, the gap between the stator and the rotor has become extremely small.However, if the laminated end face of the rotor and the stator rusts at this time, the gap is clogged, Due to the decrease in the magnetic permeability, the performance further deteriorated. As a solution to the above problem, it is conceivable to apply paint to the end face of the gap. However, when such a measure is taken, the gap could not be substantially reduced due to the paint application thickness.

その他、水中ポンプや電磁弁用の磁性材料についても
防錆が必要とされている。
In addition, rust prevention is also required for magnetic materials for submersible pumps and solenoid valves.

このような要求に応えるものとして、特公昭39−2064
4号公報において、Crを主体とし、SiやTiなどの磁気特
成改善元素を微量添加した耐食性にすぐれたステンレス
系の電磁鋼板が提案された。
To meet such demands, Japanese Patent Publication No. 39-2064
No. 4 proposed a stainless steel electromagnetic steel sheet having excellent corrosion resistance, which is mainly composed of Cr and contains a small amount of a magnetic property improving element such as Si or Ti.

(発明が解決しようとする問題点) しかしながら上記のステンレス系電磁鋼板は、けい素
鋼板と比較すると電気比抵抗が極めて低く、積層コアと
して使用した場合に鋼板の層間抵抗が零に等しくなるた
めに実機上の鉄損が劣化するという問題を残していた。
(Problems to be Solved by the Invention) However, the above-mentioned stainless steel-based electromagnetic steel sheet has an extremely low electrical resistivity as compared with a silicon steel sheet, and when used as a laminated core, the interlayer resistance of the steel sheet becomes equal to zero. There remains a problem that iron loss on actual equipment deteriorates.

かかる問題の解決策としては、鋼板の表面を絶縁被膜
で覆うことが考えられるが、ただ単に絶縁被膜を被成し
ただけでは磁気特性とくに鉄損特性の劣化が免れ得なか
った。
As a solution to such a problem, it is conceivable to cover the surface of the steel sheet with an insulating coating. However, simply forming an insulating coating cannot avoid deterioration of magnetic properties, particularly iron loss properties.

この発明は、上記の問題を有利に解決するもので、磁
気特性の劣化を招くことなしに、電気絶縁性を向上させ
た防錆電磁鋼板を提案することを目的とする。
The present invention advantageously solves the above-described problems, and has as its object to propose a rust-preventive electromagnetic steel sheet having improved electrical insulation properties without deteriorating magnetic properties.

(問題点を解決するための手段) この発明は、表面粗度が中心線平均粗さRaで0.5〜1.0
μmの方向性Fe−Cr系電磁鋼板表面上に、クロム酸塩系
またはりん酸塩系の無機質絶縁被膜をそなえて成る、絶
縁被膜を有する防錆電磁鋼板である。
(Means for Solving the Problems) According to the present invention, the surface roughness is 0.5 to 1.0 as a center line average roughness Ra.
This is a rust-preventive electromagnetic steel sheet having an insulating coating formed by providing a chromate-based or phosphate-based inorganic insulating coating on the surface of a μm-oriented Fe-Cr-based electromagnetic steel sheet.

この発明鋼板の基板であるFe−Cr系電磁鋼板として
は、合金成分としてCrを13〜20wt%(以下単に%で示
す)含有させたもの、さらにはCr:8〜20%を含むほか、
4%以下のAlおよびSiならびに3%以下のP,Sn,Ti,V,M
o,W,Zr,Nb,HfおよびTaのうちから選んだ少なくとも一種
を含有する組成になるものがとりわけ有利に適合する。
The Fe-Cr-based magnetic steel sheet, which is a substrate of the steel sheet of the present invention, contains 13 to 20% by weight of Cr (hereinafter simply referred to as%) as an alloy component, and further contains 8 to 20% of Cr:
Al and Si up to 4% and P, Sn, Ti, V, M up to 3%
Those having a composition containing at least one selected from o, W, Zr, Nb, Hf and Ta are particularly advantageously suited.

ここに合金成分の好適含有量を上記の範囲に限定した
のは次の理由による。すなわち耐食性および電磁特性に
ついて所期した改善をもたらすべき主要成分としてのCr
は、一般に8%よりも少ないときは耐食性を充分に向上
させることができず、また20%を超えて多すぎるのは不
経済になる。
Here, the reason why the preferable content of the alloy component is limited to the above range is as follows. In other words, Cr as the main component that should provide the expected improvement in corrosion resistance and electromagnetic properties
In general, when the amount is less than 8%, the corrosion resistance cannot be sufficiently improved, and when it exceeds 20%, it becomes uneconomical.

すでに知られているようにCrはFeに対しγループを形
成するが、上掲の8〜20%のうちCr量が13%以上の含有
ではγ相を形成せず、α相としてのみ存在するが13%未
満になるとγ相を生じるので、Crのみ添加する場合の下
限は13%とするのが好ましい。
As already known, Cr forms a γ loop with Fe, but when the content of Cr is 13% or more of the above 8 to 20%, Cr does not form a γ phase and exists only as an α phase. Is less than 13%, a γ phase is generated. Therefore, the lower limit when only Cr is added is preferably 13%.

このようにCr量が13%未満の場合はγ相の割合を減少
させてα相を安定化させる必要があるので、この領域に
わたる場合には、4.0%以下のAl,Siおよび3.0%以下の
P,Sn,Ti,V,Mo,W,Zr,Nb,Hf,Taよりなる群より選ばれる少
なくとも一種のα相安定化成分を含有させることにより
Cr量範囲を8〜20%に拡大して、Cr13〜20%の場合とと
もにFe−Cr系α相安定組成とすることができる。ここに
Al,SiおよびP,Sn,Ti,V,Mo,W,Zr,Nb,Hf,Taは、上記含有
量範囲においてCr含有量8〜20%とくに8〜13%のCr−
Feにおけるα相安定化に寄与する同効成分である。また
上限を20%にするのは、20%以上Crを入れると磁気モー
メントが著しく下がり磁性が劣化するからである。
As described above, when the Cr content is less than 13%, it is necessary to reduce the ratio of the γ phase to stabilize the α phase.
By containing at least one α-phase stabilizing component selected from the group consisting of P, Sn, Ti, V, Mo, W, Zr, Nb, Hf, Ta
By expanding the Cr content range to 8 to 20%, the Fe-Cr-based α-phase stable composition can be obtained together with the case of Cr 13 to 20%. here
Al, Si and P, Sn, Ti, V, Mo, W, Zr, Nb, Hf and Ta have a Cr content of 8 to 20%, particularly 8 to 13%, in the above content range.
It is the same component that contributes to stabilization of α phase in Fe. The upper limit is set to 20% because the magnetic moment is significantly reduced and the magnetism is deteriorated when Cr is added in an amount of 20% or more.

Al,SiおよびP,Sn,Ti,V,Mo,W,Zr,Nb,Hf,Taは、それぞ
れ0.5%未満ではあまり効果が少く、一方Al,Siが4.0%
を超えまたP,Sn,Ti,V,Mo,W,Zr,Nb,Hf,Taは3.0%を超え
て何れも多量に含有すると磁気特性、加工性および耐食
性が損なわれる不利がある。
Al, Si and P, Sn, Ti, V, Mo, W, Zr, Nb, Hf, Ta are less effective if less than 0.5%, respectively, while 4.0% Al, Si
If P, Sn, Ti, V, Mo, W, Zr, Nb, Hf, and Ta are contained in large amounts exceeding 3.0%, magnetic properties, workability and corrosion resistance are disadvantageously impaired.

(作 用) 以下この発明鋼板の製造方法について説明する。(Operation) Hereinafter, a method for producing the steel sheet of the present invention will be described.

さて好適成分組成に調整した合金スラブに、熱間圧延
ついで冷間圧延を施して最終板厚の冷延板とするが、こ
の発明では、かかる冷延板の表面粗度を中心線平均粗さ
Raで1.0μm以下とすることが肝要である。
Now, the alloy slab adjusted to a suitable component composition is subjected to hot rolling and then cold rolling to obtain a cold-rolled sheet having a final thickness. In the present invention, the surface roughness of such a cold-rolled sheet is determined by the center line average roughness.
It is important that the Ra be 1.0 μm or less.

第1図に、Cr13Al2Si1−Feの組成になる合金スラブ
を、加熱した後30mm厚のシートバーとしたのち、さらに
熱間圧延を施して2.0mm厚の熱圧延とし、その後0.35mm
厚まで冷間圧延を施して冷延板とし、ついでこの冷延板
表面を、化学研磨及び酸洗により種々の粗さに粗度調整
した場合の、鋼板の表面粗度と磁気特性との関係につい
て調べた結果を示す。
FIG. 1 shows that an alloy slab having a composition of Cr 13 Al 2 Si 1 -Fe is heated to form a 30 mm-thick sheet bar, and then hot-rolled to form a 2.0-mm-thick hot roll. mm
The relationship between the surface roughness of a steel sheet and its magnetic properties when the cold-rolled sheet is cold-rolled to a thickness and the roughness of the cold-rolled sheet surface is adjusted to various roughnesses by chemical polishing and pickling. The result of examining is shown.

同図より明らかなように、鋼板の表面が中心線平均粗
さRaで1.0μmを超えると鉄損得性の急激な劣化を招い
ている。
As is clear from the figure, when the surface of the steel sheet has a center line average roughness Ra of more than 1.0 μm, a sharp deterioration in iron loss yieldability is caused.

従ってこの発明では、基地鋼板の表面粗度を中心線平
均粗さRaで1.0μm以下に限定したのである。
Therefore, in the present invention, the surface roughness of the base steel sheet is limited to a centerline average roughness Ra of 1.0 μm or less.

なお表面粗さの調整方法としては、上掲した化学的処
理方法の他、冷間圧延時のワークロールの表面粗度加工
や、ペーパー研磨などが有利に適合する。
As a method for adjusting the surface roughness, in addition to the above-described chemical treatment methods, surface roughness processing of a work roll during cold rolling, paper polishing, and the like are advantageously adapted.

また第1図には、板表面の粗さと絶縁被膜の密着性と
の関係についての調査結果についても併せて示したが、
表面粗度があまりに小さくなると被膜密着性は劣化する
傾向にあるので、Raの下限は0.5μmとした。
FIG. 1 also shows the results of a survey on the relationship between the roughness of the plate surface and the adhesion of the insulating film.
If the surface roughness is too small, the coating adhesion tends to deteriorate, so the lower limit of Ra was set to 0.5 μm.

ついで上記したような表面平滑化処理を施した鋼板に
対し、クロム酸塩系またはりん酸塩系の無機質絶縁被膜
を被成する。
Subsequently, a chromate-based or phosphate-based inorganic insulating film is formed on the steel sheet subjected to the surface smoothing treatment as described above.

ここにかような絶縁被膜を被成すべき処理液の代表的
なものとしては、 クロム酸塩系:クロム酸マグネシウムとコロイダルシリ
カ溶液中にホウ酸等を添加したもの、 りん酸塩系:りん酸マグネシウムとコロイダルシリカ溶
液中に硝酸アルミやクロム酸等を添加したもの、 などがとりわけ有利に適合する。
Typical treatment liquids for forming such an insulating film are: chromate-based: magnesium chromate and colloidal silica with boric acid added thereto; phosphate-based: phosphoric acid A solution obtained by adding aluminum nitrate, chromic acid, or the like to a solution of magnesium and colloidal silica, etc., is particularly suitable.

またかかる絶縁被膜の膜厚が0.05μmに満たないと被
膜の絶縁性が不十分となるの不利があり、一方5.0μm
を超えると密着性が劣化する不利が生じるので、被膜厚
は0.05〜5.0μm程度とするのが望ましい。
If the thickness of the insulating film is less than 0.05 μm, there is a disadvantage that the insulating property of the film becomes insufficient, while 5.0 μm
If the thickness exceeds the above range, there is a disadvantage that the adhesiveness is deteriorated.

(実施例) 実施例1 Cr:17.5%およびSi:1.0%を含有し、残部実質的にFe
の組成になる合金スラブに、熱間圧延ついで冷間圧延を
施して、最終板厚:0.35mmの冷延板としたのち、表面を
王水に20秒間浸漬させて中心線平均粗がRaで0.6μmの
平滑面に仕上げた。
(Example) Example 1 Cr: 17.5% and Si: 1.0%, the balance being substantially Fe
The alloy slab having the following composition is subjected to hot rolling and then cold rolling to obtain a final sheet thickness: a cold-rolled sheet having a thickness of 0.35 mm.The surface is then immersed in aqua regia for 20 seconds, and the center line average roughness is Ra. Finished to a smooth surface of 0.6 μm.

ついで1150℃で10分間の焼鈍を施したのち、直ちにり
ん酸マグネシウム:35%、コロイダルシリカ:20%を含む
水性処理液を2.0g/m2の割合で塗布し、ついで750℃で20
秒間焼付けて厚み1.00μmのりん酸塩系の無機質絶縁被
膜を被成した。
After annealing at 1150 ° C. for 10 minutes, an aqueous treatment solution containing magnesium phosphate: 35% and colloidal silica: 20% was applied at a rate of 2.0 g / m 2 at 750 ° C.
By baking for 2 seconds, a phosphate-based inorganic insulating film having a thickness of 1.00 μm was formed.

かくして得られた絶縁被膜付き防錆電磁鋼板を、25cm
エプスタイン法に従って短冊状に切出したのち、30枚重
ねにして表1に示す種々の面荷重を加えたときの周波
数:50Hz、磁束密度:10kGにおける鉄損W10/50を測定し
た。
The rust-proof electrical steel sheet with the insulating coating obtained in this way is
After cutting into strips according to the Epstein method, 30 sheets were piled up, and when various surface loads shown in Table 1 were applied, the iron loss W 10/50 at a frequency of 50 Hz and a magnetic flux density of 10 kG was measured.

得られた測定値を表1に示す。なお表1には比較のた
め表面に絶縁被膜をそなえないものについての測定結果
も併せて示す。
Table 1 shows the obtained measured values. Table 1 also shows, for comparison, the measurement results for those having no insulating film on the surface.

表1に示した成績から明らかなように、比較例は面荷
重が大きくなるに従って鉄損特性が著しく劣化したのに
対し、この発明鋼板は面荷重が増大しても鉄損特性の劣
化はほとんどなかった。
As is clear from the results shown in Table 1, the iron loss characteristics of the comparative example were significantly deteriorated as the surface load increased, whereas the iron loss characteristics of the steel sheet of the present invention hardly deteriorated even when the surface load increased. Did not.

(発明の効果) かくしてこの発明によれば、耐食性は勿論のこと磁気
特性および被膜密着性に優れた防錆電磁鋼板を得ること
ができ、有利である。
(Effects of the Invention) Thus, according to the present invention, it is possible to obtain a rust-preventive electromagnetic steel sheet having not only corrosion resistance but also excellent magnetic properties and coating adhesion.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、Cr−Fe系電磁鋼板の表面粗度と鉄損および被
膜密着性との関係を示したグラフである。
FIG. 1 is a graph showing the relationship between the surface roughness of a Cr—Fe-based magnetic steel sheet, iron loss and film adhesion.

フロントページの続き (56)参考文献 特開 昭59−104481(JP,A) 特開 昭61−183480(JP,A) 特開 昭61−183481(JP,A) 特開 昭54−134043(JP,A) 特開 昭62−182250(JP,A) 特開 昭63−93843(JP,A) 特開 昭63−45350(JP,A) 特開 昭62−196358(JP,A) 特開 昭60−5852(JP,A) 特公 昭51−1646(JP,B2)Continuation of front page (56) References JP-A-59-104481 (JP, A) JP-A-61-183480 (JP, A) JP-A-61-183481 (JP, A) JP-A-54-134043 (JP, A) JP-A-62-182250 (JP, A) JP-A-63-93843 (JP, A) JP-A-63-45350 (JP, A) JP-A-62-196358 (JP, A) 60-5852 (JP, A) JP-B 51-1646 (JP, B2)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】表面粗度が中心線平均粗さRaで0.5〜1.0μ
mの方向性Fe−Cr系電磁鋼板表面上に、クロム酸塩系ま
たはりん酸塩系の無機質絶縁被膜をそなえて成る、絶縁
被膜を有する防錆電磁鋼板。
The surface roughness is 0.5 to 1.0 μm in center line average roughness Ra.
A rust-preventive electromagnetic steel sheet having an insulating coating, comprising a chromate-based or phosphate-based inorganic insulating coating on the surface of a m-oriented Fe-Cr-based electrical steel sheet.
【請求項2】Fe−Cr系電磁鋼板が、Cr:13〜20wt%を主
要成分として含むものである特許請求の範囲第1項記載
の防錆電磁鋼板。
2. The rust-preventive magnetic steel sheet according to claim 1, wherein the Fe-Cr-based magnetic steel sheet contains 13 to 20% by weight of Cr as a main component.
【請求項3】Fe−Cr系電磁鋼板が、Cr:8〜20wt%を主要
成分として含むほか、4wt%以下のAlおよびSiならびに3
wt%以下のP,Sn,Ti,V,Mo,W,Zr,Nb,HfおよびTaのうちか
ら選んだ少なくとも一種を含有するものである特許請求
の範囲第1項記載の防錆電磁鋼板。
3. The Fe—Cr-based magnetic steel sheet contains 8 to 20% by weight of Cr as a main component and 4% by weight or less of Al and Si and 3% by weight.
2. The rust-proof magnetic steel sheet according to claim 1, wherein the steel sheet contains at least one selected from the group consisting of P, Sn, Ti, V, Mo, W, Zr, Nb, Hf, and Ta at wt% or less.
JP61286728A 1986-12-03 1986-12-03 Rust-proof electrical steel sheet with insulating coating Expired - Lifetime JP2637405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61286728A JP2637405B2 (en) 1986-12-03 1986-12-03 Rust-proof electrical steel sheet with insulating coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61286728A JP2637405B2 (en) 1986-12-03 1986-12-03 Rust-proof electrical steel sheet with insulating coating

Publications (2)

Publication Number Publication Date
JPS63140038A JPS63140038A (en) 1988-06-11
JP2637405B2 true JP2637405B2 (en) 1997-08-06

Family

ID=17708247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61286728A Expired - Lifetime JP2637405B2 (en) 1986-12-03 1986-12-03 Rust-proof electrical steel sheet with insulating coating

Country Status (1)

Country Link
JP (1) JP2637405B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091024A (en) * 1989-07-13 1992-02-25 Carpenter Technology Corporation Corrosion resistant, magnetic alloy article
FR2724395B1 (en) * 1994-09-12 1996-11-22 Gec Alsthom Transport Sa INSULATED MAGNETIC SHEET AND METHOD FOR ISOLATING SAME
JP5342209B2 (en) * 2008-10-29 2013-11-13 日新製鋼株式会社 Laminated core and liquid transfer pump

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511646A (en) * 1974-06-29 1976-01-08 Sumitomo Chemical Co Noyakukaryuzaino koketsuboshihoho
JPS54134043A (en) * 1978-04-10 1979-10-18 Kawasaki Steel Co Electromagnetic steel plate having excellent volume ratio* punching property* and weldability for use as laminated ironcore
JPS6017029B2 (en) * 1982-12-07 1985-04-30 川崎製鉄株式会社 Method for forming insulation coating on silicon steel quenched ribbon
JPS61183480A (en) * 1985-02-09 1986-08-16 Sumitomo Metal Ind Ltd Formation of insulating film on electrical steel sheet
JPS61183479A (en) * 1985-02-09 1986-08-16 Nippon Steel Corp Surface treatment of electrical steel sheet

Also Published As

Publication number Publication date
JPS63140038A (en) 1988-06-11

Similar Documents

Publication Publication Date Title
KR101263139B1 (en) Non-oriented electromagnetic steel sheet and process for production thereof
KR100479353B1 (en) Ultra-low core loss grain oriented silicon steel sheet and method of producing the same
JP3307872B2 (en) Motor for electric vehicle using non-oriented electrical steel sheet and method of manufacturing the electrical steel sheet
JP4635112B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4116749B2 (en) Non-oriented electrical steel sheet
JP2018066033A (en) Nonoriented electromagnetic steel sheet
JP2637405B2 (en) Rust-proof electrical steel sheet with insulating coating
JPH0888114A (en) Manufacture of nonoriented flat rolled magnetic steel sheet
JP4303431B2 (en) Ultra high magnetic flux density non-oriented electrical steel sheet and manufacturing method thereof
WO2019117089A1 (en) Multilayer electromagnetic steel sheet
JP4300604B2 (en) Ultra-low iron loss unidirectional silicon steel sheet and manufacturing method thereof
EP4365319A1 (en) Grain-oriented electrical steel strip and method for its production
JP2874564B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP3870725B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
TWI675113B (en) Multilayer electromagnetic steel sheet
JPH11236682A (en) Superlow core loss grain oriented silicon steel sheet and its production
JP3458689B2 (en) Low residual magnetic flux density silicon steel sheet with excellent practical magnetic properties
JP3178270B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP4283354B2 (en) Method for producing non-oriented electrical steel sheet for electric vehicle motor
JPH11335861A (en) Production of ultralow core loss grain oriented silicon steel sheet
EP4446464A1 (en) Pre-treatment liquid and method for manufacturing electromagnetic steel sheet provided with insulating film
JP2001073094A (en) Nonoriented silicon steel sheet for electric car, and its manufacture
JP3380775B2 (en) Grain-oriented silicon steel sheet with low strain sensitivity and excellent magnetic properties
JP3446385B2 (en) Non-oriented electrical steel sheet with excellent coating adhesion
JP2001049403A (en) Nonoriented silicon steel sheet good in high frequency characteristic and its production