JP2634188B2 - Phosphoric acid fuel cell power generator - Google Patents

Phosphoric acid fuel cell power generator

Info

Publication number
JP2634188B2
JP2634188B2 JP63091742A JP9174288A JP2634188B2 JP 2634188 B2 JP2634188 B2 JP 2634188B2 JP 63091742 A JP63091742 A JP 63091742A JP 9174288 A JP9174288 A JP 9174288A JP 2634188 B2 JP2634188 B2 JP 2634188B2
Authority
JP
Japan
Prior art keywords
temperature
fuel cell
converter
reformed gas
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63091742A
Other languages
Japanese (ja)
Other versions
JPH01265461A (en
Inventor
潔 都留
俊彦 平林
辰弥 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63091742A priority Critical patent/JP2634188B2/en
Publication of JPH01265461A publication Critical patent/JPH01265461A/en
Application granted granted Critical
Publication of JP2634188B2 publication Critical patent/JP2634188B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリン酸型燃料電池発電装置に関するものであ
る。
The present invention relates to a phosphoric acid fuel cell power generator.

〔従来の技術〕[Conventional technology]

第3図は例えば「リン酸型燃料電池発電技術の将来展
望」第2報、3.2−9頁(通商産業省工業技術院発行MIT
I−AIST−MIL−FC−02)に示された従来のリン酸型燃料
電池発電装置のプロセスフローを示す図であり、図にお
いて、(1)は燃料とスチームを反応させて水素を得る
改質器、(2),(3)はこの改質器(1)により改質
されたガス(以下、改質ガスという)と燃料との熱交換
を行ない、燃料の予熱を行なう熱交換器、(5)は改質
ガス中の水素と酸化性ガスとしての空気より直流電力を
得るリン酸型の燃料電池、(6)は改質器(1)へのス
チームと燃料電池(5)を冷却するための加圧水を得る
水蒸気分離器、(7)は燃料電池(5)を冷却する冷却
水を循環させるポンプ、(8)は燃料中に含まれる硫黄
を除去する脱硫器、(9)は燃料電池(5)により発生
した直流電力を交流電力に変える直交変換装置、(10)
は改質器(1)により改質された改質ガス中に含まれる
一酸化炭素を水素と二酸化炭素に変える高温CO変成器、
(11)は、さらに残つた一酸化炭素を水素と二酸化炭素
に変える低温CO変成器、(12),(13)は高温CO変成器
(10)を出たガスを低温CO変成器(11)に適した温度ま
で下げる中間冷却器、(14),(15),(16)は低温CO
変成器(11)を出たガスを冷却する改質ガス冷却器であ
る。
Fig. 3 shows, for example, "Future Perspective of Phosphoric Acid Fuel Cell Power Generation Technology", 2nd report, pp. 3.2-9 (MIT published by the Ministry of International Trade and Industry
FIG. 1 is a diagram showing a process flow of a conventional phosphoric acid type fuel cell power generator shown in I-AIST-MIL-FC-02), in which (1) shows a modification in which hydrogen is obtained by reacting fuel and steam. The heat exchangers (2) and (3) perform heat exchange between the fuel reformed by the reformer (1) (hereinafter referred to as reformed gas) and fuel, and preheat the fuel. (5) is a phosphoric acid type fuel cell that obtains DC power from hydrogen in the reformed gas and air as an oxidizing gas, and (6) is steam to the reformer (1) and cools the fuel cell (5). (7) is a pump for circulating cooling water for cooling the fuel cell (5), (8) is a desulfurizer for removing sulfur contained in the fuel, and (9) is a fuel A quadrature converter that converts DC power generated by the battery (5) into AC power (10)
Is a high-temperature CO converter that converts carbon monoxide contained in the reformed gas reformed by the reformer (1) into hydrogen and carbon dioxide,
(11) is a low-temperature CO converter that converts the remaining carbon monoxide into hydrogen and carbon dioxide, and (12) and (13) are low-temperature CO converters (11) that use the gas leaving the high-temperature CO converter (10). Intercooler to reduce the temperature to a temperature suitable for refrigeration, (14), (15), and (16)
This is a reformed gas cooler that cools the gas that has exited the shift converter (11).

高温CO変成器(10)と低温CO変成器(11)には、反応
を促進するためのCO変成触媒、例えば鉄−クロム系(高
温用)、酸化亜鉛系(低温用)の触媒が保持されてい
る。さらにその器壁には、電気ヒータがそれぞれ付けて
ある(何れも図示せず)。
The high-temperature CO converter (10) and the low-temperature CO converter (11) hold a CO conversion catalyst for promoting the reaction, for example, an iron-chromium (high-temperature) or zinc oxide (low-temperature) catalyst. ing. Further, an electric heater is attached to the container wall (neither is shown).

次に動作について説明する。改質器(1)は、LNGな
どの炭化水素と水蒸気分離器(6)から供給される水蒸
気を原料として水素リッチなガスである改質ガスを作
る。この改質ガス中にはCOがかなり多く含まれており、
このCOは燃料電池(5)への触媒毒となる。そのためCO
濃度を低く(1%以下程度)する必要がありCO変成器
(10),(11)が用いられる。CO変成器(10),(11)
内の反応は CO+H2O→CO2+H2 (1) で表わされる発熱反応であり、CO濃度を下げると同時に
H2を生成する効果もある。従来のCO変成器(10),(1
1)はドラム形状の断熱形(例えば特開昭59−128201号
公報)であつたため、CO変成器内で発生した熱は、反応
ガス自体の温度上昇となる。低温CO変成触媒の動作温度
範囲が狭いため低温CO変成器内の発熱量を押えるべく2
段に分け、前段の高温CO変成器(10)でCO濃度を数%程
度まで下げ、(12),(13)の中間冷却器で温度を下げ
た後、低温CO変成器(11)で更に低濃度へ下げる。燃料
を予熱するための熱交換器(2),(3)は改質ガスを
高温CO変成触媒の動作温度まで下げるのに用いられる。
低温CO変成器(11)を出た改質ガスは改質ガス冷却器
(14),(15),(16)によって燃料電池(5)の燃料
極(5a)に適した温度まで下げられた後燃料極(5a)へ
供給される。燃料電池(5)の反応熱は水蒸気分離器
(6)よりの加圧水により除去されこの熱の一部は、改
質器(1)へ供給する水蒸気を加圧水から生成するため
に用いられる。
Next, the operation will be described. The reformer (1) produces a reformed gas, which is a hydrogen-rich gas, using hydrocarbons such as LNG and steam supplied from a steam separator (6) as raw materials. This reformed gas contains quite a lot of CO,
This CO serves as a catalyst poison for the fuel cell (5). Therefore CO
It is necessary to lower the concentration (about 1% or less), and CO transformers (10) and (11) are used. CO transformer (10), (11)
The reaction inside is an exothermic reaction expressed as CO + H 2 O → CO 2 + H 2 (1).
Effect of generating of H 2 also. Conventional CO transformers (10), (1
Since 1) is a drum-shaped insulated type (for example, JP-A-59-128201), the heat generated in the CO converter increases the temperature of the reaction gas itself. Because the operating temperature range of the low-temperature CO shift catalyst is narrow, it is necessary to reduce the amount of heat generated in the low-temperature CO shift converter.
It is divided into stages, the CO concentration is reduced to about several percent in the high-temperature CO transformer (10) in the previous stage, the temperature is reduced in the intercoolers (12) and (13), and the temperature is further reduced in the low-temperature CO transformer (11). Lower to low concentration. Heat exchangers (2) and (3) for preheating the fuel are used to lower the reformed gas to the operating temperature of the high-temperature CO shift catalyst.
The reformed gas exiting the low-temperature CO converter (11) is cooled to a temperature suitable for the fuel electrode (5a) of the fuel cell (5) by the reformed gas coolers (14), (15), and (16) It is supplied to the rear fuel electrode (5a). The reaction heat of the fuel cell (5) is removed by pressurized water from the steam separator (6), and a part of this heat is used to generate steam supplied to the reformer (1) from the pressurized water.

次に上記CO変成器の冷起方法について説明する。 Next, a method of cooling and raising the CO converter will be described.

主としてドラム形状の高温CO変成器(10)と低温CO変
成器(11)の外壁に巻かれた電気ヒータからの熱によつ
て高温・低温CO変成触媒の昇温が行なわれる。この際、
機器外壁より触媒層中心部への熱伝達を良くするため触
媒層内に窒素ガスを流している。高温・低温CO変成器が
スチーム凝縮温度以上になればスチームを流すこともあ
る。これらの窒素ガスやスチームは改質器により加熱さ
れたものを導くので、これらのガスからも補助的に触媒
層へ熱が与えられる。以上のようにしてCO変成器(1
0),(11)の冷起動が行なわれる。
The temperature of the high-temperature and low-temperature CO conversion catalyst is increased mainly by heat from an electric heater wound on the outer wall of the drum-shaped high-temperature CO converter (10) and the low-temperature CO converter (11). On this occasion,
Nitrogen gas is flowed into the catalyst layer to improve heat transfer from the outer wall of the device to the center of the catalyst layer. Steam may flow when the high and low temperature CO converters exceed the steam condensation temperature. Since these nitrogen gas and steam lead to those heated by the reformer, heat is also given to the catalyst layer from these gases as well. The CO transformer (1
The cold start of (0) and (11) is performed.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来のリン酸型燃料電池発電装置は以上のように構成
されていたので、CO変成器として高温CO変成器、中間冷
却器、低温CO変成器、改質ガス冷却器の4つの構成要素
が必要であり、そのため装置が大形となり熱損失も大き
いという問題点があつた。また、運転方法として、上記
CO変成器を冷起動させるために電気ヒータの取付が必要
で電力消費量が大きくまた昇温時間も長くかかること、
さらにユーテイリテイとして窒素ガスを多量に使用する
などの問題点があつた。
Since the conventional phosphoric acid fuel cell power generator was configured as described above, four components are required as a CO converter: a high-temperature CO converter, an intercooler, a low-temperature CO converter, and a reformed gas cooler Therefore, there is a problem that the device is large and heat loss is large. Also, as the driving method,
Electric heaters are required to cool and start the CO transformer, resulting in large power consumption and long heating time.
Further, there is a problem that a large amount of nitrogen gas is used as a utility.

本発明は上記のような問題点を解消するためになされ
たもので、CO変成器を一段にすることができ、従つて機
器類を減らして装置をコンパクトにすることができ、さ
らに放熱量が小さく、熱効率の高いリン酸型燃料電池発
電装置を得ることを目的とする。さらに、電気ヒータの
取付や無駄な電力消費量が少なく、短時間でCO変成器を
冷起動できる運転方法を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and it is possible to use a single-stage CO transformer, thus reducing the number of devices and making the device compact, and further reducing the amount of heat radiation. It is an object of the present invention to obtain a phosphoric acid fuel cell power generator having a small size and high thermal efficiency. It is still another object of the present invention to provide an operation method capable of cooling and starting a CO transformer in a short time with a small amount of electric heater installation and unnecessary power consumption.

〔課題を解決するための手段〕[Means for solving the problem]

この発明に係わるリン酸型燃料電池発電装置は水蒸気
分離器によつて得られた加圧水を用いてCO変成器の反応
熱を除去するように構成し、改質ガスの温度を変成触媒
の動作温度まで低下させる熱交換器を、改質器とCO変成
器との間に設けたものである。
The phosphoric acid type fuel cell power generator according to the present invention is configured to remove the reaction heat of the CO converter using the pressurized water obtained by the steam separator, and to control the temperature of the reformed gas to the operating temperature of the shift catalyst. A heat exchanger for reducing the temperature is provided between the reformer and the CO converter.

〔作 用〕(Operation)

この発明におけるCO変成器は、水蒸気分離器より導か
れた加圧水により、反応熱が除去され、水蒸気分離器よ
りの加圧水に近い温度で反応が進む。
In the CO converter according to the present invention, the reaction heat is removed by the pressurized water guided from the steam separator, and the reaction proceeds at a temperature close to the pressurized water from the steam separator.

〔実施例〕〔Example〕

以下この発明の一実施例を図について説明する。第1
図において、(1),(2),(3),(5),
(6),(7),(8),(9)は上述した従来装置と
同一である。
An embodiment of the present invention will be described below with reference to the drawings. First
In the figure, (1), (2), (3), (5),
(6), (7), (8), and (9) are the same as those of the above-described conventional device.

(4)はCO変成器であり、この実施例では第2図に示
すような、いわゆるシエル&チユーブ型熱交換器の形状
をしている。チユーブ(4a)側には、例えば、銅・亜鉛
系触媒などの低温CO変成触媒(41)が充てんされてお
り、入口部は燃料ガス予熱器(3)の出口と、出口部は
燃料電池(5)の燃料極(5a)の入口部にそれぞれ接続
されている。シエル側(4b)の入口部はポンプ(7)を
介して水蒸気分離器(6)の加圧水部(6a)に接続され
ており、出口部は水蒸気分離器(6)の蒸気部(上部)
に接続されている。
(4) is a CO converter, which has a so-called shell and tube type heat exchanger as shown in FIG. 2 in this embodiment. The tube (4a) side is filled with, for example, a low-temperature CO conversion catalyst (41) such as a copper-zinc catalyst, the inlet is an outlet of the fuel gas preheater (3), and the outlet is a fuel cell (3). It is connected to the inlet of the fuel electrode (5a) of 5). The inlet part on the shell side (4b) is connected to the pressurized water part (6a) of the steam separator (6) via the pump (7), and the outlet part is the steam part (upper part) of the steam separator (6).
It is connected to the.

次に動作について説明する。 Next, the operation will be described.

改質器(1)は、従来のものと同一である。改質器
(1)を出た水素リツチガス(改質ガス)は熱交換器
(2),(3)により、CO変成器(4)中の低温CO変成
触媒(41)の動作温度(180℃〜280℃)まで降温され
る。CO変成器(4)に入つた改質ガスは従来のものと同
様に(1)式の反応が進み発熱する。水蒸気分離器
(6)の加圧水部(6a)よりポンプ(7)により循環さ
れる加圧水がCO変成器(4)のシエル側(4b)へ導入さ
れ、チユーブ(4a)内で発生した熱が除去される。水蒸
気分離器(6)の加圧水は、燃料電池用冷却水や改質器
へのスチーム供給源としての役割を持つためその温度は
通常170〜180℃程度であり、低温CO変成触媒(41)の動
作温度の下限にほぼ等しい。従って、冷却水との熱交換
部分の面積を過剰にしたとしても、最も冷却される場合
で170℃程度であり、冷やし過ぎる恐れがなく、複雑な
加圧水の流量制御を行なわなくても低温CO変成触媒の温
度コントロールは容易である。反応熱は加圧水により水
蒸気分離器(6)へ導入され、改質器(1)への水蒸気
の供給や給湯や吸収式冷凍器などに利用される。CO変成
器(4)を出た改質ガスは、冷却水(加圧水)で十分に
冷却することで冷却水の温度近く(例えば170〜200℃)
まで冷却されており、この温度は電池燃料極へ供給する
のに適当な温度であるため、電池直前にさらに改質ガス
冷却器を設ける必要はない。
The reformer (1) is the same as the conventional one. The hydrogen rich gas (reformed gas) exiting the reformer (1) is passed through the heat exchangers (2) and (3) to the operating temperature (180 ° C.) of the low temperature CO conversion catalyst (41) in the CO converter (4). To 280 ° C). The reformed gas entering the CO converter (4) undergoes the reaction of equation (1) as in the conventional case, and generates heat. Pressurized water circulated by the pump (7) from the pressurized water section (6a) of the steam separator (6) is introduced into the shell side (4b) of the CO converter (4), and heat generated in the tube (4a) is removed. Is done. The pressurized water of the steam separator (6) serves as a cooling water for the fuel cell and a steam supply source to the reformer. It is almost equal to the lower limit of the operating temperature. Therefore, even if the area of the heat exchange part with the cooling water is excessive, the temperature is about 170 ° C in the case of the most cooling, there is no fear of overcooling, and low-temperature CO conversion is possible without complicated flow control of the pressurized water. Temperature control of the catalyst is easy. The reaction heat is introduced into the steam separator (6) by pressurized water, and is used for supplying steam to the reformer (1), hot water supply, an absorption refrigerator, and the like. The reformed gas exiting the CO converter (4) is sufficiently cooled with cooling water (pressurized water) to reach a temperature close to the temperature of the cooling water (for example, 170 to 200 ° C.).
Since this temperature is an appropriate temperature for supplying to the fuel electrode of the cell, it is not necessary to further provide a reformed gas cooler immediately before the cell.

このように、この実施例の装置によれば、熱交換器
(2),(3)により、改質器(1)からの改質ガスの
温度を低温変成触媒の動作に適した温度まで低下させて
いるため、高温CO変成器(又は高温CO変成触媒)が不要
となる。さらに、CO変成器(4)内で反応により発生し
た熱は、冷却水により即座に除去されるため、低温CO変
成触媒の動作温度内での運転が可能となる。即ち、CO変
成器(4)が水冷式でなければ、自分で発生した熱によ
り低温CO変成触媒の動作温度を超えてしまうことにな
る。
As described above, according to the apparatus of this embodiment, the heat exchangers (2) and (3) lower the temperature of the reformed gas from the reformer (1) to a temperature suitable for the operation of the low-temperature shift catalyst. This eliminates the need for a high-temperature CO shift converter (or a high-temperature CO shift catalyst). Furthermore, the heat generated by the reaction in the CO shift converter (4) is immediately removed by the cooling water, so that the low-temperature CO shift catalyst can be operated at the operating temperature. That is, if the CO converter (4) is not of the water-cooled type, the operating temperature of the low-temperature CO conversion catalyst will be exceeded by the heat generated by itself.

なお、上記CO変成器(4)の改質ガス入口部の触媒層
部に充てん予熱層を設け(図示省略)、上記加圧水と充
分接触させるようにすれば、充てん予熱層部にて改質ガ
スの温度が調節される。即ち、燃料電池発電装置では負
荷の変動、改質ガス流量の変化巾が大きい。この時、改
質器(1)や改質器(1)とCO変成器(4)間の熱交換
器(2),(3)の動作条件が変化し、CO変成器(4)
入口での改質ガス温度が変化する。CO変成器(4)に上
記のような充てん層予熱部を設けることにより、触媒層
部の改質ガス温度がほゞ一定に保たれ、安定した反応が
達成される。
If a packed preheating layer is provided at the catalyst layer at the reformed gas inlet of the CO converter (4) (not shown) and the pressurized water is sufficiently contacted, the reformed gas is filled at the packed preheating layer. Temperature is adjusted. That is, in the fuel cell power generator, the fluctuation of the load and the fluctuation of the reformed gas flow rate are large. At this time, the operating conditions of the reformer (1) and the heat exchangers (2) and (3) between the reformer (1) and the CO converter (4) change, and the CO converter (4)
The reformed gas temperature at the inlet changes. By providing the packed bed preheating section in the CO converter (4), the temperature of the reformed gas in the catalyst layer section is kept almost constant, and a stable reaction is achieved.

次に上記のように構成された実施例装置を運転する方
法、特にCO変成器の例起動方法の実施例について説明す
る。
Next, a description will be given of a method of operating the embodiment apparatus configured as described above, particularly, an embodiment of a method of starting the CO transformer.

例状態では燃料電池(5)は、他の反応器、機器とは
異なり、通常100℃以下程度の温度に保持する必要があ
る。これには水蒸気分離器(6)よりの冷却水ラインを
使用して保温するのが通常である。このため電気ヒータ
を水蒸気分離器(6)内、もしくは電池冷却水ラインに
設置するか、ガス焚きボイラを水蒸気分離器(6)内に
設置するかにより水蒸気分離器(6)内の水を加熱して
いる。また電池の昇温にも、上述の装置が使用される。
In the example state, unlike the other reactors and equipment, the fuel cell (5) usually needs to be maintained at a temperature of about 100 ° C. or less. This is usually done by using a cooling water line from a steam separator (6) to keep the temperature. Therefore, the water in the steam separator (6) is heated by installing the electric heater in the steam separator (6) or the battery cooling water line, or by installing the gas-fired boiler in the steam separator (6). doing. The above-described device is also used for raising the temperature of the battery.

CO変成器(4)の冷起動は、水蒸気分離器(6)より
ポンプ(7)により循環する加圧水を用いCO変成器
(4)の触媒部(41)を昇温する。これにより、特別な
電気ヒータが不要となる。また、チユーブ(4a)の本数
を増やしたり、伝熱フインを付けて伝熱面積を大きくす
ることにより、N2ガス使用量を低減させたり、冷起動時
間の短縮が可能となる。
The cold start of the CO converter (4) uses the pressurized water circulated from the steam separator (6) by the pump (7) to raise the temperature of the catalyst section (41) of the CO converter (4). This eliminates the need for a special electric heater. In addition, by increasing the number of tubes (4a) or adding heat transfer fins to increase the heat transfer area, it is possible to reduce the amount of N 2 gas used and to shorten the cold start time.

上記実施冷では水蒸気分離器(6)よりの加圧水は、
燃料電池(5)本体の冷却水循環ポンプ(7)の吐出側
よりバイパスして用いたがもちろん、別途ポンプを設置
しても良い。
In the above cooling operation, the pressurized water from the steam separator (6) is
Although the cooling water circulation pump (7) of the fuel cell (5) is bypassed from the discharge side of the pump (7), a pump may be separately installed.

また、CO変成器(4)はシエル&チユーブ型熱交換器
としたが、必ずしもこれに限定されるものではなく、例
えばうず巻型、プレート型、プレートフイン型等各種の
熱交換器が使用できる。
Although the CO transformer (4) is a shell and tube type heat exchanger, the present invention is not limited to this, and various types of heat exchangers such as a spiral type, a plate type, and a plate fin type can be used. .

さらにシエル&チユーブ型のチユーブ側に触媒、シエ
ル側に加圧水を流す構成としたが、この逆も可能である
ことは勿論である。
Further, the catalyst and the pressurized water are flowed to the shell and tube type tube side, but the reverse is also possible.

この他種々の変更や変形が可能であることは言うまで
もない。
It goes without saying that various changes and modifications are possible.

〔発明の効果〕〔The invention's effect〕

以上、説明したように、この発明によれば、水蒸気分
離器によつて得られた加圧水を用いてCO変成器の反応熱
を除去するように構成し、かつ改質ガスの温度を変成触
媒の動作温度まで低下させる熱交換器を、改質器とCO変
成器との間に設けたので、従来の高温CO変成器、中間冷
却器、低温CO変成器、改質ガス冷却器の4機器を熱交換
器型CO変成器の1機器とすることができ、しかも変成触
媒を安定して動作させることができ、装置全体のコンパ
クト化と放熱量の減少が可能となるなどの効果がある。
As described above, according to the present invention, the reaction heat of the CO shift converter is removed by using the pressurized water obtained by the steam separator, and the temperature of the reformed gas is reduced by the temperature of the shift catalyst. Since a heat exchanger for lowering the operating temperature is provided between the reformer and the CO converter, four units of the conventional high-temperature CO converter, intercooler, low-temperature CO converter, and reformed gas cooler are used. The heat exchanger type CO converter can be used as one device, and furthermore, the shift catalyst can be operated stably, so that the whole device can be made compact and the amount of heat radiation can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、この発明の一実施例によるリン酸型燃料電池
発電装置の要部を示すフロー図、第2図は、上記実施例
に用いる熱交換型のCO変成器を示す概念図であり、
(a)は正面断面図、(b)は側面断面図である。第3
図は、従来のリン酸型燃料電池発電装置の要部を示すフ
ロー図である。 図において、(1)は改質器、(4)はCO変成器、
(5)はリン酸型燃料電池、(6)は水蒸気分離器であ
る。 なお、各図中、同一符号は、同一または相当部分を示
す。
FIG. 1 is a flowchart showing a main part of a phosphoric acid fuel cell power generator according to one embodiment of the present invention, and FIG. 2 is a conceptual diagram showing a heat exchange type CO transformer used in the above embodiment. ,
(A) is a front sectional view, and (b) is a side sectional view. Third
FIG. 1 is a flowchart showing a main part of a conventional phosphoric acid fuel cell power generator. In the figure, (1) is a reformer, (4) is a CO converter,
(5) is a phosphoric acid type fuel cell, and (6) is a steam separator. In the drawings, the same reference numerals indicate the same or corresponding parts.

フロントページの続き (72)発明者 池田 辰弥 兵庫県神戸市兵庫区和田崎町1丁目1番 2号 三菱電機株式会社神戸製作所内 (56)参考文献 特開 昭51−104541(JP,A) 特開 昭60−208067(JP,A)Continuation of the front page (72) Inventor Tatsuya Ikeda 1-2-1, Wadazakicho, Hyogo-ku, Kobe-shi, Hyogo Pref. Mitsubishi Electric Corporation Kobe Works (56) References Kaisho 60-208067 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】燃料を受け入れて改質ガスを得る改質器、
この改質器によって得られた改質ガス中の一酸化炭素を
変成触媒によりH2Oと反応させるCO変成器、このCO変成
器を経た改質ガスと酸化性ガスを作用させて電力を得る
燃料電池、及びこの燃料電池を冷却するための加圧水を
得ると共に、上記改質器に必要な水蒸気を得る水蒸気分
離器を備えたリン酸型燃料電池装置において、上記CO変
成器は、上記水蒸気分離器によって得られた加圧水を用
いて反応熱を除去するように構成されたものであり、上
記改質ガスの温度を上記変成触媒の動作温度まで低下さ
せる熱交換器が、上記改質器と上記CO変成器との間に設
けられていることを特徴とするリン酸型燃料電池発電装
置。
1. A reformer for receiving a fuel to obtain a reformed gas,
A CO converter that reacts carbon monoxide in the reformed gas obtained by this reformer with H 2 O using a shift catalyst, and obtains electric power by operating the reformed gas and the oxidizing gas that passed through the CO shift converter In a phosphoric acid type fuel cell device including a fuel cell and a steam separator for obtaining pressurized water for cooling the fuel cell and obtaining steam required for the reformer, the CO shift converter includes the steam separator. A heat exchanger that reduces the temperature of the reformed gas to the operating temperature of the shift catalyst, wherein the heat exchanger is configured to remove reaction heat using pressurized water obtained by the reactor. A phosphoric acid-type fuel cell power generation device provided between a CO transformer.
JP63091742A 1988-04-15 1988-04-15 Phosphoric acid fuel cell power generator Expired - Lifetime JP2634188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63091742A JP2634188B2 (en) 1988-04-15 1988-04-15 Phosphoric acid fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63091742A JP2634188B2 (en) 1988-04-15 1988-04-15 Phosphoric acid fuel cell power generator

Publications (2)

Publication Number Publication Date
JPH01265461A JPH01265461A (en) 1989-10-23
JP2634188B2 true JP2634188B2 (en) 1997-07-23

Family

ID=14034981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63091742A Expired - Lifetime JP2634188B2 (en) 1988-04-15 1988-04-15 Phosphoric acid fuel cell power generator

Country Status (1)

Country Link
JP (1) JP2634188B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04196061A (en) * 1990-11-28 1992-07-15 Tokyo Gas Co Ltd Carbon monoxide reformer
JP2813504B2 (en) * 1992-01-16 1998-10-22 三菱電機株式会社 Fuel cell generator
JP2809556B2 (en) * 1992-05-28 1998-10-08 三菱電機株式会社 Fuel cell power generator
JP2809561B2 (en) * 1992-07-28 1998-10-08 三菱電機株式会社 Phosphoric acid fuel cell power generator
JP5068291B2 (en) * 2009-08-26 2012-11-07 株式会社Eneosセルテック Fuel cell system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973993A (en) * 1975-02-12 1976-08-10 United Technologies Corporation Pressurized fuel cell power plant with steam flow through the cells
JPH06105624B2 (en) * 1984-03-31 1994-12-21 株式会社東芝 Fuel cell power plant
JPS63141269A (en) * 1986-12-01 1988-06-13 Jgc Corp Fuel cell generating system

Also Published As

Publication number Publication date
JPH01265461A (en) 1989-10-23

Similar Documents

Publication Publication Date Title
US4554223A (en) Fuel cell apparatus
JP2796181B2 (en) Fuel cell power generation system
JP3706611B2 (en) Hydrogen generator for fuel cell
US5993984A (en) Fuel cell power generating system and operating method thereof
JP2003327405A (en) Fuel reforming apparatus and method of starting same
JP2000511104A (en) Shift converter
JP2634188B2 (en) Phosphoric acid fuel cell power generator
JP2937656B2 (en) Fuel cell power generation system
JPH11189401A (en) Fuel reactor
JP2001313053A (en) Fuel cell system
JP2001176527A (en) Fuel cell system and fuel cell cogeneration system
JP3027169B2 (en) Fuel cell power generator
JP4453211B2 (en) Waste heat treatment method and apparatus for fuel cell power generator
JP2791130B2 (en) Fuel cell power plant
JP2634188C (en)
JP3960001B2 (en) Carbon monoxide remover and fuel cell system
JPH08195214A (en) Phosphoric acid fuel cell generating system
JP2809561B2 (en) Phosphoric acid fuel cell power generator
KR100632967B1 (en) A Heat exchanging device of preferential oxidation part for fuel cell system
JP2002100382A (en) Fuel cell power generator
JP2740081B2 (en) CO transformer for fuel cell power generator
JPH06290801A (en) Fuel cell power generating device
JP2004119214A (en) Fuel cell system
JPS63141269A (en) Fuel cell generating system
JPH06104000A (en) Fuel cell power generator