JP2635456B2 - Silicon single crystal pulling method - Google Patents

Silicon single crystal pulling method

Info

Publication number
JP2635456B2
JP2635456B2 JP3185175A JP18517591A JP2635456B2 JP 2635456 B2 JP2635456 B2 JP 2635456B2 JP 3185175 A JP3185175 A JP 3185175A JP 18517591 A JP18517591 A JP 18517591A JP 2635456 B2 JP2635456 B2 JP 2635456B2
Authority
JP
Japan
Prior art keywords
single crystal
mbar
silicon single
furnace pressure
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3185175A
Other languages
Japanese (ja)
Other versions
JPH059097A (en
Inventor
義博 児玉
哲也 石平
幸嗣 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP3185175A priority Critical patent/JP2635456B2/en
Publication of JPH059097A publication Critical patent/JPH059097A/en
Application granted granted Critical
Publication of JP2635456B2 publication Critical patent/JP2635456B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、チョクラルスキー法
によってシリコン単結晶を引上げするに際し、単結晶の
ピンホールの発生を抑止し、初期の操業トラブルを解消
し、かつ単結晶中のカーボン濃度を低下させることがで
きるシリコン単結晶の引上方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention suppresses the occurrence of pinholes in a single crystal when pulling a silicon single crystal by the Czochralski method, eliminates initial operation troubles, and reduces the carbon concentration in the single crystal. The present invention relates to a method for pulling a silicon single crystal, which can reduce the temperature.

【0002】[0002]

【従来の技術】チョクラルスキー法でシリコン単結晶棒
を製造する場合を説明すると、引上室(金属製チャンバ
ー)のほぼ中央に黒鉛サセプタに保持された石英るつぼ
を設け、黒鉛サセプタの底部中央を回転・上下自在の支
持軸で下方より支持する。石英るつぼの中に原料の多結
晶シリコンを装填し、該多結晶シリコンを保温体で囲繞
された黒鉛ヒータにより加熱、溶融して溶融体とする。
引上室の天井中央には開口部を有し、これに接続したサ
ブチャンバーの中を通って先端に種結晶を保持した回転
・上下自在の引上軸を降下し、溶融体に浸漬した後引上
軸及び石英るつぼを回転しながら種結晶を引き上げる
と、その下に単結晶棒を成長させることができる。この
間、アルゴンガス等の保護ガスをサブチャンバーの上部
より導入し、引上室の下部にある排出口より排出する。
2. Description of the Related Art A case of manufacturing a silicon single crystal rod by the Czochralski method will be described. A quartz crucible held by a graphite susceptor is provided substantially at the center of a pulling chamber (metal chamber), and the center of the bottom of the graphite susceptor is provided. Is supported from below by a rotatable and vertically movable support shaft. A raw material polycrystalline silicon is charged into a quartz crucible, and the polycrystalline silicon is heated and melted by a graphite heater surrounded by a heat insulator to form a melt.
The pulling room has an opening in the center of the ceiling, passes through a sub-chamber connected to it, descends a rotatable and vertically movable pulling shaft holding a seed crystal at the tip, and immerses it in the melt When the seed crystal is pulled while rotating the pulling shaft and the quartz crucible, a single crystal rod can be grown below the seed crystal. During this time, a protective gas such as argon gas is introduced from the upper part of the sub-chamber, and is discharged from the outlet at the lower part of the pull-up chamber.

【0003】近年チャージ量の増大に従ってホットゾー
ン(引上炉等)の大型化に伴い、従来行われていた10
mbar程度の炉内圧下での操業から、100〜300
mbarという若干高い炉内圧下での操業が主流となり
つつある。しかし、炉内圧が高くなると、次の問題が発
生する。
[0003] In recent years, with the increase in the amount of charge, the hot zone (such as a pulling furnace) has been increased in size.
100-300 from operation under furnace pressure of about mbar
Operation under a slightly higher furnace pressure of mbar is becoming mainstream. However, when the furnace internal pressure increases, the following problem occurs.

【0004】メルト中に含まれる気泡がメルト外へに
げにくくなる為、この気泡が結晶中に取り込まれ、結晶
に穴があくピンホールという不良が発生し易くなる。
[0004] Since it is difficult for bubbles contained in the melt to flow out of the melt, the bubbles are taken into the crystal, and a defect such as a pinhole with a hole in the crystal is likely to occur.

【0005】メルト中の不純物と気泡の揮発が抑制さ
れるため、不純物、気泡が原因となる結晶の有転位化が
増加し、初期トラブルが増加する。
[0005] Since the volatilization of impurities and bubbles in the melt is suppressed, the number of dislocations in the crystal caused by the impurities and bubbles increases, and initial troubles increase.

【0006】溶融中は温度が極めて高い為、ヒーター
等からのカーボンがガス中に発生し易いが、炉内圧が高
く、炉内のガス循環が悪い状態では、メルト中に混入
し、結晶中へ取り込まれ易くなり、結晶中のカーボン濃
度が増加し易くなる。
While the temperature is extremely high during melting, carbon from a heater or the like is likely to be generated in the gas. However, when the furnace pressure is high and the gas circulation in the furnace is poor, the carbon is mixed into the melt and enters the crystal. It becomes easy to be taken in, and the carbon concentration in the crystal tends to increase.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記した従
来技術の問題点に鑑みてなされたもので、チョクラルス
キー法によって半導体集積回路素子製造用の基板のため
のシリコン単結晶を引上げするに際し、単結晶のピンホ
ールの発生を抑止し、初期の操業トラブルを解消し、か
つ単結晶中のカーボン濃度を低下させることができるよ
うにしたシリコン単結晶の引上方法を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and pulls a silicon single crystal for a substrate for manufacturing a semiconductor integrated circuit device by the Czochralski method. It is an object of the present invention to provide a method for pulling a silicon single crystal that can suppress the occurrence of pinholes in the single crystal, eliminate initial operation troubles, and reduce the carbon concentration in the single crystal. And

【0008】[0008]

【課題を解決するための手段】上記した課題を解決する
ために、本発明のシリコン単結晶の引上方法において
は、多結晶シリコン原料を5〜60mbarの炉内圧で
溶融し、100mbar以上の炉内圧でシリコン単結晶
の引上を行うようにしたものである。
In order to solve the above-mentioned problems, in the method for pulling a silicon single crystal of the present invention, a polycrystalline silicon raw material is melted at a furnace pressure of 5 to 60 mbar, and a furnace having a furnace pressure of 100 mbar or more is melted. The pulling of a silicon single crystal is performed at an internal pressure.

【0009】上記単結晶の引上時の炉内圧としては、1
00〜300mbarの中圧を採用することができる。
The furnace pressure at the time of pulling the single crystal is 1
Intermediate pressures of 00 to 300 mbar can be employed.

【0010】上記単結晶の引上時の炉内圧としては、1
013mbar以上の常圧又はそれ以上の圧力も採用す
ることができる。
The furnace pressure at the time of pulling the single crystal is 1
A normal pressure of 013 mbar or higher or a higher pressure can also be employed.

【0011】上記した多結晶シリコン原料の溶融時の圧
力が5mbarに満たないと石英ルツボの劣化が激しく
なり、60mbar以上になると本発明の目的を達成す
ることができない。
If the pressure at the time of melting the above-mentioned polycrystalline silicon raw material is less than 5 mbar, the quartz crucible will be greatly deteriorated, and if it is more than 60 mbar, the object of the present invention cannot be achieved.

【0012】[0012]

【作用】多結晶シリコン原料を溶融すると、原料自体や
石英ルツボ中に含まれた気体が気泡としてメルト中に溶
け込む。溶融中の炉内圧を5〜60mbarの減圧下で
行うと、100mbar以上の炉内圧下で行う場合と比
較して、メルト中の気泡の浮力が増し、気体の溶解度も
減る為、メルト外に気泡が揮発し易くなり、結晶成長時
にメルトに含まれる気泡の量が減り、よって、結晶に気
泡が取り込まれることにより発生するピンホール不良の
発生率が減少する。
When the polycrystalline silicon raw material is melted, the gas contained in the raw material itself or the quartz crucible melts into the melt as bubbles. When the furnace pressure during melting is reduced under a reduced pressure of 5 to 60 mbar, the buoyancy of bubbles in the melt increases and the solubility of gas decreases, compared with the case where the furnace pressure is reduced under a furnace pressure of 100 mbar or more. Are easily volatilized, the amount of bubbles contained in the melt during crystal growth is reduced, and the incidence of pinhole defects caused by the inclusion of bubbles in the crystal is reduced.

【0013】溶融中の炉内圧を5〜60mbarの減圧
下で行うと、気泡ばかりでなく、Na等の不純物類の揮
発も促進される。よって、気泡や不純物類を原因とする
結晶の有転位化が減少する。
When the furnace pressure during melting is reduced under a reduced pressure of 5 to 60 mbar, volatilization of not only bubbles but also impurities such as Na is promoted. Accordingly, dislocation of the crystal due to bubbles and impurities is reduced.

【0014】メルト表面より常に蒸発しているSiOが
キャリアーガスArのガス流によっ運搬され赤熱された
グラファイト部品(特にヒーター)と反応しCOガスが
発生する。炉内圧が100mbar以上の高い状態で
は、ガスフローが悪くなり、このCOガスがシリコンメ
ルト中に溶解し結晶に取り込まれることにより発生する
カーボン濃度不良の発生率が増加する。
The SiO, which is constantly evaporated from the melt surface, is carried by the gas flow of the carrier gas Ar and reacts with the graphite component (especially the heater) which is red-heated to generate CO gas. In a state where the furnace pressure is higher than 100 mbar, the gas flow becomes worse, and the occurrence rate of carbon concentration defects generated by dissolving this CO gas in the silicon melt and incorporating it into the crystal increases.

【0015】シリコンメルト中に溶解するCOガスは、
グラファイト部品の温度が高いほど発生しやすく、通
常、シリコンメルト中に溶解するCOガスのほとんどは
グラファイト部品の温度が最も高い溶融中のものであ
る。このCOガスの発生し易い溶融中の炉内圧を5〜6
0mbarの減圧下で行うと、ガスフローが改善され、
COガスのメルト中への混入を抑制することができるの
で、結晶中のカーボン濃度不良率が減少する。
The CO gas dissolved in the silicon melt is:
The higher the temperature of the graphite part, the more likely it is to generate, and usually most of the CO gas dissolved in the silicon melt is during melting where the temperature of the graphite part is the highest. The furnace pressure during melting, in which CO gas is easily generated, is 5-6.
When performed under reduced pressure of 0 mbar, the gas flow is improved,
Since the incorporation of CO gas into the melt can be suppressed, the defective rate of carbon concentration in the crystal decreases.

【0016】酸素濃度及び結晶性などの理由で本発明の
実施には、多結晶シリコン原料の溶融時の炉内圧5〜6
0mbarに対し、単結晶引上時の炉内圧は100〜3
00mbar又は常圧かそれ以上の2種類の組合せは、
半導体集積回路素子製造用の単結晶シリコン基板に用い
られるに際し、その製造方法との調整のために選択され
る。そして、そのいずれの組合せにおいても本発明の効
果を達成することができる。
In order to carry out the present invention for reasons such as oxygen concentration and crystallinity, the furnace pressure during melting of the polycrystalline silicon raw material should be 5-6.
For 0 mbar, the furnace pressure when pulling a single crystal is 100 to 3
The two combinations of 00 mbar or normal pressure or higher are:
When used for a single crystal silicon substrate for manufacturing a semiconductor integrated circuit device, it is selected for adjustment with the manufacturing method. The effects of the present invention can be achieved in any of the combinations.

【0017】[0017]

【実施例】以下に、本発明方法の実施例を挙げて説明す
る。
EXAMPLES The method of the present invention will be described below with reference to examples.

【0018】実施例1 多結晶シリコン原料35Kgを炉内圧10mbarで溶
融し、次に炉内圧を100mbarに上昇させ、P型<
100>6インチφのシリコン単結晶を引き上げた。引
き上げられたシリコン単結晶30本についてのピンホー
ル発生に起因する不良ロット率は4.8%、トラブル発
生率は0.51回/本、カーボン濃度の不良率(0.2
ppm以上を不良とした)は0.1%であった。これら
の数値は後記する従来技術に相当する比較例1と比較し
て極めて良好な数値であった。
Example 1 35 kg of a polycrystalline silicon raw material was melted at a furnace pressure of 10 mbar, then the furnace pressure was increased to 100 mbar, and the P-type <
A silicon single crystal having a diameter of 100> 6 inches was pulled. The defective lot rate due to pinhole generation for 30 pulled silicon single crystals was 4.8%, the trouble occurrence rate was 0.51 times / piece, and the defect rate of carbon concentration (0.2
ppm was defined as poor) was 0.1%. These values were extremely good compared with Comparative Example 1 corresponding to the prior art described later.

【0019】実施例2 多結晶シリコン原料35Kgを炉内圧10mbarで溶
融し、次いで炉内圧を1064mbarに上昇させ、P
型<100>6インチφのシリコン単結晶を引き上げ
た。引き上げられたシリコン単結晶30本についてのピ
ンホール発生に起因する不良ロット率は6.7%であっ
た。この数値は後記する従来技術に相当する比較例3と
比較して極めて良好な数値であった。
Example 2 35 kg of a polycrystalline silicon raw material was melted at a furnace pressure of 10 mbar, and then the furnace pressure was increased to 1064 mbar.
A silicon single crystal of type <100> 6 inches φ was pulled up. The defective lot rate due to pinhole generation for 30 pulled silicon single crystals was 6.7%. This value was a very good value as compared with Comparative Example 3 corresponding to the prior art described later.

【0020】実施例3 多結晶シリコン原料35Kgを炉内圧60mbarで溶
融し、次いで炉内圧を100mbarに上昇させ、P型
<100>6インチφのシリコン単結晶を引き上げた。
引き上げられたシリコン単結晶40本についてのピンホ
ール発生に起因する不良ロット率は7.5%、トラブル
発生率は0.88回/本であった。この数値は従来技術
と比較して極めて良好な数値であった。
Example 3 35 kg of a polycrystalline silicon raw material was melted at a furnace pressure of 60 mbar, then the furnace pressure was raised to 100 mbar, and a P-type <100> 6 inch φ silicon single crystal was pulled.
The defective lot rate due to the generation of pinholes for 40 pulled silicon single crystals was 7.5%, and the trouble occurrence rate was 0.88 times / piece. This value was a very good value as compared with the prior art.

【0021】比較例1 多結晶シリコン原料を100mbarで溶融したこと以
外は実施例1と同様にしてシリコン単結晶を引上げた。
引き上げられたシリコン単結晶30本についてのピンホ
ール発生に起因する不良ロット率は10.8%、トラブ
ル発生率は1.11回/本、カーボン濃度の不良率
(0.2ppm以上を不良とした)は27.6%であっ
た。
Comparative Example 1 A silicon single crystal was pulled in the same manner as in Example 1 except that the polycrystalline silicon raw material was melted at 100 mbar.
The defective lot rate due to pinhole generation for 30 pulled silicon single crystals was 10.8%, the trouble occurrence rate was 1.11 times / piece, and the carbon concentration defective rate (0.2 ppm or more was regarded as defective). ) Was 27.6%.

【0022】比較例2 多結晶シリコン原料35Kgを炉内圧18mbarで溶
融し、次いで炉内圧を同じ18mbarのまま、P型<
100>6インチφのシリコン単結晶を引き上げた。引
き上げられたシリコン単結晶30本についてのピンホー
ル発生に起因する不良ロット率は1.2%と良好であっ
たが、石英ルツボの劣化が激しく長期の使用に耐えるこ
とができなかった。
Comparative Example 2 35 kg of a polycrystalline silicon raw material was melted at a furnace pressure of 18 mbar, and the P-type was melted at the same furnace pressure of 18 mbar.
A silicon single crystal having a diameter of 100> 6 inches was pulled. The defective lot ratio of 30 pulled silicon single crystals caused by the generation of pinholes was as good as 1.2%, but the quartz crucible deteriorated severely and could not withstand long-term use.

【0023】比較例3 多結晶シリコン原料35Kgを炉内圧1064mbar
で溶融し、次いで炉内圧を同じ1064mbarのま
ま、P型<100>6インチφのシリコン単結晶の引き
上げた。引き上げられたシリコン単結晶30本について
のピンホール発生に起因する不良ロット率は15.6%
と不良であった。
Comparative Example 3 A furnace pressure of 1064 mbar was applied to 35 kg of a polycrystalline silicon raw material.
Then, while maintaining the same furnace pressure of 1064 mbar, a silicon single crystal of P type <100> 6 inch φ was pulled up. The defective lot rate due to pinhole generation for 30 pulled silicon single crystals is 15.6%
And was bad.

【0024】[0024]

【発明の効果】以上述べたごとく、本発明は、チョクラ
ルスキー法によってシリコン単結晶を引上げするに際
し、単結晶のピンホールの発生を抑止し、初期の操業ト
ラブルを解消し、かつ単結晶中のカーボン濃度を低下さ
せることができるという効果を奏する。
As described above, according to the present invention, when pulling a silicon single crystal by the Czochralski method, the generation of pinholes in the single crystal is suppressed, the initial operation trouble is solved, and This has the effect that the carbon concentration can be reduced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菅野 幸嗣 福島県西白河郡西郷村大字小田倉字大平 150番地 信越半導体株式会社 白河工 場内 (56)参考文献 特開 平1−282194(JP,A) 特開 昭63−260891(JP,A) ────────────────────────────────────────────────── ─── Continuing on the front page (72) Koji Kanno, inventor, Odakura Osaikura, Nishigo-mura, Nishishirakawa-gun, Fukushima Prefecture 150 Shin-Etsu Semiconductor Co., Ltd. Shirakawa Plant (56) References Kaisho 63-268991 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 多結晶シリコン原料を5〜60mbar
の炉内圧で溶融し、100mbar以上の炉内圧でシリ
コン単結晶の引上を行うことを特徴とするシリコン単結
晶の引上方法。
1. The method according to claim 1, wherein the polycrystalline silicon raw material is 5 to 60 mbar.
Melting the silicon single crystal at a furnace internal pressure of 100 mbar and raising the silicon single crystal at a furnace internal pressure of 100 mbar or more.
【請求項2】 多結晶シリコン原料を5〜60mbar
の炉内圧で溶融し、100〜300mbarの中圧の炉
内圧でシリコン単結晶の引上を行うことを特徴とするシ
リコン単結晶の引上方法。
2. The method according to claim 1, wherein the polycrystalline silicon raw material is 5 to 60 mbar.
Melting the silicon single crystal at a furnace pressure of 100 to 300 mbar, and pulling the silicon single crystal at a medium furnace pressure of 100 to 300 mbar.
【請求項3】 多結晶シリコン原料を5〜60mbar
の炉内圧で溶融し、常圧又はそれ以上の炉内圧でシリコ
ン単結晶の引上を行うことを特徴とするシリコン単結晶
の引上方法。
3. The method according to claim 1, wherein the polycrystalline silicon material is 5 to 60 mbar.
Melting the silicon single crystal at a furnace internal pressure and pulling the silicon single crystal at a normal internal pressure or higher.
JP3185175A 1991-06-28 1991-06-28 Silicon single crystal pulling method Expired - Fee Related JP2635456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3185175A JP2635456B2 (en) 1991-06-28 1991-06-28 Silicon single crystal pulling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3185175A JP2635456B2 (en) 1991-06-28 1991-06-28 Silicon single crystal pulling method

Publications (2)

Publication Number Publication Date
JPH059097A JPH059097A (en) 1993-01-19
JP2635456B2 true JP2635456B2 (en) 1997-07-30

Family

ID=16166151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3185175A Expired - Fee Related JP2635456B2 (en) 1991-06-28 1991-06-28 Silicon single crystal pulling method

Country Status (1)

Country Link
JP (1) JP2635456B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110214603A1 (en) * 2010-03-03 2011-09-08 Covalent Materials Corporation Method of manufacturing silicon single crystal
EP3514264A1 (en) 2018-01-19 2019-07-24 GLobalWafers Japan Co., Ltd. Production method of single crystal silicon

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5829439A (en) * 1995-06-28 1998-11-03 Hitachi Medical Corporation Needle-like ultrasonic probe for ultrasonic diagnosis apparatus, method of producing same, and ultrasonic diagnosis apparatus using same
JP4753308B2 (en) 2006-07-13 2011-08-24 Sumco Techxiv株式会社 Method for melting semiconductor wafer material and method for crystal growth of semiconductor wafer
JP4907568B2 (en) * 2008-01-28 2012-03-28 コバレントマテリアル株式会社 Single crystal pulling apparatus and single crystal manufacturing method
US8163083B2 (en) 2008-07-09 2012-04-24 Japan Super Quartz Corporation Silica glass crucible and method for pulling up silicon single crystal using the same
JP5072933B2 (en) 2008-10-31 2012-11-14 ジャパンスーパークォーツ株式会社 Silica glass crucible for pulling silicon single crystal, method for producing the same, and method for producing silicon single crystal
JP5042971B2 (en) 2008-11-28 2012-10-03 株式会社Sumco Silica glass crucible for pulling silicon single crystal and manufacturing method thereof
JP5058138B2 (en) 2008-12-09 2012-10-24 ジャパンスーパークォーツ株式会社 Silica glass crucible for pulling silicon single crystals
JP5052493B2 (en) 2008-12-29 2012-10-17 ジャパンスーパークォーツ株式会社 Method for producing silicon single crystal
JP4975012B2 (en) 2008-12-29 2012-07-11 ジャパンスーパークォーツ株式会社 Silica glass crucible for pulling silicon single crystal and manufacturing method thereof
JP2011184213A (en) * 2010-03-04 2011-09-22 Covalent Materials Corp Method for producing silicon single crystal
JP2012140285A (en) 2010-12-28 2012-07-26 Siltronic Japan Corp Method for producing silicon single crystal ingot
JP5904079B2 (en) 2012-10-03 2016-04-13 信越半導体株式会社 Silicon single crystal growing apparatus and silicon single crystal growing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63260891A (en) * 1987-04-17 1988-10-27 Hitachi Ltd Production of silicon single crystal
JPH01282194A (en) * 1988-01-19 1989-11-14 Osaka Titanium Co Ltd Production of single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110214603A1 (en) * 2010-03-03 2011-09-08 Covalent Materials Corporation Method of manufacturing silicon single crystal
EP3514264A1 (en) 2018-01-19 2019-07-24 GLobalWafers Japan Co., Ltd. Production method of single crystal silicon

Also Published As

Publication number Publication date
JPH059097A (en) 1993-01-19

Similar Documents

Publication Publication Date Title
JP2635456B2 (en) Silicon single crystal pulling method
US7955582B2 (en) Method for producing crystallized silicon as well as crystallized silicon
JP2009114054A (en) Method for producing semiconductor single crystal having improved oxygen concentration characteristics
JP3360626B2 (en) Method for producing silicon single crystal
JPH03261693A (en) Production of single crystal
EP0435440B1 (en) Method for growing antimony-doped silicon single crystals
JPH0782085A (en) Improved method for crystallization of silicon crystal
US5895527A (en) Single crystal pulling apparatus
JP2688137B2 (en) Method of pulling silicon single crystal
JPH03115188A (en) Production of single crystal
JPS60251191A (en) Process for growing single crystal of compound having high dissociation pressure
US5840116A (en) Method of growing crystals
JP2008247737A (en) Apparatus and method for producing silicon single crystal, and silicon wafer
JP4144060B2 (en) Method for growing silicon single crystal
TWI338728B (en)
JP3832536B2 (en) Method for producing silicon single crystal and pulling machine
JP2005060153A (en) Silicon single crystal production method and silicon single crystal wafer
JP2003246695A (en) Method for producing highly doped silicon single crystal
JP5262257B2 (en) Method for producing nitrogen-doped silicon single crystal
JPH04198086A (en) Process for growing single crystal
TW200817542A (en) Single crystal silicon on carbide and method of producing same
JPH054888A (en) Apparatus for producing silicon single crystal
JPH03218994A (en) Single crystal pulling up device
RU2057211C1 (en) Monocrystalline silicon obtaining method
JPS6389497A (en) Production of silicon-added gallium arsenic single crystal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees