JP2636171B2 - Method for reducing and removing dissolved organic halogen compounds in contaminated water - Google Patents

Method for reducing and removing dissolved organic halogen compounds in contaminated water

Info

Publication number
JP2636171B2
JP2636171B2 JP6125767A JP12576794A JP2636171B2 JP 2636171 B2 JP2636171 B2 JP 2636171B2 JP 6125767 A JP6125767 A JP 6125767A JP 12576794 A JP12576794 A JP 12576794A JP 2636171 B2 JP2636171 B2 JP 2636171B2
Authority
JP
Japan
Prior art keywords
organic halogen
contaminated water
metal
water
halogen compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6125767A
Other languages
Japanese (ja)
Other versions
JPH07308682A (en
Inventor
哲夫 先崎
良男 野田
政敬 笹森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6125767A priority Critical patent/JP2636171B2/en
Publication of JPH07308682A publication Critical patent/JPH07308682A/en
Application granted granted Critical
Publication of JP2636171B2 publication Critical patent/JP2636171B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、微量の有機ハロゲン化
合物により汚染された汚染水を処理して、汚染水に含ま
れる有機ハロゲン化合物を還元除去する方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating contaminated water contaminated with a trace amount of an organic halogen compound to reduce and remove the organic halogen compound contained in the contaminated water.

【0002】[0002]

【従来の技術】加工組立工業では、機械加工等の際に使
われる油類を除くために、不燃性で溶解力が大きいトリ
クロルエチレン等の有機ハロゲン化合物が溶剤として大
量に使われてきた。しかし、有機ハロゲン化合物は毒性
を持つ上に環境にも悪影響があるから、該化合物の製造
や使用が規制されるようになり、油類除去用の溶剤とし
ての有機ハロゲン化合物を無毒性溶剤に転換する例が多
くなっている。しかしながら、これまでに製造された溶
剤用の有機ハロゲン化合物は膨大な量であり、使用後の
該化合物のかなりの部分が河川や土壌中に投棄されてき
た。そして、該化合物は安定で微生物によって分解する
ことも困難なので、自然環境内に投棄された該化合物の
大部分が分解されずに現在に至っている。従って、投棄
された有機ハロゲン化合物が河川水や地下水を汚染して
結果的に水道の原水を汚染し、有機ハロゲン化合物によ
る水道原水の汚染が大きな社会問題になっている。水へ
の有機ハロゲン化合物の溶解度は小さいが、生体内で肝
臓に蓄積されてガンの原因になったりするから、飲料水
中には極微量の混入も好ましくない。しかし、極微量混
入している有機ハロゲン化合物を低コストで完全除去す
るのは困難である。
2. Description of the Related Art In the processing and assembly industry, large amounts of organic halogen compounds such as trichloroethylene, which are nonflammable and have high dissolving power, have been used as solvents in order to remove oils used in machining and the like. However, since organic halogen compounds are toxic and have a negative effect on the environment, the production and use of such compounds have been regulated, and organic halogen compounds as solvents for removing oils have been converted to non-toxic solvents. There are many examples. However, the organic halogen compounds for solvents produced so far are in enormous amounts, and a considerable portion of the compounds after use have been dumped into rivers and soil. And, since the compound is stable and difficult to decompose by microorganisms, most of the compound discarded in the natural environment has not been decomposed. Therefore, the discarded organic halogen compounds contaminate river water and groundwater and consequently contaminate the raw water of the water supply, and the contamination of the raw water of the tap water by the organic halogen compounds is a major social problem. Although the solubility of the organic halogen compound in water is low, it may be accumulated in the liver in a living body and cause cancer, and therefore, it is not preferable that a very small amount is mixed in drinking water. However, it is difficult to completely remove an extremely small amount of an organic halogen compound at low cost.

【0003】本発明者らは、微量の有機ハロゲン化合物
を含有する汚染水中に金属鉄を存在させることにより、
該化合物の水中濃度が10〜500ppb程度であって
も10℃付近の低温下に該化合物を充分に除去できるこ
とを見出した〔工業用水、No.357,P.2(19
88)〕。これは金属鉄が有機ハロゲン化合物を還元処
理することによるものである。しかしながら、この方法
では、金属鉄の表面が水中に溶解する酸素(溶存酸素)
で酸化されて不働態化するために、鉄表面による有機ハ
ロゲン化合物の還元除去率が低下するという問題があ
る。従って、有機ハロゲン化合物の高い還元除去率を長
時間にわたって維持するためには、量論量以上の多量の
鉄を必要として経済的ではない。また、前記方法の場
合、有機ハロゲン化合物の除去時に鉄表面から鉄イオン
が処理水中に溶出する。この鉄イオンの溶出は、鉄の消
費量を増加させると共に処理水中に鉄イオンを3〜5p
pm程度蓄積させ、鉄イオンによる二次汚染を生じさせ
る恐れもある。
[0003] The present inventors have proposed that metallic iron be present in contaminated water containing a trace amount of an organic halogen compound,
It has been found that even when the concentration of the compound in water is about 10 to 500 ppb, the compound can be sufficiently removed at a low temperature of around 10 ° C. [Industrial Water, No. 357, p. 2 (19
88)]. This is because the metallic iron reduces the organic halogen compound. However, in this method, the surface of metallic iron is dissolved in water (oxygen dissolved).
Oxidized and passivated, the reduction rate of the organic halogen compound on the iron surface is reduced. Therefore, in order to maintain a high reduction removal rate of an organic halogen compound over a long period of time, a large amount of iron, which is a stoichiometric amount or more, is required, which is not economical. In addition, in the case of the above method, iron ions are eluted from the iron surface into the treated water when the organic halogen compound is removed. This elution of iron ions increases the amount of iron consumed and increases the amount of iron ions in the treated water by 3 to 5 p.
pm may be accumulated to cause secondary contamination by iron ions.

【0004】[0004]

【発明が解決しようとする課題】本発明は、水中に含ま
れている微量の有機ハロゲン化合物を金属表面に接触さ
せて金属により還元除去する方法において、その有機ハ
ロゲン化合物の除去率を長時間にわたって高い値で維持
し、かつ水中への金属イオンの溶出を防止する方法を提
供することをその課題とする。
SUMMARY OF THE INVENTION The present invention relates to a method for reducing and removing a small amount of an organic halogen compound contained in water by contacting the surface of the metal with a metal. It is an object of the present invention to provide a method for maintaining a high value and preventing elution of metal ions into water.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、微量の有機ハロゲ
ン化合物を含有する汚染水に水素を供給し、汚染中に含
まれる溶存酸素を除去することにより、或いは水素を溶
存又は溶存していない汚染水を金属表面に接触させる際
に、該金属に電圧を印加することにより、前記課題を解
決し得ることを見出し、本発明を完成するに至った。す
なわち、本発明によれば、有機ハロゲン化合物を含有す
る汚染水中に気体状の水素を供給し、汚染水中に含まれ
る溶存酸素を除去すると共に、有機ハロゲン化合物を担
体に担持した金属と接触させて金属により還元処理する
ことを特徴とする汚染水中の溶存有機ハロゲン化合物の
除去方法が提供される。また、本発明によれば、溶存有
機ハロゲン化合物を含有する汚染水と、電圧を印加した
金属表面とを接触させることを特徴とする汚染水中の溶
存有機ハロゲン化合物の還元除去方法が提供される。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, supplied hydrogen to contaminated water containing a trace amount of an organic halogen compound, and dissolved hydrogen contained in the contaminated water. It has been found that the above problem can be solved by removing oxygen or by applying a voltage to the metal when contacting contaminated water with or without dissolved hydrogen on the metal surface, and applying the present invention. It was completed. That is, according to the present invention, gaseous hydrogen is supplied into contaminated water containing an organic halogen compound, and dissolved oxygen contained in the contaminated water is removed, and the organic halogen compound is brought into contact with a metal supported on a carrier. A method for removing dissolved organic halogen compounds in contaminated water, which is characterized by performing reduction treatment with a metal, is provided. Further, according to the present invention, there is provided a method for reducing and removing dissolved organic halogen compounds in contaminated water, which comprises contacting contaminated water containing a dissolved organic halogen compound with a metal surface to which a voltage is applied.

【0006】本発明で処理される汚染水は、有機ハロゲ
ン化合物を、通常20〜250ppb、特に20〜11
0ppb濃度で含有する汚染水である。有機ハロゲン化
合物としては、トリクロルエチレンやテトラクロルエチ
レン等が挙げられる。汚染水は、水道原水、水道水或い
は任意の飲料水や工場排水等であることができる。本発
明で用いる金属としては金属鉄が好ましいが、鉄と同等
の作用を示すニッケルやコバルトも使用できるし、それ
らの合金等も使用可能である。また、有機ハロゲン化合
物の還元除去反応の作用によるものであり、処理しよう
とする水と金属は広範囲の接触面積が必要であり、金属
は多孔質状の板や粒子、又は微粒子状等の比表面積が必
要であり、金属は多孔質状の板や粒子、又は微粒子状等
の比表面積が大きい担体に担持して使うことが必要であ
る。本発明では、活性炭、アルミナ、シリカゲル、チタ
ニア、ジルコニア、マグネシア、シリカ−アルミナ、ゼ
オライト等の多孔質担体に金属を担持させて使うのが望
ましい。
[0006] The contaminated water treated in the present invention contains an organic halogen compound, usually 20 to 250 ppb, especially 20 to 11 ppb.
Contaminated water contained at 0 ppb concentration. Examples of the organic halogen compound include trichloroethylene and tetrachloroethylene. The contaminated water can be raw tap water, tap water, or any drinking water, factory effluent, or the like. As the metal used in the present invention, metallic iron is preferable, but nickel and cobalt having the same action as iron can also be used, and alloys thereof can also be used. In addition, due to the action of the reduction and removal reaction of the organic halogen compound, the water to be treated and the metal require a wide contact area, and the metal has a specific surface area such as a porous plate, particles, or fine particles. It is necessary to use the metal supported on a carrier having a large specific surface area, such as a porous plate, particles, or fine particles. In the present invention, it is preferable to use a metal supported on a porous carrier such as activated carbon, alumina, silica gel, titania, zirconia, magnesia, silica-alumina and zeolite.

【0007】担体への金属の担持量は金属や担体の種類
で異なるが、通常は金属担持物に対して1〜10重量
%、好ましくは2〜8重量%である。金属担持量が過少
では表面活性の十分な金属担持物を得ることができず、
金属担持量が過大では担体表面の細孔が金属で閉塞され
るために金属担持物の比表面積が減少し、この場合にも
金属担持物の表面活性が低下する。金属担持物の平均粒
径は、0.5〜5mm、好ましくは0.6〜1mmであ
る。
[0007] The amount of the metal carried on the carrier varies depending on the type of the metal and the carrier, but is usually 1 to 10% by weight, preferably 2 to 8% by weight, based on the metal carried. If the amount of metal supported is too small, a metal support with sufficient surface activity cannot be obtained,
If the amount of metal supported is too large, the pores on the surface of the carrier are blocked by the metal, so that the specific surface area of the metal supported decreases, and in this case also, the surface activity of the metal supported decreases. The average particle size of the metal support is 0.5 to 5 mm, preferably 0.6 to 1 mm.

【0008】多孔質担体に金属を担持させる方法として
は、以下の方法が例示される。 (1)含浸法:水中に懸濁した担体を激しく撹拌しなが
ら硝酸第1鉄水溶液を加えて担体に均一に溶液を含浸さ
せ、これをゆっくりと乾燥してから焼成する。 (2)共沈法:硫酸アルミニウムと硝酸第1鉄の混合水
溶液中に、アルカリを徐々に添加して水酸化鉄と水酸化
アルミニウムの共沈物を作り、この共沈物を濾過水洗し
てから乾燥焼成する。 (3)沈着法:水ガラスの希薄水溶液にアルカリを添加
して沈澱を作り、この沈澱を激しく撹拌しながら硝酸第
1鉄水溶液を加える。この操作により水ガラスの沈殿
(ケイ酸ソーダ)の表面に水酸化鉄の沈殿が沈着する。
本発明で好ましく用いられる金属担持物は、活性炭に金
属鉄を担持させたものである。この場合、金属鉄の担持
量は金属鉄担持物重量の1〜5重量%、好ましくは2〜
4重量%である。また、金属鉄担持物の比表面積は55
0〜900m/g、好ましくは700〜900m
gであり、その細孔直径は27〜40Å、好ましくは3
0〜40Åである。
The following method is exemplified as a method for supporting a metal on a porous carrier. (1) Impregnation method: An aqueous ferrous nitrate solution is added to a carrier suspended in water while vigorously stirring to uniformly impregnate the carrier, and the carrier is slowly dried and fired. (2) Coprecipitation method: An alkali is gradually added to a mixed aqueous solution of aluminum sulfate and ferrous nitrate to form a coprecipitate of iron hydroxide and aluminum hydroxide, and the coprecipitate is filtered and washed with water. And fired. (3) Deposition method: An alkali is added to a dilute aqueous solution of water glass to form a precipitate, and an aqueous ferrous nitrate solution is added while the precipitate is vigorously stirred. By this operation, a precipitate of iron hydroxide is deposited on the surface of the precipitate (sodium silicate) of the water glass.
The metal support preferably used in the present invention is obtained by supporting activated iron on metallic iron. In this case, the supported amount of metallic iron is 1 to 5% by weight, preferably 2 to 5% by weight of the metallic iron support.
4% by weight. The specific surface area of the metallic iron support is 55
0~900m 2 / g, preferably 700~900m 2 /
g and its pore diameter is 27-40 °, preferably 3
0-40 °.

【0009】以下、本発明の方法について詳述する。 (第1の方法) 本発明の第1の方法は、汚染水に水素を供給し、汚染水
中に含まれる溶存酸素を除去すると共に、有機ハロゲン
化合物を担体に担持した金属と接触させて金属により還
元処理する方法である。この場合の接触温度は、5〜2
5℃、好ましくは10〜20℃である。この方法では、
水素は汚染水に対してあらかじめ溶解させることができ
るし、汚染水と金属との接触系で溶解させることもでき
る。汚染水中の水素の溶存量は、汚染水中に含まれる溶
存酸素1モルに対して1.5モル以上、好ましくは2モ
ル以上、より好ましくは2.5モル以上であるが、一般
的には汚染水1m当り1g以上、好ましくは1.25
g以上、より好ましくは1.25〜1.5gの割合で溶
解させればよい。汚染水に対する水素の溶解方法として
は、汚染水中に加圧水素をガス分散ノズルを介して噴出
させる方法や塔内において加圧水素と汚染水を向流接触
させる方法、汚染水からその一部を抜出し、これに水素
を溶解させた後、これを汚染水に循環混合させる方法等
を採用することができる。
Hereinafter, the method of the present invention will be described in detail. (First Method) In a first method of the present invention, hydrogen is supplied to contaminated water, dissolved oxygen contained in the contaminated water is removed, and an organic halogen compound is brought into contact with a metal supported on a carrier to thereby remove the oxygen. This is a method of performing a reduction treatment. The contact temperature in this case is 5-2
The temperature is 5C, preferably 10-20C. in this way,
Hydrogen can be dissolved in the contaminated water in advance, or can be dissolved in the contact system between the contaminated water and the metal. The dissolved amount of hydrogen in the contaminated water is at least 1.5 mol, preferably at least 2 mol, more preferably at least 2.5 mol per mol of dissolved oxygen contained in the contaminated water. water 1 m 3 per 1g or more, preferably 1.25
g or more, more preferably 1.25 to 1.5 g. As a method for dissolving hydrogen in contaminated water, a method of ejecting pressurized hydrogen into contaminated water through a gas dispersion nozzle, a method of contacting pressurized hydrogen with contaminated water in a tower in a tower, extracting a part of contaminated water, After dissolving hydrogen therein, a method of circulating and mixing this with contaminated water can be employed.

【0010】前記のようにして水素を汚染水中に供給し
溶存させることにより、汚染水中に溶存する酸素やその
他の酸化性物質の少なくとも一部を水素と反応させ、金
属に対して非反応性物質である水などに変換する。これ
により、溶存酸素や酸化性物質による金属の不働態化が
防止される。本発明の方法は、バッチ方式及び流通方式
のいずれの方式でも実施可能であり、バッチ方式により
実施する場合は反応器中に金属と汚染水を入れて撹拌す
ればよい。一方、本発明を流通方式で実施する場合に
は、固定床方式、沸騰床方式及び懸濁床方式等で実施す
ることができるが、好ましくは固定床方式が採用され
る。これらの方式に用いる金属の粒径は、それらの方式
に応じて適宜定めればよい。本発明を固定床方式で実施
する場合、汚染水の液空間速度(LHSV)は、4〜
8.5hr−1、好ましくは4〜5.7hr−1であ
る。
By supplying and dissolving hydrogen into the contaminated water as described above, at least a part of oxygen and other oxidizing substances dissolved in the contaminated water is reacted with the hydrogen, and the non-reactive substance is not reacted with the metal. Is converted to water. This prevents passivation of the metal due to dissolved oxygen or oxidizing substances. The method of the present invention can be carried out by any of a batch method and a distribution method. When the method is carried out by a batch method, a metal and contaminated water may be put into a reactor and stirred. On the other hand, when the present invention is carried out by a flow system, it can be carried out by a fixed bed system, a boiling bed system, a suspension bed system, or the like, but preferably a fixed bed system is employed. The particle size of the metal used in these methods may be appropriately determined according to the method. When the present invention is carried out in a fixed bed system, the liquid hourly space velocity (LHSV) of contaminated water is 4 to
It is 8.5 hr < -1 >, Preferably it is 4-5.7 hr < -1 >.

【0011】(第2の方法) 第2の方法は、電圧を印加した金属表面に汚染水を接触
させる方法である。この場合、接触温度としては5〜2
5℃、好ましくは10〜20℃の温度が採用される。本
発明の方法は、バッチ方式及び流通方式のいずれの方式
によっても実施可能である。金属に対する電圧の印加方
法としては、反応器内に充填した金属に電圧を印加し得
る方法であればどのような方法でも採用することができ
る。この場合、電圧の印加方向は水平方向や垂直方向で
あることができる。例えば、反応器として容器状のもの
を用いる場合、その中心部に棒状電極を配設してこれを
陽極として用いると共に容器内壁を陰極として用い、そ
れらの電極間に電圧を印加すればよい。また、筒体状反
応器の内部に金属を充填して用いる場合、その充填層の
両端面に通液孔を有する板状電極を圧接し、それらの電
極間に電圧を印加するか又は充填層の中心部に棒状電極
を挿通してこれを陽極とすると共に筒体内壁を陰極と
し、それらの電極間に電圧を印加すればよい。印加電圧
は、陽極と陰極間の距離1cm当りの電圧で0.2〜
0.7V、好ましくは0.5〜0.7Vである。電圧と
しては、一般に直流電圧が用いられる。
(Second Method) A second method is a method in which contaminated water is brought into contact with a metal surface to which a voltage has been applied. In this case, the contact temperature is 5-2.
A temperature of 5C, preferably 10-20C is employed. The method of the present invention can be carried out by any of a batch system and a distribution system. As a method for applying a voltage to the metal, any method can be adopted as long as a method can apply a voltage to the metal filled in the reactor. In this case, the voltage application direction may be a horizontal direction or a vertical direction. For example, when a container is used as the reactor, a rod-shaped electrode may be provided at the center of the reactor and used as an anode, and the inner wall of the container may be used as a cathode, and a voltage may be applied between the electrodes. When a metal is filled into the inside of the cylindrical reactor, a plate-shaped electrode having liquid passage holes at both end surfaces of the packed bed is pressed into contact with each other, and a voltage is applied between the electrodes or the packed bed is filled. A rod-shaped electrode may be inserted into the center of the tube and used as an anode, the inner wall of the cylinder may be used as a cathode, and a voltage may be applied between these electrodes. The applied voltage is 0.2 to 0.2
0.7V, preferably 0.5 to 0.7V. As the voltage, a DC voltage is generally used.

【0012】前記のようにして金属に電圧を印加するこ
とにより、汚染水中に溶存する酸素や酸化性物質の金属
表面への反応が防止されると共に、金属の溶出を防止す
ることができる。また、この第2の方法は第1の方法と
組合せて実施するのが好ましい。すなわち、汚染水中に
水素を溶解させ、この溶存水素を含む汚染水を電圧を印
加した金属に接触させることが好ましい。この場合、汚
染水に溶存させる水素量は前記第1の方法の場合よりも
少なくてもよく、一般に汚染水1m当り0.2〜0.
9g、好ましくは0.4〜0.5gである。
By applying a voltage to the metal as described above, it is possible to prevent oxygen and oxidizing substances dissolved in the contaminated water from reacting on the metal surface and to prevent elution of the metal. Preferably, the second method is implemented in combination with the first method. That is, it is preferable that hydrogen is dissolved in the contaminated water, and the contaminated water containing the dissolved hydrogen is brought into contact with the metal to which the voltage is applied. In this case, the amount of hydrogen to be dissolved in the contaminated water may be less than that of the first method, generally contaminated water 1 m 3 per 0.2 to 0.
9 g, preferably 0.4 to 0.5 g.

【0013】[0013]

【実施例】次に、本発明を実施例によって更に具体的に
説明するが、本発明はこの実施例によって限定されるも
のではない。
Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

【0014】参考例1 平均粒径:3.6mm、平均細孔直径:44Å、比表面
積:970m/g、細孔容積:1.07ml/gの活
性炭(商品名:白鷺L、武田薬品社製)に対して、金属
鉄を以下のようにして担持させた。予め粉砕して所定粒
度にした活性炭20gを、100ml中にFeを1g含
む硝酸第1鉄水溶液中に浸漬し、20℃で乾燥させる。
次に、これをアルゴン気流中100℃で乾燥してからア
ルゴン中に水素ガスを10%添加して250℃で4時間
還元する。最後に、水素100%の気流中で400℃、
1時間還元した。前記のようにして得られた鉄担持活性
炭は、金属鉄を9.1重量%含有するもので、その見掛
密度は0.71g/mlであり、その平均細孔直径は2
7Å、比表面積は540m/g、細孔容積は0.4m
l/gであった。
Reference Example 1 Activated carbon having an average particle size of 3.6 mm, an average pore diameter of 44 °, a specific surface area of 970 m 2 / g and a pore volume of 1.07 ml / g (trade name: Shirasagi L, Takeda Pharmaceutical Co., Ltd.) Manufactured) was loaded with metallic iron as follows. 20 g of activated carbon, which has been pulverized to a predetermined particle size, is immersed in an aqueous ferrous nitrate solution containing 1 g of Fe in 100 ml, and dried at 20 ° C.
Next, this is dried at 100 ° C. in an argon stream, and hydrogen gas is added to argon at 10% and reduced at 250 ° C. for 4 hours. Finally, at 400 ° C. in an air flow of 100% hydrogen,
Reduced for 1 hour. The iron-carrying activated carbon obtained as described above contains 9.1% by weight of metallic iron, has an apparent density of 0.71 g / ml and an average pore diameter of 2%.
7 °, specific surface area 540 m 2 / g, pore volume 0.4 m
1 / g.

【0015】実施例1〜4、比較例1 参考例1で得た鉄担持活性炭2.4mlを、内径1.1
cm、高さ15cmのガラス管に充填して高さ2.5c
mの充填層を形成し、その充填層の下端面及び上端面に
炭素繊維布からなる電極を圧接させた。このガラス管を
垂直に立て、その上端部から、あらかじめ水素を溶解さ
せた又は溶解させていない、トリクロルエチレンを14
5ppb含有する10℃の水を流速320ml/日で通
水させ、ガラス管下部から流出する処理水中に含まれる
鉄イオン量及びトリクロルエチレン量を測定した。その
結果を表1に示す。また、前記実験において、充填層の
両端に圧接した電極間に電圧を1cm当りの電圧が0.
6Vになるように(すなわち、電極間電圧:1.5V)
印加した。この場合の処理水中の鉄イオン量及びトリク
ロルエチレン量を表1に併記する。
Examples 1-4, Comparative Example 1 2.4 ml of the iron-carrying activated carbon obtained in Reference Example 1 was mixed with an inner diameter of 1.1.
cm, glass tube of height 15cm and height 2.5c
m of the filled layer was formed, and an electrode made of a carbon fiber cloth was pressed against the lower end face and the upper end face of the filled layer. The glass tube was set up vertically, and trichloroethylene, in which hydrogen had been dissolved or not dissolved in advance, was poured from the upper end of the glass tube.
5 ppb-containing water at 10 ° C. was passed at a flow rate of 320 ml / day, and the amount of iron ions and the amount of trichloroethylene contained in the treated water flowing out from the lower part of the glass tube were measured. Table 1 shows the results. Further, in the above experiment, the voltage per 1 cm between the electrodes pressed against both ends of the packed layer was 0.
6V (that is, 1.5V between electrodes)
Applied. Table 1 also shows the amount of iron ions and the amount of trichlorethylene in the treated water in this case.

【0016】[0016]

【表1】 [Table 1]

【0017】実施例5 参考例1と同じ方法で、鉄担持量が1重量%、2重量
%、4重量%及び7重量%の鉄担持活性炭を調整した。
前記の鉄担持活性炭を用いた以外は実施例1と同様にし
て実験を行った。この場合、汚染水には、あらかじめ水
素ガスを汚染水1m当り0.45g溶解させた。ま
た、この実験では電圧を印加しなかった。前記実験にお
いて、通水開始後、1日、15日及び30日の時点で処
理水中のトリクロルエチレン量を調べ表2の結果を得
た。
Example 5 In the same manner as in Reference Example 1, iron-supported activated carbon having iron loadings of 1% by weight, 2% by weight, 4% by weight and 7% by weight was prepared.
An experiment was conducted in the same manner as in Example 1 except that the above-mentioned activated carbon carrying iron was used. In this case, the contaminated water, and the pre hydrogen gas is contaminated water 1 m 3 per 0.45g dissolved. No voltage was applied in this experiment. In the above experiment, the amount of trichlorethylene in the treated water was examined on the 1st, 15th and 30th days after the start of water passage, and the results in Table 2 were obtained.

【0018】[0018]

【表2】 [Table 2]

【0019】実施例6〜9 実施例1〜4において、平均粒径0.25mmの還元鉄
を用いた以外は同様にして実験を行った。その結果を表
3に示す。
Examples 6 to 9 Experiments were carried out in the same manner as in Examples 1 to 4, except that reduced iron having an average particle size of 0.25 mm was used. Table 3 shows the results.

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【発明の効果】本発明によれば、有機ハロゲン化合物を
微量含有する汚染水からそれに含まれる有機ハロゲン化
合物を長期間安定して還元除去することができる上に、
処理水中への金属の溶出を防止することができる。従っ
て、本発明は経済性に優れると共に二次汚染を生じるこ
とがなく、その産業的意義は多大である。
According to the present invention, the organic halogen compound contained in contaminated water containing a trace amount of the organic halogen compound can be stably reduced and removed for a long period of time.
Elution of metal into the treated water can be prevented. Therefore, the present invention is economical and does not cause secondary pollution, and its industrial significance is great.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 笹森 政敬 北海道札幌市豊平区月寒東2条17丁目2 番1号 工業技術院北海道工業技術研究 所内 (56)参考文献 特開 平5−269476(JP,A) 特開 平6−106171(JP,A) ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Masataka Sasamori Hokkaido Industrial Technology Research Institute, 2-17-1, Tsukikanto, Toyohira-ku, Sapporo-city, Hokkaido (56) References JP-A-5-269476 (JP) , A) JP-A-6-106171 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 有機ハロゲン化合物を含有する汚染水中
に気体状の水素を供給し、汚染水中に含まれる溶存酸素
を除去すると共に、有機ハロゲン化合物を担体に担持し
た金属と接触させて金属により還元処理することを特徴
とする汚染水中の溶存有機ハロゲン化合物の除去方法
1. Contaminated water containing an organic halogen compound
Oxygen supplied to polluted water by supplying gaseous hydrogen to
While removing the organic halogen compound on the carrier.
Feature reduction treatment with metal by contact with
Method for removing dissolved organic halogen compounds in contaminated water .
【請求項2】 溶存有機ハロゲン化合物を含有する汚染
水と、電圧を印加した金属表面とを接触させることを特
徴とする汚染水中の溶存有機ハロゲン化合物の還元除去
方法。
2. A method for reducing and removing a dissolved organic halogen compound in contaminated water, which comprises bringing the contaminated water containing the dissolved organic halogen compound into contact with a metal surface to which a voltage has been applied.
【請求項3】 金属が鉄であることを特徴とする請求項
1又は2に記載した溶存有機ハロゲン化合物の還元除去
方法。
3. The method for reducing and removing a dissolved organic halogen compound according to claim 1, wherein the metal is iron.
【請求項4】 鉄が多孔質担体に担持されていることを
特徴とする請求項3に記載した溶存有機ハロゲン化合物
の還元除去方法。
4. The method according to claim 3, wherein iron is supported on a porous carrier.
【請求項5】 汚染水に水素を溶解させる請求項2に記
載した溶存有機ハロゲン化合物の還元除去方法。
5. The method for reducing and removing dissolved organic halogen compounds according to claim 2, wherein hydrogen is dissolved in the contaminated water.
JP6125767A 1994-05-16 1994-05-16 Method for reducing and removing dissolved organic halogen compounds in contaminated water Expired - Lifetime JP2636171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6125767A JP2636171B2 (en) 1994-05-16 1994-05-16 Method for reducing and removing dissolved organic halogen compounds in contaminated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6125767A JP2636171B2 (en) 1994-05-16 1994-05-16 Method for reducing and removing dissolved organic halogen compounds in contaminated water

Publications (2)

Publication Number Publication Date
JPH07308682A JPH07308682A (en) 1995-11-28
JP2636171B2 true JP2636171B2 (en) 1997-07-30

Family

ID=14918331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6125767A Expired - Lifetime JP2636171B2 (en) 1994-05-16 1994-05-16 Method for reducing and removing dissolved organic halogen compounds in contaminated water

Country Status (1)

Country Link
JP (1) JP2636171B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024926A (en) * 2001-07-17 2003-01-28 Hazama Gumi Ltd Soil cleaning method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2927253B2 (en) * 1996-10-11 1999-07-28 日本電気株式会社 Treatment of organic chlorine compounds
EP1151807A4 (en) 1999-07-29 2004-08-18 Hazama Gumi Soil purification agent and method for purifying soil
JP2003024952A (en) * 2001-07-19 2003-01-28 Muracam:Kk Wastewater treatment method
JP7300656B2 (en) * 2021-05-31 2023-06-30 戸田工業株式会社 Soil/Groundwater Purification Agent, Production Method Thereof, and Soil/Groundwater Purification Method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06106171A (en) * 1992-09-28 1994-04-19 Kurita Water Ind Ltd Treatment of volatile organohalogen compound
JPH05269476A (en) * 1992-03-25 1993-10-19 Kurita Water Ind Ltd Treatment of water containing volatile organohalogen compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024926A (en) * 2001-07-17 2003-01-28 Hazama Gumi Ltd Soil cleaning method
JP4670029B2 (en) * 2001-07-17 2011-04-13 株式会社間組 Soil purification method

Also Published As

Publication number Publication date
JPH07308682A (en) 1995-11-28

Similar Documents

Publication Publication Date Title
Grimm et al. Review of electro-assisted methods for water purification
CA1257646A (en) Fuel cell
CN104496094B (en) A kind of high-risk wastewater treatment instrument in laboratory and treatment process
GB1603325A (en) Reduction of material in aqueous solution
JPS58199040A (en) Light driven light catalyst reduction method
EP0766647B1 (en) Photoelectrochemical reactor
CN113998761A (en) Method for in-situ slow release of Fenton catalyst and application
JP2636171B2 (en) Method for reducing and removing dissolved organic halogen compounds in contaminated water
JPH0741250B2 (en) How to treat water with ozone
CN110002546B (en) Activated (Cu-Fe-Ce)/Al2O3Preparation and application of nanoparticle electrode
US5458745A (en) Method for removal of technetium from radio-contaminated metal
US5439562A (en) Electrochemical decontamination of radioactive metals by alkaline processing
JP2007007541A (en) Method for treating nitrate nitrogen-containing water
US4427503A (en) Method for reducing the acid content of a nitric acid solution by using electrolysis current
CN106006926A (en) Efficient catalytic ozone water treatment technology based on composite oxide
CN1254563C (en) Improved method for adhering metal particle on carbon base body
JP3117064B2 (en) Method and apparatus for treating oxidized nitrogen-containing water
CN111573818A (en) Ozone catalytic membrane reactor assembly and application method thereof in water treatment engineering
Yao et al. Effect of Voltage on the Treatment of Cyanide Wastewater by Three-dimensional Electrode.
JPH1057987A (en) Denitrification device of water
JPH07504356A (en) Catalytic fluidized bed method for the treatment of aqueous liquids
JP3679918B2 (en) Denitrification method for contaminated water
US5849319A (en) Uses for stripped spent silver catalysts
JPH07299465A (en) Electrolytic treatment of waste water and anode used therefor
JPH08112595A (en) Method and device for consumable anodic electrodissolution applicable for decontamination of slightly radioactive wasteliquid

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term