JP3117064B2 - Method and apparatus for treating oxidized nitrogen-containing water - Google Patents

Method and apparatus for treating oxidized nitrogen-containing water

Info

Publication number
JP3117064B2
JP3117064B2 JP07053780A JP5378095A JP3117064B2 JP 3117064 B2 JP3117064 B2 JP 3117064B2 JP 07053780 A JP07053780 A JP 07053780A JP 5378095 A JP5378095 A JP 5378095A JP 3117064 B2 JP3117064 B2 JP 3117064B2
Authority
JP
Japan
Prior art keywords
cathode
anode
water
nitrogen
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07053780A
Other languages
Japanese (ja)
Other versions
JPH08224598A (en
Inventor
浩二 三島
啓典 西井
卓 鴻野
正和 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP07053780A priority Critical patent/JP3117064B2/en
Publication of JPH08224598A publication Critical patent/JPH08224598A/en
Application granted granted Critical
Publication of JP3117064B2 publication Critical patent/JP3117064B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸化態窒素含有水の処
理に係り、特に上水処理、用水処理、地下水汚染修復事
業に用いられる硝酸性あるいは亜硝酸性窒素を含む水を
生物学的に脱窒素する酸化態窒素含有水の処理方法及び
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the treatment of water containing oxidized nitrogen, and more particularly, to the treatment of water containing nitrate or nitrite nitrogen used in water treatment, water treatment, and groundwater pollution remediation. The present invention relates to a method and an apparatus for treating water containing oxidized nitrogen, which is denitrified.

【0002】[0002]

【従来の技術】地下水は一般に水質が良好で、水道水源
として広く利用されているが、近年硝酸性窒素による地
下水汚染が数多く報告されている。地下水中の硝酸性窒
素除去方法としては、イオン交換法、逆浸透法、触媒還
元法、有機物を水素供与体とする生物学的脱窒法、水素
ガスを水素供与体とする生物学的脱窒法などが知られて
いる。しかし、イオン交換法ではイオン交換樹脂の再生
廃液中に高濃度の硝酸及び共存塩類が濃縮されるため
に、その廃水処理が必要になる。逆浸透法、触媒還元法
は運転コストが極めて高く実用的でない。有機物を水素
供与体とする生物学的脱窒法は、有機物としてエタノー
ル、酢酸等の無害で安価な有機物を使用するが、後処理
として残留有機物の好気性処理が必要であり、また大量
の有機性汚泥を生成する。
2. Description of the Related Art Groundwater generally has good water quality and is widely used as a tap water source. In recent years, however, many groundwater contaminations due to nitrate nitrogen have been reported. Methods for removing nitrate nitrogen from groundwater include ion exchange, reverse osmosis, catalytic reduction, biological denitrification using organic matter as a hydrogen donor, and biological denitrification using hydrogen gas as a hydrogen donor. It has been known. However, in the ion exchange method, a high concentration of nitric acid and coexisting salts are concentrated in the waste liquid for regenerating the ion exchange resin, so that wastewater treatment is required. The reverse osmosis method and the catalytic reduction method have extremely high operating costs and are not practical. The biological denitrification method using an organic substance as a hydrogen donor uses harmless and inexpensive organic substances such as ethanol and acetic acid as the organic substances, but requires aerobic treatment of the residual organic substances as a post-treatment, and requires a large amount of organic substances. Generates sludge.

【0003】水素ガスを利用する生物学的脱窒法は、有
機物を利用する方法にくらべて汚泥発生量が少ないとい
う利点を有するが、爆発性の高い水素を大量に使用する
施設であるために、安全性への配慮から設備コストが高
くなり、運転管理も難しくなる。一方、水を電気分解す
ることにより陰極から水素を発生させると共に、陰極表
面に水素資化性脱窒菌を固定化した生体触媒固定化電極
を浸漬して、水中の硝酸性窒素を脱窒処理する方法(特
開平5−329497公報参照)が開発されている。こ
の方法は、水素ガスを利用する生物学的脱窒法の一種で
あるが、水素の貯蔵施設が不要なことから、実用性が高
い技術と考えられている。
[0003] The biological denitrification method using hydrogen gas has an advantage that the amount of generated sludge is smaller than the method using organic matter, but since it is a facility that uses a large amount of highly explosive hydrogen, Safety considerations increase equipment costs and make operation management difficult. On the other hand, hydrogen is generated from the cathode by electrolyzing water, and a biocatalyst-immobilized electrode on which hydrogen-utilizing denitrifying bacteria are immobilized is immersed on the cathode surface to denitrify nitrate nitrogen in the water. A method (see JP-A-5-329497) has been developed. This method is a kind of biological denitrification method using hydrogen gas, but is considered to be a highly practical technique because a hydrogen storage facility is not required.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは、この生
体触媒固定化電極による窒素除去技術について、地下
水、排水、あるいは人工排水等を利用して、その脱窒性
能を検討してきたが、陰極の脱窒反応に対して、陽極で
発生する酸素が阻害作用をもたらすという問題があっ
た。その対策として、陽極に酸素と結合しやすい炭素材
料を使用することで、酸素を二酸化炭素等に変換する方
法を検討してきたが、陽極に炭素材料を使用する場合、
電極が徐々に消耗し、頻繁な電極の交換が必要なことが
明らかになった。また、通電条件によっては、処理水に
微量有機物が浸出するという問題も明らかになった。本
発明は、上記生体触媒固定化電極法の問題点を解消し、
酸素による脱窒反応阻害を防止し、脱窒反応を効率よく
行わせる方法及び装置を提供することを課題とする。
The inventors of the present invention have studied the nitrogen removal technology using the biocatalyst-immobilized electrode by using groundwater, drainage, artificial drainage, or the like, and denitrification performance. There has been a problem that oxygen generated at the anode has an inhibitory effect on the denitrification reaction of the cathode. As a countermeasure, we have been studying a method to convert oxygen to carbon dioxide and the like by using a carbon material that easily bonds to oxygen for the anode, but when using a carbon material for the anode,
The electrodes gradually depleted, revealing that frequent electrode replacement was required. In addition, the problem that a trace amount of organic substances leached into the treated water depending on the energization conditions was also clarified. The present invention has solved the problems of the biocatalyst-immobilized electrode method,
An object of the present invention is to provide a method and an apparatus for preventing a denitrification reaction from being hindered by oxygen and efficiently performing a denitrification reaction.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、酸化態窒素を含有する水を、電気分解
して陰極から水素、陽極から酸素を発生させると共に、
該酸化態窒素を前記陰極表面に固定化された水素資化性
脱窒素菌により脱窒素する水の処理方法において、前記
陰極と陽極を酸素を透過せず、電子を透過する部材によ
り離隔して配備し、陽極で発生する酸素の陰極側への移
行を防止することとしたものである。また、本発明で
は、少なくとも一対の陰極と陽極を設けた電気分解槽を
有し、該陰極の表面に水素資化性脱窒素細菌を固定化し
た酸化態窒素含有水の処理装置において、前記陰極と陽
極の間に酸素を透過せず、電子を透過する隔離部材を設
けたものである。本発明において、用いる隔離部材とし
てはイオン交換膜が好適に使用することができる。
In order to solve the above-mentioned problems, in the present invention, water containing oxidized nitrogen is electrolyzed to generate hydrogen from a cathode and oxygen from an anode,
In the method of treating water for denitrifying the oxidized nitrogen with a hydrogen-assimilating denitrifying bacterium fixed to the surface of the cathode, the cathode and the anode are separated from each other by a member that does not transmit oxygen and transmits electrons. It is arranged to prevent oxygen generated at the anode from migrating to the cathode side. Further, in the present invention, the apparatus for treating oxidized nitrogen-containing water having an electrolysis tank provided with at least a pair of cathodes and anodes and immobilizing hydrogen assimilating denitrifying bacteria on the surface of the cathodes, A separating member that does not transmit oxygen but transmits electrons is provided between the anode and the anode. In the present invention, an ion exchange membrane can be suitably used as the separating member.

【0006】このように、本発明では、生体触媒を固定
化した陰極及び陽極を配備し、被処理水を電気分解する
ことで陰極から水素を生成させ、陰極表面に担持させた
生体触媒の作用により、被処理水中の硝酸性窒素及び/
又は亜硝酸性窒素を脱窒処理する方法において、陰極と
陽極の間に隔膜等の酸素を透過せず、電子を透過する隔
離部材を配備することを特徴とする窒素の除去方法であ
る。すなわち本発明は、電極間に隔膜等の酸素を透過せ
ず、電子を透過する隔離部材を介在させることで、陽極
で発生する酸素が陰極の脱窒反応を阻害することを阻止
するものである。
As described above, in the present invention, a cathode and an anode having a biocatalyst immobilized thereon are provided, hydrogen is generated from the cathode by electrolyzing water to be treated, and the action of the biocatalyst carried on the surface of the cathode is provided. By the nitrate nitrogen in the water to be treated and / or
Alternatively, in the method for denitrifying nitrite nitrogen, a method for removing nitrogen, comprising disposing a separating member, such as a diaphragm, which does not transmit oxygen and transmits electrons, between a cathode and an anode. That is, the present invention prevents oxygen generated at the anode from interfering with the denitrification reaction of the cathode by interposing a separating member that does not transmit oxygen such as a diaphragm between the electrodes but transmits electrons. .

【0007】本発明で使用する隔離部材は、石綿布やそ
の改良膜(フッ素処理膜)が利用でき、またセラミック
膜や精密ろ過膜などの隔膜が有効であるが、酸素の陰極
への移動を阻止できるものであれば種類は限定されな
い。単一素材でも複合素材でも良く、また、壁、板、膜
状等形状もとわない。なお、硝酸イオン(NO3 - )が
陽極へ移動して脱窒効率が低下することを防ぐためには
イオン交換膜、特に陽イオン交換膜が有効である。本発
明における生体触媒は、水素資化性脱窒菌であり、陰極
表面に自然に付着増殖することで固定化されたものが利
用できるが、包括法や結合法により強制的に陰極表面に
固定化されたものでも利用できる。本発明における陰極
材質は、脱窒菌の担持に好適な凹凸を有し、導電性が高
いものであれば特に限定されないが、炭素材、金属不織
布などが好適である。一方、陽極材質は、導電性が高
く、耐酸化性が高い材質が好適で、白金等の貴金属をコ
ーティングしたチタンが有効であるが、これに限定され
るものではない。
As the separating member used in the present invention, asbestos cloth or an improved membrane thereof (fluorinated membrane) can be used, and a diaphragm such as a ceramic membrane or a microfiltration membrane is effective. The type is not limited as long as it can be prevented. The material may be a single material or a composite material, and may have any shape such as a wall, a plate, and a film. Note that nitrate ions (NO 3 -) in order to prevent the decrease is moved to the anode removal窒効rate is effective ion exchange membrane, in particular a cation exchange membrane. The biocatalyst in the present invention is a hydrogen-assimilating denitrifying bacterium, which can be used by being immobilized by naturally attaching and growing on the cathode surface, but is forcibly immobilized on the cathode surface by a comprehensive method or a binding method. It can also be used. The cathode material in the present invention is not particularly limited as long as it has irregularities suitable for supporting denitrifying bacteria and has high conductivity, but carbon materials and metal nonwoven fabrics are preferred. On the other hand, as the anode material, a material having high conductivity and high oxidation resistance is preferable, and titanium coated with a noble metal such as platinum is effective, but is not limited thereto.

【0008】[0008]

【作用】図1に、本発明の酸化態窒素含有水の処理装置
の基本構成図を示し、この図を用いて本発明の作用を説
明する。図1において、被処理水1は、原水ポンプ等に
より下部の原水流入部から生物反応槽3に流入する。こ
の時、短絡流の発生を防ぐために、原水流入部にディフ
ューザ等の分散器を使用するのが有効である。
FIG. 1 shows a basic configuration diagram of an apparatus for treating water containing oxidized nitrogen according to the present invention, and the operation of the present invention will be described with reference to FIG. In FIG. 1, a raw water 1 flows into a biological reaction tank 3 from a lower raw water inflow portion by a raw water pump or the like. At this time, it is effective to use a disperser such as a diffuser in the raw water inflow section in order to prevent the occurrence of a short circuit flow.

【0009】生物反応槽3には陰極4(すなわち生体触
媒固定化電極)及び陽極5を浸漬し、電極間に隔離部
材、例えば陽イオン交換膜などの隔膜6を設置する。電
極間に数V以上(通常は10V以下)の直流電圧を印加
すると、電圧の増加につれて陰極4から水素ガス、陽極
5からは酸素ガスが発生する。隔膜6が陽イオン交換膜
の場合、陽イオン(Na+ やCa2+など)は陽極側から
陰極側へ移動するが、陰イオン(NO3 - やCl-
ど)は移動できない。また、酸素や水素は膜の存在によ
り移動できない。その結果、陰極側には、陽極で発生す
る酸素を含まない、陽イオンがやや多い水が生成され
る。
A cathode 4 (ie, a biocatalyst-immobilized electrode) and an anode 5 are immersed in the biological reaction tank 3, and a separating member such as a cation exchange membrane is provided between the electrodes. When a DC voltage of several V or more (generally 10 V or less) is applied between the electrodes, a hydrogen gas is generated from the cathode 4 and an oxygen gas is generated from the anode 5 as the voltage increases. When the diaphragm 6 is a cation exchange membrane, cations (such as Na + and Ca 2+ ) move from the anode side to the cathode side, but anions (such as NO 3 and Cl ) cannot move. Further, oxygen and hydrogen cannot move due to the presence of the film. As a result, water containing a large amount of cations without oxygen generated at the anode is generated on the cathode side.

【0010】隔膜6が陰イオン交換膜の場合は、陰イオ
ンは陰極側から陽極側へ移動できるが、陽イオン、及び
酸素、水素は移動できない。その結果、陰極側には、発
生酸素を含まない、陰イオンがやや低い水が生成され
る。隔膜6が精密ろ過膜の場合は、イオンは自由に移動
するが、酸素や水素は移動できない。その結果、陰極に
は発生酸素を含まない、陽イオンが高く、陰イオンが低
い水が生成される。このように、陰極側では選択する隔
離手段によってイオンの濃度が変化し、pHが変化する
ので、被処理水の水質や処理条件(滞留時間、電圧な
ど)によって適宜選択する必要がある。
When the diaphragm 6 is an anion exchange membrane, anions can move from the cathode side to the anode side, but cations, oxygen and hydrogen cannot move. As a result, on the cathode side, water containing no generated oxygen and containing slightly lower anions is generated. When the diaphragm 6 is a microfiltration membrane, ions move freely, but oxygen and hydrogen cannot move. As a result, water containing no generated oxygen, high cations and low anions is generated at the cathode. As described above, since the ion concentration changes and the pH changes on the cathode side depending on the selected separation means, it is necessary to appropriately select the water quality and the treatment conditions (residence time, voltage, etc.) of the water to be treated.

【0011】陰極4では、陰極表面に担持されている生
体触媒8(水素資化性脱窒菌)が、被処理水中の硝酸性
窒素及び/又は亜硝酸性窒素を、電極より発生する水素
ガスを水素供与体として生物学的に脱窒する。その機構
を図4に示す。このように陰極表面では生体触媒8によ
り次式の反応により脱窒される。2NO3 - +5H2
2H+ → N2 +6H2 O一方、陽極5で発生する酸素
は、従来法では陰極4に移動して脱窒反応の効率を著し
く低下させたが、電極間に設置した隔膜等の隔離部材6
により、脱窒反応が行われる陰極側へはほとんど移動し
ない。従って、陰極4の脱窒反応は酸素の阻害を受ける
ことなく、極めて効率よく進行する。
In the cathode 4, a biocatalyst 8 (hydrogen assimilating denitrifier) carried on the cathode surface converts nitrate nitrogen and / or nitrite nitrogen in the water to be treated into hydrogen gas generated from the electrode. Biologically denitrify as a hydrogen donor. The mechanism is shown in FIG. Thus, the surface of the cathode is denitrified by the biocatalyst 8 by the following reaction. 2NO 3 - + 5H 2 +
2H + → N 2 + 6H 2 O On the other hand, the oxygen generated at the anode 5 moves to the cathode 4 in the conventional method and significantly reduces the efficiency of the denitrification reaction. However, the separation member 6 such as a diaphragm installed between the electrodes is used.
Therefore, it hardly moves to the cathode side where the denitrification reaction is performed. Therefore, the denitrification reaction of the cathode 4 proceeds extremely efficiently without being inhibited by oxygen.

【0012】処理水2として陰極側の流出水のみを集め
ると、硝酸性窒素が最も低い水質が得られるが、地下水
等の低濃度硝酸性窒素の脱窒処理においては、窒素除去
率は必ずしも90%以上の高い除去率が要求されるわけ
ではない。水道水質基準を満足する10mg/リットル
以下(硝酸性窒素+亜硝酸性窒素合計値として)であれ
ば、飲用に適切である。このような事情から、処理水2
は陰極側流出水と陽極側流出水を混合した生物反応槽流
出水を集水するのが一般的である。以上示した図1は基
本構成図であるが、処理規模が大きくなると、図3又は
図5に示すように複数の隔離部材6を配備する生物反応
槽3を採用するのが良く、また、生物反応槽3は単段で
使用することが多いが、直列に連結して使用することも
可能である。なお、図3及び図5において、各符号は図
1と同じ意味を有す。
If only the effluent water on the cathode side is collected as the treated water 2, the water quality with the lowest nitrate nitrogen can be obtained. However, in the denitrification treatment of low-concentration nitrate nitrogen such as groundwater, the nitrogen removal rate is not necessarily 90%. % Removal rates are not required. If it is 10 mg / liter or less (as a total value of nitrate nitrogen and nitrite nitrogen) satisfying the tap water quality standard, it is suitable for drinking. Under such circumstances, treated water 2
It is common to collect effluent from a biological reaction tank in which effluent from the cathode is mixed with effluent from the anode. Although FIG. 1 shown above is a basic configuration diagram, when the processing scale becomes large, it is better to adopt the biological reaction tank 3 provided with a plurality of isolation members 6 as shown in FIG. 3 or FIG. The reaction tank 3 is often used in a single stage, but it is also possible to use it in series. 3 and 5, each symbol has the same meaning as in FIG.

【0013】[0013]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれに限定されるものではない。 実施例1 本実施例は図1の装置を用いて行った。処理条件は次の
通りである。 ・被処理水:K県F市の地下水 水質:硝酸性窒素10mg/リットル前後、亜硝酸性窒
素0mg/リットル (注)地下水の硝酸性窒素が実験試水としては低かった
(4〜6mg/リットル)ので、不足分を試薬硝酸ナト
リウムを添加して補った 水量:1m3 /日 水温:17℃
EXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples. Example 1 This example was performed using the apparatus shown in FIG. The processing conditions are as follows.・ Water to be treated: groundwater in F City, K Prefecture Water quality: around 10 mg / liter nitrate nitrogen, 0 mg / liter nitrite nitrogen (Note) Nitrate nitrogen in groundwater was low as experimental test water (4-6 mg / liter) ) Therefore, the shortage was supplemented by adding the reagent sodium nitrate. Water volume: 1 m 3 / day Water temperature: 17 ° C.

【0014】・生物反応槽 容積:10リットル 陽極:チタン(表面に白金をメッキ、電極面積0.15
2 ) 陰極:黒鉛(電極面積0.15m2 ) 電極間距離:10mm 隔膜:旭硝子(株)製陽イオン交換膜セレミオンCMV 陽極から3mmの位置に設置 電圧及び電流:直流7〜9V、1.5A(定電流計で電
流を一定制御)
A biological reaction tank Volume: 10 liters Anode: titanium (plating platinum on the surface, electrode area 0.15
m 2 ) Cathode: graphite (electrode area: 0.15 m 2 ) Distance between electrodes: 10 mm Diaphragm: Cation exchange membrane SERMION CMV manufactured by Asahi Glass Co., Ltd. Installed at a position 3 mm from the anode Voltage and current: DC 7 to 9 V; 5A (constant current control with constant current meter)

【0015】図2に、被処理水と処理水の水質変化を示
す。図2において●は被処理水の硝酸性窒素、△は処理
水の亜硝酸性窒素、〇は処理水の硝酸性窒素を示す。脱
窒菌の固定化は陰極表面で自然に増殖する手法で行った
ために、運転初期には脱窒能力は認められなかった。し
かし、2〜3週間後からは陰極表面における生物スライ
ムの生成、及び処理水の硝酸性窒素の低下が認められ、
1.5ケ月後には処理水の硝酸性窒素と亜硝酸性窒素の
合計値が4mg/リットル以下になった。
FIG. 2 shows changes in the quality of water to be treated and treated water. In FIG. 2, ● represents nitrate nitrogen of the water to be treated, Δ represents nitrite nitrogen of the treated water, and Δ represents nitrate nitrogen of the treated water. Since the denitrifying bacteria were immobilized by a method of naturally growing on the cathode surface, no denitrifying ability was observed in the early stage of the operation. However, after a few weeks, the formation of biological slime on the cathode surface and a decrease in the nitrate nitrogen of the treated water were observed,
After 1.5 months, the total value of nitrate nitrogen and nitrite nitrogen in the treated water became 4 mg / liter or less.

【0016】また、処理水の溶解性TOCを測定した結
果、被処理水:1.5〜3mg/リットルに対して、処
理水:1.5〜3mg/リットルであり、電極からの有
機物の浸出は認められなかった。SSは、被処理水:
(測定限界以下)に対して、処理水:0.5〜2mg/
リットルであり、これは増殖した水素資化性脱窒菌と推
定された。陽極の耐久性は高く、約3ケ月の連続運転で
消耗はなく、電解効率の低下も認められなかった。陰極
表面には、白いスケールの形成が認められたが、極性を
変換する(10分/日)ことでスケールを除去すること
ができた。
Further, as a result of measuring the solubility TOC of the treated water, the treated water was 1.5 to 3 mg / l, whereas the treated water was 1.5 to 3 mg / l. Was not found. SS is the treated water:
(Less than the measurement limit), treated water: 0.5 to 2 mg /
Liters, which was estimated to be hydrogen-utilizing denitrifying bacteria that grew. The durability of the anode was high, and it was not consumed by continuous operation for about three months, and no reduction in electrolysis efficiency was observed. The formation of a white scale was observed on the cathode surface, but the scale could be removed by changing the polarity (10 minutes / day).

【0017】実施例2 実施例1に示した処理試験の後に、隔膜を陽イオン交換
膜から精密ろ過膜(メンブレンフィルター、アドバンテ
ック東洋(株)製の親水性PTFE膜、厚さ35μm、
孔径0.2μm)に交換して処理を行った。その結果、
実施例1と同様に被処理水の硝酸性窒素9.5〜11m
g/リットルに対して、処理水の硝酸性窒素は5〜6m
g/リットル、亜硝酸性窒素は0.1mg/リットル以
下であった。硝酸性窒素除去率は、実施例1に比べて僅
かに低下した。処理水のpHは実施例1の時で8.5〜
9.0あったのに対して、実施例2においては8〜8.
5であった。その結果、実施例2においては実施例1よ
りも陰極でのスケール形成量が少なくなった。
Example 2 After the treatment test shown in Example 1, the membrane was changed from a cation exchange membrane to a microfiltration membrane (membrane filter, hydrophilic PTFE membrane manufactured by Advantech Toyo Co., Ltd., 35 μm thick,
(Pore diameter 0.2 μm). as a result,
Nitrate nitrogen 9.5 to 11 m in the same manner as in Example 1.
Nitrate nitrogen of treated water is 5-6m / g / L
g / liter and nitrite nitrogen was 0.1 mg / liter or less. The nitrate nitrogen removal rate was slightly lower than in Example 1. The pH of the treated water was 8.5 to 8.5 in Example 1.
In contrast to 9.0, in the second embodiment, 8-8.0.
It was 5. As a result, in Example 2, the amount of scale formed at the cathode was smaller than in Example 1.

【0018】[0018]

【発明の効果】このように、本発明によって、生体触媒
固定化電極による脱窒反応の効率を上げることが可能に
なり、スケール形成及び電極の消耗が減少し従来法に必
要であった電極の頻繁な交換作業が不要になり、長時間
安定に操業できるようになった。また、処理水への微量
有機物の浸出も認められなかった。
As described above, according to the present invention, the efficiency of the denitrification reaction by the biocatalyst-immobilized electrode can be increased, the scale formation and the consumption of the electrode are reduced, and the electrode required for the conventional method is reduced. Frequent replacement work is no longer required, and stable operation has become possible for a long time. Also, no leaching of trace organic matter into the treated water was observed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の処理装置の基本構成図。FIG. 1 is a basic configuration diagram of a processing apparatus of the present invention.

【図2】被処理水と処理水の水質変化を示すグラフ。FIG. 2 is a graph showing water quality changes of treated water and treated water.

【図3】本発明の処理装置の他の構成図。FIG. 3 is another configuration diagram of the processing apparatus of the present invention.

【図4】陰極表面での反応説明図。FIG. 4 is an explanatory diagram of a reaction on a cathode surface.

【図5】本発明の処理装置のもう一つの構成図。FIG. 5 is another configuration diagram of the processing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1:被処理水、2:処理水、3:生物反応槽、4:生体
触媒固定化電極(陰極)、5:陽極、6:隔離部材(隔
膜)、7:直流電源、8:生体触媒(脱窒菌)
1: water to be treated, 2: treated water, 3: biological reaction tank, 4: biocatalyst-immobilized electrode (cathode), 5: anode, 6: isolation member (diaphragm), 7: DC power supply, 8: biocatalyst ( Denitrifying bacteria)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西井 啓典 神奈川県藤沢市本藤沢4丁目2番1号 株式会社荏原総合研究所内 (72)発明者 鴻野 卓 東京都大田区羽田旭町11番1号 株式会 社荏原製作所内 (72)発明者 黒田 正和 栃木県足利市寿町15番10号 (56)参考文献 特開 平5−329497(JP,A) 特開 平8−141574(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 3/34 101 C02F 1/46 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hironori Nishii 4-2-1 Motofujisawa, Fujisawa-shi, Kanagawa Inside Ebara Research Institute Co., Ltd. (72) Inventor Masakazu Kuroda 15-10, Kotobuki-cho, Ashikaga-shi, Tochigi Prefecture (56) References JP-A-5-329497 (JP, A) JP-A 8-141574 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C02F 3/34 101 C02F 1/46

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化態窒素を含有する水を、電気分解し
て陰極から水素、陽極から酸素を発生させると共に、該
酸化態窒素を前記陰極表面に固定化された水素資化性脱
窒素菌により脱窒素する水の処理方法において、前記陰
極と陽極を酸素を透過せず、電子を透過する部材により
離隔して配備し、陽極で発生する酸素の陰極側への移行
を防止することを特徴とする酸化態窒素含有水の処理方
法。
1. A hydrogen-utilizing denitrifying bacterium, wherein water containing oxide nitrogen is electrolyzed to generate hydrogen from a cathode and oxygen from an anode, and the oxide nitrogen is immobilized on the surface of the cathode. In the method for treating water to be denitrified, the cathode and the anode are separated from each other by a member that does not transmit oxygen and transmit electrons, thereby preventing the oxygen generated at the anode from migrating to the cathode side. A method for treating water containing oxidized nitrogen.
【請求項2】 少なくとも一対の陰極と陽極を設けた電
気分解槽を有し、該陰極の表面に水素資化性脱窒素細菌
を固定化した酸化態窒素含有水の処理装置において、前
記陰極と陽極の間に酸素を透過せず、電子を透過する隔
離部材を設けたことを特徴とする酸化態窒素含有水の処
理装置。
2. An apparatus for treating water containing oxidized nitrogen, comprising: an electrolysis tank provided with at least a pair of a cathode and an anode, wherein hydrogen-assimilating denitrifying bacteria are immobilized on the surface of the cathode. An apparatus for treating water containing oxidized nitrogen, comprising a separating member between the anodes that does not allow oxygen to pass therethrough and allows electrons to pass therethrough.
【請求項3】 前記隔離部材が、イオン交換膜である請
求項2記載の酸化態窒素含有水の処理装置。
3. The apparatus for treating oxidized nitrogen-containing water according to claim 2, wherein the isolation member is an ion exchange membrane.
JP07053780A 1995-02-20 1995-02-20 Method and apparatus for treating oxidized nitrogen-containing water Expired - Fee Related JP3117064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07053780A JP3117064B2 (en) 1995-02-20 1995-02-20 Method and apparatus for treating oxidized nitrogen-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07053780A JP3117064B2 (en) 1995-02-20 1995-02-20 Method and apparatus for treating oxidized nitrogen-containing water

Publications (2)

Publication Number Publication Date
JPH08224598A JPH08224598A (en) 1996-09-03
JP3117064B2 true JP3117064B2 (en) 2000-12-11

Family

ID=12952336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07053780A Expired - Fee Related JP3117064B2 (en) 1995-02-20 1995-02-20 Method and apparatus for treating oxidized nitrogen-containing water

Country Status (1)

Country Link
JP (1) JP3117064B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101624226B (en) * 2008-07-11 2013-05-08 中国科学院生态环境研究中心 Method and reactor for removing nitrate through catalytic electrochemical biological hydrogen autotrophic denitrification
KR102104708B1 (en) 2018-02-22 2020-04-24 김성훈 Funtional corrugated cardboard

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3530511B2 (en) * 2001-09-19 2004-05-24 三洋電機株式会社 Nitrogen treatment method and nitrogen treatment system
KR20030061230A (en) * 2002-01-11 2003-07-18 김병화 System for treating wastewater contained nitrogen
JP5832732B2 (en) * 2010-09-01 2015-12-16 一般財団法人電力中央研究所 Method for culturing microorganisms producing nitrite
CN105174381B (en) * 2015-09-21 2017-08-11 清华大学 A kind of method that use graphene oxide auxiliary makes Ti Graphene electrodes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101624226B (en) * 2008-07-11 2013-05-08 中国科学院生态环境研究中心 Method and reactor for removing nitrate through catalytic electrochemical biological hydrogen autotrophic denitrification
KR102104708B1 (en) 2018-02-22 2020-04-24 김성훈 Funtional corrugated cardboard

Also Published As

Publication number Publication date
JPH08224598A (en) 1996-09-03

Similar Documents

Publication Publication Date Title
Poon Electroflotation for groundwater decontamination
Grimm et al. Review of electro-assisted methods for water purification
Prosnansky et al. High-rate denitrification and SS rejection by biofilm-electrode reactor (BER) combined with microfiltration
US7175765B2 (en) Method for treating for-treatment water containing organic matter and nitrogen compound
CN101198550B (en) Electrodialysis reversal and electrochemical wastewater treatment method of compound containing nitrogen
US6471873B1 (en) Electrolytic process and apparatus for purifying contaminated aqueous solutions and method for using same to remediate soil
US20070272550A1 (en) Total solution for water treatments
CA2159198A1 (en) Oxidative method of purifying highly contaminated waste water
JP3432691B2 (en) Water treatment apparatus and method using microbial electrode
JP3117064B2 (en) Method and apparatus for treating oxidized nitrogen-containing water
CN108911355A (en) A kind of landfill leachate MBR goes out method for treating water and system
AU592948B2 (en) Method of treating fluids
JP2009061390A (en) Direct oxidation method of ammonia nitrogen in water and its apparatus
JP3982500B2 (en) Method and apparatus for treating wastewater containing organic compounds
JP2002346566A (en) Apparatus and method for water treatment
Shanthi et al. Domestic sewage treatment using batch stirred tank electrochemical reactor
US20030150810A1 (en) Water purification system and water purification method
US20040134862A1 (en) Device and method for tertiary treatment of wastewater and other contaminated aqueous media (CAM)
JP3788688B2 (en) Method and apparatus for electrolytic treatment of oxidized nitrogen-containing water
JPH10258285A (en) Waste water treatment equipment
CN114644425A (en) Treatment method of cellulose ether industrial wastewater with high salt content and high COD value
JP3117067B2 (en) Method and apparatus for treating oxidized nitrogen-containing water
RU2247078C1 (en) Method of treatment of water (versions)
JP2005144366A (en) Waste water treatment system
JP2005111351A (en) Method and apparatus for treating nitrogen-containing organic waste liquid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees