JP3679918B2 - Denitrification method for contaminated water - Google Patents

Denitrification method for contaminated water Download PDF

Info

Publication number
JP3679918B2
JP3679918B2 JP09598598A JP9598598A JP3679918B2 JP 3679918 B2 JP3679918 B2 JP 3679918B2 JP 09598598 A JP09598598 A JP 09598598A JP 9598598 A JP9598598 A JP 9598598A JP 3679918 B2 JP3679918 B2 JP 3679918B2
Authority
JP
Japan
Prior art keywords
contaminated water
nitric acid
potential
nitrate
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09598598A
Other languages
Japanese (ja)
Other versions
JPH11290890A (en
Inventor
宏 中村
彰弘 濱崎
尚樹 小川
公一 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP09598598A priority Critical patent/JP3679918B2/en
Publication of JPH11290890A publication Critical patent/JPH11290890A/en
Application granted granted Critical
Publication of JP3679918B2 publication Critical patent/JP3679918B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes

Description

【0001】
【発明の属する技術分野】
本発明は、硝酸汚染水の脱窒処理方法に関し、さらに詳しくは、地下水,産業排水及び家庭排水等に含有している窒素分を除去する水処理装置に関する。
【0002】
【従来の技術】
従来、基準値を越える高濃度の硝酸態窒素汚染水に対する処理法について、イオン交換法,逆浸透法,電解還元法などの物理化学的処理法及び生物学的脱窒法が検討され、一部実用化している。しかしながら、いずれの処理法も現段階では、高塩濃度再生排水処理,運転コスト,処理能力,処理水質などに問題を有しており、有効な処理技術の開発研究が重要な課題になっている。
各種の方法の中で、生物学的脱窒法は、上述のような硝酸イオン汚染水についての適用可能な処理法の1つと考えられる。そこで、そのプロセス開発に重要な因子は、適切な水素供与体の添加,制御、及び高速処理のための脱窒菌の高濃度化,高密度化であると考えられる。
【0003】
通常の生物学的脱窒プロセスでは、有機物を水素供与体として添加しており、大きな処理速度が得られるが、十分な処理をするためには過剰量の有機物添加が必要であるため、処理水への有機物残留が問題となる。
一方、水素ガスを電子供与体としてマイクロコカスディナイトリフィカンズ(Micrococcus denitrificans) などの自栄養性細菌を用いる処理法では、残留有機物の問題は解決されるが、低溶解性の水素ガスの効率的供給,亜硝酸態窒素の残留等に問題点を有している。
このような上記問題点を解決するものとして、最近、生物学的電気化学的処理法が注目されている。
【0004】
生物学的電気化学法について、特開平8−19788号公報に開示されており、図4に基づいて該方法について説明する。
ステンレスで造られた円筒形の陰極兼反応槽9の中心に、多孔性プラスチック製円筒10で覆われた炭素から造られた陽極3を設置する。陰極兼反応槽9と多孔性プラスチック製円筒10との間で仕切られた空間に、脱窒菌を固定した炭素粒11を充填する。なお、ここで充填する炭素粒11は、陰極の役割を兼ねる粒子型電極である。
【0005】
窒素分(硝酸分)を含む処理対象排水は、陰極兼反応槽9の中に収容される。そして、陽極3と陰極兼反応槽9とをつなぐ線に直流電源8により通電した場合、陽極3では電極材質の炭素が酸化し、炭酸イオンとして液中に溶解する。陰極兼反応槽9から電流が流れてくる炭素粒11の表面上では、水が還元されて水素が発生する。
排水中の窒素分(硝酸分)は、水素を電子供与体として、炭素粒11の表面上に固定した脱窒菌を生体触媒とし、窒素まで還元される。
【0006】
しかしながら、水素(H2 )は還元剤としては非常に高エネルギー(ギブスの自由エネルギー)であるため、硝酸を還元するのに水素を使用する上記方法ではエネルギーロスが大きく、硝酸汚染水の脱窒処理方法としては運転コスト,運転効率等の面で未だ問題であった。
ここで、硝酸の還元および水素の電子供与を、それぞれエネルギーとともに反応式で示せば、以下のようになる。

Figure 0003679918
(式中、zは反応に関与する電子数、Fはファラデー定数、Eは電位である。)
【0007】
【発明が解決しようとする課題】
本発明者らは、上記問題点に鑑み、水素の発生しない低電圧で生体を触媒とする電解、排水中の窒素分の還元を行うことにより、エネルギーロスの少ない硝酸汚染水の脱窒処理方法を開発すべく、鋭意検討した。
その結果、本発明者らは、硝酸汚染水の脱窒処理方法において、脱窒菌を生体触媒として用い、硝酸汚染水を水素の発生しない低電位で電解処理することによって、かかる問題点が解決されることを見い出した。
本発明は、かかる見地より完成されたものである。
【0008】
【課題を解決するための手段】
すなわち、本発明は、硝酸汚染水を還元することにより脱窒処理する硝酸汚染水の脱窒処理方法において、脱窒菌を生体触媒として用い、硝酸汚染水を水素の発生しない低電位で電解処理する硝酸汚染水の脱窒処理方法を提供するものである。
また、本発明は、硝酸汚染水を硝酸還元することにより脱窒処理する硝酸汚染水の脱窒処理方法において、陰極と陽極とを設置した反応槽内で、脱窒菌を生体触媒として用い、硝酸汚染水を水素の発生しない低電位で電解処理する硝酸汚染水の脱窒処理方法を提供するものである。
このような本発明によれば、従来の方法よりも低電位で電解が発生するので、従来法より約2〜3割程度、必要電力が低下する。これにより、硝酸汚染水の脱窒処理におけるランニングコストを低く抑えることができ、運転コスト,運転効率の面で優れた脱窒処理技術を提供できるのである。
以下、本発明について、詳細に説明する。
【0009】
【発明の実施の形態】
添付図面を参照しながら、本発明の実施の形態を説明する。
実施の形態
原理的には、硝酸(HNO3 )の還元は0.94V以下の電位であれば、反応は進行する。ところが、従来法のように水素(H2 )を介在させると0Vの電位が必要となり、差し引き0.94Vのロスになる。
そこで、本発明の硝酸汚染水の脱窒処理方法では、脱窒菌としての細菌、厳密には細菌内の電子受容体が0.94V〜0Vの間で電極から電子を受け取り、受け取った電子が硝酸の還元に寄与することにより、電位を0Vまで低下させなくても反応を進行させるようにしたものである。
【0010】
ここで、生体触媒として細菌を用いた場合の電子供与および硝酸の還元を反応式で示せば、以下のようになる。
細菌+e- (電極) → 細菌・e- (電極反応)
NO3 - +5(H+ +e- ) → 1/2 N2 +2H2 O+OH-
細菌・e- → 細菌+e-
上記電極反応では、水素発生よりも高い電位で反応が進行する。
【0011】
このようなことから、細菌等の生物の電子受け取り条件を確認するため、電流−電位曲線を測定すると図2に示すような結果になる。
ここで、試験水の組成としては、硝酸ナトリウムは窒素(N)に換算して80mg/リットルとなる量、また、リン酸1カリウムはリン(P)に換算して10mg/リットルとなる量を含有している。
図2の電流電位曲線は、生物有りと生物無しの2つのケースの硝酸溶液について測定した場合である。図2に示すように、電位を変えて電流密度を測定すると、先ず、硝酸還元と考えられる電流が現れ、次いで、生物有りの場合には生物の電子受け取り電流が現れ、最後に、水素(H2 )発生と考えられる電流が現れた。
これらの間のおおよその電位差は、硝酸還元と微生物の電子受け取りとの間で約0.4〜0.5Vであり、微生物の電子受け取りと水素発生との間で約0.5Vであった。
【0012】
したがって、硝酸汚染水を還元することにより脱窒処理する場合、脱窒菌としての微生物を生体触媒として用いることにより、微生物の電子受け取りと水素発生との間の電位差の分だけ、低電位で電解処理することができるのである。そして、この脱窒処理を、陰極と陽極とを設置した反応槽内で行うことにより、水素の発生しない硝酸汚染水の処理が可能となる。
以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。
【0013】
【実施例】
実施例1
図2に示した上記実験によって得られた条件にて、図1に示す装置を用いて硝酸の電解試験を実施した。
反応槽1に、陰極2,陽極3及び参照電極4を設置した。参照電極4は、陰極電位をモニターしてコントロールするためのものである。反応槽1に、硝酸および微生物の入った試験水6を満たした。そして、この反応槽1内を攪拌機7で緩やかに攪拌しながら、定電位電源5によって陰極電位を
1)微生物の電子受け取り電位(水素発生電位よりも−0.5V付近)
2)水素発生電位
の2条件に保ちながら、硝酸の還元を行った。
その結果、硝酸の還元速度は、1)微生物の電子受け取り電位の場合と、2)水素発生電位の場合とで大差はなかった。
このように硝酸の還元速度は、水素発生電位による従来法と本発明の方法とで同等であった。一方、同量の硝酸を還元するのに必要な電力は、投入した電力の比となる。したがって、図3に示したように、本発明の方法は従来法より約2〜3割程度、必要電力が低下することがわかった。
【0014】
【発明の効果】
本発明の汚染水の脱窒処理方法によれば、従来の方法よりも低電位で電解が発生するので、従来法より約2〜3割程度、必要電力が低下する。これにより、本発明は、硝酸汚染水の脱窒処理におけるランニングコストを低く抑えた効率的な運転を行うことができ、産業上の意義は極めて大きい。
【図面の簡単な説明】
【図1】図1は、実施例1において、本発明の方法を用いて硝酸の電解試験を行った装置の概略図である。
【図2】図2は、電流−電位曲線を示した図である。
【図3】図3は、本発明と従来法の必要な電力を比較した図である。
【図4】図4は、従来法による硝酸の電解試験を行う装置の概略図である。
【符号の説明】
1 反応槽
2 陰極
3 陽極
4 参照電極
5 定電位電源
6 試験水
7 攪拌機
8 直流電源
9 陰極兼反応槽
10 多孔性プラスチック製円筒
11 炭素粒[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a denitrification method for nitrate-contaminated water, and more particularly to a water treatment device that removes nitrogen contained in groundwater, industrial wastewater, household wastewater, and the like.
[0002]
[Prior art]
Conventionally, physicochemical treatment methods such as ion exchange method, reverse osmosis method, electrolytic reduction method and biological denitrification method have been studied as a treatment method for highly concentrated nitrate nitrogen contaminated water exceeding the standard value, and some practical use It has become. However, each treatment method has problems in high salt concentration reclaimed wastewater treatment, operating cost, treatment capacity, treated water quality, etc., and development of effective treatment technology is an important issue at this stage. .
Among various methods, the biological denitrification method is considered as one of applicable treatment methods for nitrate ion contaminated water as described above. Therefore, it is considered that an important factor for the process development is the addition and control of an appropriate hydrogen donor and the high concentration and high density of denitrifying bacteria for high-speed processing.
[0003]
In a normal biological denitrification process, an organic substance is added as a hydrogen donor, and a high processing speed can be obtained. However, since an excessive amount of organic substance is required for sufficient treatment, Residue of organic matter is a problem.
On the other hand, the treatment method using autotrophic bacteria such as Micrococcus denitrificans with hydrogen gas as an electron donor solves the problem of residual organic matter, but the efficient use of low-solubility hydrogen gas. There are problems with the supply and residual nitrite nitrogen.
Recently, biological electrochemical treatment methods have attracted attention as means for solving such problems.
[0004]
A biological electrochemical method is disclosed in JP-A-8-19788, and the method will be described with reference to FIG.
An anode 3 made of carbon covered with a porous plastic cylinder 10 is placed in the center of a cylindrical cathode / reaction vessel 9 made of stainless steel. A space partitioned between the cathode and reaction vessel 9 and the porous plastic cylinder 10 is filled with carbon particles 11 on which denitrifying bacteria are fixed. The carbon particles 11 filled here are particle-type electrodes that also serve as cathodes.
[0005]
The waste water to be treated containing nitrogen (nitric acid) is accommodated in the cathode and reaction tank 9. Then, when the DC power supply 8 is energized to the wire connecting the anode 3 and the cathode / reaction vessel 9, the carbon of the electrode material is oxidized at the anode 3 and dissolved in the liquid as carbonate ions. On the surface of the carbon particles 11 where current flows from the cathode and reaction vessel 9, water is reduced to generate hydrogen.
The nitrogen content (nitric acid content) in the wastewater is reduced to nitrogen using hydrogen as an electron donor and denitrifying bacteria immobilized on the surface of the carbon particles 11 as a biocatalyst.
[0006]
However, since hydrogen (H 2 ) is very high energy (Gibbs free energy) as a reducing agent, the above method using hydrogen to reduce nitric acid has a large energy loss, and denitrification of nitrate contaminated water. The treatment method was still a problem in terms of operation cost, operation efficiency, and the like.
Here, if the reduction of nitric acid and the electron donation of hydrogen are shown in the reaction formula together with the energy, they are as follows.
Figure 0003679918
(In the formula, z is the number of electrons involved in the reaction, F is the Faraday constant, and E is the potential.)
[0007]
[Problems to be solved by the invention]
In view of the above problems, the present inventors have carried out electrolysis using a living body as a catalyst at a low voltage at which hydrogen is not generated, and a method for denitrification of nitrate-contaminated water with little energy loss by performing reduction of nitrogen content in wastewater. In order to develop
As a result, in the method for denitrification treatment of nitrate-contaminated water, the present inventors solved this problem by electrolytically treating the nitrate-contaminated water at a low potential that does not generate hydrogen using denitrifying bacteria as a biocatalyst. I found out.
The present invention has been completed from such a viewpoint.
[0008]
[Means for Solving the Problems]
That is, the present invention relates to a method for denitrifying nitrate-contaminated water by reducing nitrate-contaminated water by using denitrifying bacteria as a biocatalyst and subjecting the nitrate-contaminated water to electrolytic treatment at a low potential without generating hydrogen. A method for denitrification treatment of nitrate-contaminated water is provided.
The present invention also relates to a method for denitrification of nitrate-contaminated water by denitrating nitrate-contaminated water by reducing the nitrate-contaminated water, using a denitrifying bacterium as a biocatalyst in a reaction vessel in which a cathode and an anode are installed. The present invention provides a method for denitrification of nitrate-contaminated water by electrolytic treatment of the contaminated water at a low potential without generating hydrogen.
According to the present invention, since electrolysis occurs at a lower potential than in the conventional method, the required power is reduced by about 20 to 30% compared to the conventional method. Thereby, the running cost in the denitrification treatment of nitric acid-contaminated water can be kept low, and a denitrification treatment technique that is excellent in terms of operation cost and operation efficiency can be provided.
Hereinafter, the present invention will be described in detail.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the accompanying drawings.
The embodiment <br/> principle embodiment, the reduction of nitric acid (HNO 3) is as long as potential below 0.94 V, the reaction proceeds. However, when hydrogen (H 2 ) is interposed as in the conventional method, a potential of 0 V is required, and a loss of 0.94 V is subtracted.
Therefore, in the method for denitrification of nitrate-contaminated water according to the present invention, bacteria as denitrifying bacteria, strictly speaking, electron acceptors in the bacteria receive electrons from the electrode between 0.94 V and 0 V, and the received electrons are nitrates. By contributing to the reduction, the reaction is allowed to proceed without lowering the potential to 0V.
[0010]
Here, if the electron donation and the reduction of nitric acid when using bacteria as a biocatalyst are shown by the reaction formulas, the reaction is as follows.
Bacteria + e - (electrode) → bacteria · e - (electrode reaction)
NO 3 +5 (H + + e ) → 1/2 N 2 + 2H 2 O + OH
Bacteria · e - → bacteria + e -
In the electrode reaction, the reaction proceeds at a higher potential than hydrogen generation.
[0011]
For this reason, when the current-potential curve is measured in order to confirm the electron receiving conditions of organisms such as bacteria, the result shown in FIG. 2 is obtained.
Here, the composition of the test water is such that sodium nitrate is 80 mg / liter converted to nitrogen (N), and 1 potassium phosphate is 10 mg / liter converted to phosphorus (P). Contains.
The current-potential curve in FIG. 2 is measured for nitric acid solutions in two cases with and without organisms. As shown in FIG. 2, when the current density is measured by changing the electric potential, first, an electric current considered to be nitrate reduction appears, then, when there is an organism, an electron receiving current of the organism appears, and finally, hydrogen (H 2 ) A current that appears to be generated appeared.
The approximate potential difference between them was about 0.4-0.5 V between nitrate reduction and microbial electron reception, and about 0.5 V between microbial electron reception and hydrogen evolution.
[0012]
Therefore, when denitrification treatment is performed by reducing nitrate-contaminated water, by using microorganisms as denitrification bacteria as biocatalysts, electrolytic treatment is performed at a low potential by the amount of potential difference between electron reception and generation of hydrogen. It can be done. And by performing this denitrification process in the reaction tank which installed the cathode and the anode, the process of nitric acid contamination water which does not generate | occur | produce hydrogen is attained.
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not restrict | limited at all by these Examples.
[0013]
【Example】
Example 1
Under the conditions obtained by the above-described experiment shown in FIG. 2, an electrolytic test of nitric acid was performed using the apparatus shown in FIG.
In the reaction vessel 1, a cathode 2, an anode 3 and a reference electrode 4 were installed. The reference electrode 4 is for monitoring and controlling the cathode potential. The reaction tank 1 was filled with test water 6 containing nitric acid and microorganisms. Then, while gently stirring the inside of the reaction vessel 1 with the stirrer 7, the cathode potential is set to 1 by the constant potential power source 5) Electron receiving potential of microorganisms (around -0.5 V from the hydrogen generation potential)
2) Nitric acid was reduced while maintaining two conditions of hydrogen generation potential.
As a result, the reduction rate of nitric acid was not significantly different between 1) the case of microbial electron receiving potential and 2) the case of hydrogen generation potential.
Thus, the reduction rate of nitric acid was equivalent between the conventional method using the hydrogen generation potential and the method of the present invention. On the other hand, the power required to reduce the same amount of nitric acid is the ratio of the input power. Therefore, as shown in FIG. 3, it was found that the method of the present invention requires about 20 to 30% less power than the conventional method.
[0014]
【The invention's effect】
According to the method for denitrification of contaminated water of the present invention, electrolysis occurs at a lower potential than in the conventional method, so that the required power is reduced by about 20-30% compared to the conventional method. Thereby, this invention can perform the efficient driving | running which suppressed the running cost in the denitrification process of nitric acid contaminated water low, and industrial significance is very large.
[Brief description of the drawings]
FIG. 1 is a schematic view of an apparatus in which an electrolytic test for nitric acid was conducted using the method of the present invention in Example 1. FIG.
FIG. 2 is a diagram showing a current-potential curve.
FIG. 3 is a diagram comparing required power of the present invention and the conventional method.
FIG. 4 is a schematic view of an apparatus for performing an electrolytic test of nitric acid according to a conventional method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Cathode 3 Anode 4 Reference electrode 5 Constant potential power supply 6 Test water 7 Stirrer 8 DC power supply 9 Cathode and reaction tank 10 Porous plastic cylinder 11 Carbon particle

Claims (1)

硝酸汚染水を硝酸還元することにより脱窒処理する硝酸汚染水の脱窒処理方法において、陰極と陽極とを設置した反応槽内で、脱窒菌を生体触媒として用い、硝酸汚染水を水素の発生しない低電位で電解処理することを特徴とする硝酸汚染水の脱窒処理方法。  Nitric acid-contaminated water is denitrified by reducing nitric acid-contaminated water by nitric acid reduction. Denitrifying bacteria are used as biocatalysts in a reaction tank equipped with a cathode and an anode, and nitric acid-contaminated water is generated as hydrogen. A method for denitrification of nitrate-contaminated water, characterized by performing electrolytic treatment at a low potential.
JP09598598A 1998-04-08 1998-04-08 Denitrification method for contaminated water Expired - Fee Related JP3679918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09598598A JP3679918B2 (en) 1998-04-08 1998-04-08 Denitrification method for contaminated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09598598A JP3679918B2 (en) 1998-04-08 1998-04-08 Denitrification method for contaminated water

Publications (2)

Publication Number Publication Date
JPH11290890A JPH11290890A (en) 1999-10-26
JP3679918B2 true JP3679918B2 (en) 2005-08-03

Family

ID=14152443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09598598A Expired - Fee Related JP3679918B2 (en) 1998-04-08 1998-04-08 Denitrification method for contaminated water

Country Status (1)

Country Link
JP (1) JP3679918B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102259978A (en) * 2010-05-31 2011-11-30 中国地质大学(北京) Reactor and method for removing nitrate from water

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2499025A (en) * 2012-02-03 2013-08-07 Nat Nuclear Lab Ltd Decontamination of a system and treatment of the spent decontamination fluid
CN111675431A (en) * 2020-06-16 2020-09-18 河海大学 Enhanced electrochemical denitrification device for substrate sludge-based biochar electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102259978A (en) * 2010-05-31 2011-11-30 中国地质大学(北京) Reactor and method for removing nitrate from water

Also Published As

Publication number Publication date
JPH11290890A (en) 1999-10-26

Similar Documents

Publication Publication Date Title
CN102976451A (en) Wastewater treatment device and method for in-situ electric generation of H2O2 cooperating with O3 oxidation
JP2006297206A (en) Electrolytic treatment method and apparatus for ammonia nitrogen-containing waste water
CN210656331U (en) Sewage treatment device of coupling microbial fuel cell and electro-Fenton system
CN105731604A (en) Advanced treatment method for electroplating wastewater
CN100366545C (en) Method and apparatus for removing water organisms by utilizing inductive electric Fenton reaction
CN112978874A (en) Method for purifying iodine salt-containing wastewater by using flowing electrode capacitive deionization device
CN113365952A (en) Method for converting total ammonia nitrogen
JP3679918B2 (en) Denitrification method for contaminated water
CN105198049A (en) Method of sewage treatment
Do et al. Kinetics of in situ degradation of formaldehyde with electrogenerated hydrogen peroxide
JP2002361282A (en) Method and apparatus for treating organic waste water
CN114853122B (en) Method for treating underground water by magnetic assembly electrode and peroxy flocculation technology
JP2003181456A (en) Method for bio-electrochemically treating waste water using mediator
JP3825021B2 (en) Organic wastewater treatment apparatus and organic wastewater treatment method
JP2002346566A (en) Apparatus and method for water treatment
KR101212975B1 (en) The electrochemical continuous-flow wastewater treatment system by the electron emission of graphene electrode under water, and its apparatus
JP3788688B2 (en) Method and apparatus for electrolytic treatment of oxidized nitrogen-containing water
JP4616594B2 (en) Water treatment method and water treatment apparatus
JPH11253993A (en) Treatment of nitrate nitrogen in water to be treated
JPWO2003091166A1 (en) Method and apparatus for treating wastewater containing organic compounds
CN113683234A (en) Tubular membrane electrode and heterogeneous ozone catalyst coupled degradation device and degradation method
JPH09150159A (en) Cod-related component removing method for the component containing water
JP2016087497A (en) Method of treating nitrogen-containing compound containing water
JP2020163327A (en) Biological treatment device for organic wastewater
CN220317530U (en) Coupling device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees