JP2633240B2 - Solid-state imaging device - Google Patents

Solid-state imaging device

Info

Publication number
JP2633240B2
JP2633240B2 JP61312311A JP31231186A JP2633240B2 JP 2633240 B2 JP2633240 B2 JP 2633240B2 JP 61312311 A JP61312311 A JP 61312311A JP 31231186 A JP31231186 A JP 31231186A JP 2633240 B2 JP2633240 B2 JP 2633240B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
imaging device
state imaging
solid
buried channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61312311A
Other languages
Japanese (ja)
Other versions
JPS63164460A (en
Inventor
俊寛 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61312311A priority Critical patent/JP2633240B2/en
Publication of JPS63164460A publication Critical patent/JPS63164460A/en
Application granted granted Critical
Publication of JP2633240B2 publication Critical patent/JP2633240B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、固体撮像装置に関し、特にCCD型固体撮像
装置に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device, and particularly to a CCD solid-state imaging device.

従来の技術 従来のCCD型固体撮像装置の光電変換部と垂直CCDのシ
フトレジスタ部の平面図を第2図aに示す。同図の21
は、素子分離領域を形成するのに用いられるLOCOS酸化
膜,22は、光電変換素子であるフォトダイオード25か
ら、垂直CCDシフトレジスタに光信号電荷を読み出すた
めの読出しゲート電極のしきい値電圧を制御するための
イオン注入による読出しゲートしきい値制御用拡散領
域,23は第1層目ポリシリコン電極,24は第2層目ポリシ
リコン電極である。
2. Description of the Related Art FIG. 2A is a plan view of a photoelectric conversion unit and a vertical CCD shift register unit of a conventional CCD solid-state imaging device. FIG. 21
Is a LOCOS oxide film used to form an element isolation region, and a threshold voltage of a read gate electrode for reading an optical signal charge from a photodiode 25 as a photoelectric conversion element to a vertical CCD shift register. A diffusion region for controlling a read gate threshold value by ion implantation for control, 23 is a first-layer polysilicon electrode, and 24 is a second-layer polysilicon electrode.

光信号の流れは以下の通りである。フォトダイオード
25で発生・蓄積された電荷は、矢印で示す経路26を通っ
て、第2層目ポリシリコン電極24で形成される垂直CCD
に移される。この場合、電極は紙面で上の方へ運ぶとし
ているので、上記電荷は、経路27を通って、第1層目ポ
リシリコン電極23で形成されているゲート下へ移動す
る。また、第2図aにおいて、前記フォトダイオード25
より下方のフォトダイオードで発生・蓄積された電荷
は、経路28,経路27を通って、上方へ移動する。
The flow of the optical signal is as follows. Photodiode
The electric charge generated and accumulated at 25 passes through a path 26 indicated by an arrow, and passes through a vertical CCD formed at the second-layer polysilicon electrode 24.
Moved to In this case, since the electrodes are to be carried upward in the plane of the paper, the charges move through the path 27 to below the gate formed by the first-layer polysilicon electrode 23. In FIG. 2A, the photodiode 25
The charge generated and accumulated in the lower photodiode moves upward through the paths 28 and 27.

発明が解決しようとする問題点 CCD型固体撮像装置においては、少なくとも、経路28,
27を電荷が移動する際の転送効率(以下垂直転送効率と
呼ぶ)を垂直CCD全般を通して96%以上にしなければな
らない。その時、垂直CCDチャンネルの断面形状が、垂
直転送効率に大きな影響を与える。第2図b,cに、第2
図aのA−A′断面,B−B′断面の模式図を示す。A−
A′断面(第2図b)におけるCCDチャンネルの実効幅
をaとするとB−B′断面(第2図c)においては、両
側をLOCOS29にはさまれているために、A−A′断面に
比べてチャンネルの左側がLOCOSのバーズビークにより
削られCCDの実効チャンネル幅はbとなる。経路28を電
荷が移動する場合を考えると、信号電荷は、チャンネル
幅bからチャンネル幅aへと運ばれる。この場合は、狭
い所から広い所への転送なので損失は小さい。ところが
経路27を電荷が移動する場合は、チャンネル幅の広いa
から狭いbへの転送となるので前記よりも損失が大きく
なる。また、設計あるいは、マスク合せズレ等で、1つ
のCCDゲート下に、チャンネル幅がaとbの2つが混在
すると、前述の場合に比べさらに大きな転送損失とな
る。
Problems to be Solved by the Invention In the CCD type solid-state imaging device, at least the path 28,
The transfer efficiency (hereinafter referred to as the vertical transfer efficiency) of the charge transfer at 27 must be 96% or more throughout the vertical CCD. At that time, the cross-sectional shape of the vertical CCD channel has a great influence on the vertical transfer efficiency. 2 b and c show the second
FIG. 2 shows a schematic view of an AA ′ section and a BB ′ section of FIG. A-
Assuming that the effective width of the CCD channel in the A 'section (FIG. 2b) is a, the BB' section (FIG. 2c) is AA 'section because both sides are sandwiched by the LOCOS 29. The left side of the channel is cut by bird's beak of LOCOS, and the effective channel width of CCD becomes b. Considering the case where charge travels in path 28, signal charge is carried from channel width b to channel width a. In this case, since the data is transferred from a narrow place to a wide place, the loss is small. However, when the charge moves along the path 27, a
, The data is transferred to a narrow b, so that the loss is larger than that described above. Further, if two channel widths a and b are mixed under one CCD gate due to design or mask misalignment, transfer loss will be larger than in the case described above.

本発明の目的は、従来の欠点を解消し、垂直CCDの転
送効率低下を防止し、しかも高密度化への対応をするこ
とのできる固体撮像装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a solid-state imaging device which can solve the conventional disadvantages, prevent a decrease in transfer efficiency of a vertical CCD, and can cope with high density.

問題点を解決するための手段 本発明の固体撮像装置は、光電変換素子と埋め込みチ
ャンネルとの間には素子分離領域を形成せず、読み出し
ゲートしきい値制御用拡散領域を形成したものである。
Means for Solving the Problems In the solid-state imaging device of the present invention, an element isolation region is not formed between a photoelectric conversion element and a buried channel, but a diffusion region for controlling a read gate threshold is formed. .

作用 上記構成により、垂直CCDチャンネルの実効的な断面
形状が装置内で同一となることにより転送効率の向上が
でき、また、光電変換素子と埋め込みチャンネルの間に
は従来は存在していた素子分離領域を形成していないた
め、高密度化への対応も行うことができる。
Operation With the above configuration, the transfer efficiency can be improved by making the effective cross-sectional shape of the vertical CCD channel the same in the device, and the element isolation between the photoelectric conversion element and the buried channel, which has conventionally existed Since no region is formed, it is possible to cope with high density.

実施例 本発明の一実施例を第1図に基づいて説明する。Embodiment An embodiment of the present invention will be described with reference to FIG.

第1図aはCCD型固体撮像装置の平面図である。1は
素子分離領域を形成するためのLOCOS酸化膜、従来との
相違点は、各画素間の、フォトダイオード5と垂直CCD,
あるいは、フォトダイオード5とフォトダイオード5′
の距離に十分配慮していることである。そのため、埋込
みチャンネル10に接している読み出しゲート側のLOCOS
酸化膜1を、読み出しゲートしきい値電圧制御用拡散領
域2の埋込みチャンネル側の端部よりもフォトダイオー
ド5側に後退させてある。こうすることにより、従来は
問題となっていたが、第1図aのB−B′断面模式図
(第1図c)に示すように両側をLOCOS9にはさまれたCC
Dの埋込みチャンネル10も、第1図bに示されている。
第1図aのA−A′断面模式図における、左側が読出し
ゲートとなっているCCDの埋込みチャンネル10と実効的
に同一なチャンネル幅の形状を得ることが可能となる。
このことにより、垂直CCDの転送効率を劣化させる要因
は、排除される。また、改善されたチャンネル幅は、従
来例の広い方に統一されるため、それによる転送効率向
上とともに、取扱い電荷量も増大し、これを用いたビデ
オカメラの特性も向上する。
FIG. 1a is a plan view of a CCD type solid-state imaging device. 1 is a LOCOS oxide film for forming an element isolation region. The difference from the conventional one is that a photodiode 5 and a vertical CCD,
Alternatively, the photodiode 5 and the photodiode 5 '
Is to give due consideration to the distance. Therefore, the LOCOS on the read gate side in contact with the buried channel 10
The oxide film 1 is recessed toward the photodiode 5 from the end of the read gate threshold voltage control diffusion region 2 on the buried channel side. This has been a problem in the prior art. However, as shown in the schematic cross-sectional view taken along the line BB 'of FIG.
The buried channel 10 of D is also shown in FIG. 1b.
In the schematic cross-sectional view taken along the line AA 'of FIG. 1a, it is possible to obtain a shape having the same channel width as the buried channel 10 of the CCD in which the left side is a read gate.
As a result, factors that degrade the transfer efficiency of the vertical CCD are eliminated. In addition, since the improved channel width is unified to the wider one of the conventional example, the transfer efficiency is thereby increased, the amount of charges handled is increased, and the characteristics of a video camera using the same are also improved.

さらに、前述の取扱い電荷量の増大は、言いかえれば
取扱い電荷量を同一とすると、より多画素化が実現でき
るということであり、高性能化への対応もやりやすくな
る。
Further, the increase in the amount of handled charges described above means that, if the amount of handled charges is the same, a larger number of pixels can be realized, and it is easier to respond to higher performance.

なお、ここでも、従来と同様、電荷の移動方向は、図
示するように経路8から経路7を考えればよいのである
が、本発明のように、チャンネル幅がどこでも同一であ
れば、逆方向(第1図において上から下)への転送も従
来方向と同様な転送効率が得られるのは明白であり、駆
動方法への柔軟な対応が可能となる。
Here, as in the conventional case, the direction of movement of the charge can be considered from the path 8 to the path 7 as shown in the figure, but if the channel width is the same everywhere as in the present invention, the opposite direction ( It is apparent that the transfer efficiency from the top to the bottom in FIG. 1 is the same as the transfer efficiency in the conventional direction, and the drive method can be flexibly supported.

発明の効果 以上説明したように、本発明によれば、垂直CCDチャ
ンネルの実効的な断面形状が装置内で同一となることに
より転送効率の向上ができ、また、光電変換素子と埋め
込みチャンネルの間には従来は存在していた素子分離領
域を形成していないため、高密度化への対応も行うこと
ができ、その実用的効果は大なるものがある。
Effect of the Invention As described above, according to the present invention, the transfer efficiency can be improved by making the effective cross-sectional shape of the vertical CCD channel the same in the device, and the space between the photoelectric conversion element and the buried channel can be improved. Does not have an element isolation region, which has existed in the prior art, so that it is possible to cope with a high density, and its practical effect is large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例におけるCCD型固体撮像装置を
説明するための図、第2図は従来のCCD型固体撮像装置
を説明するための図である。 1,21……LOCOS酸化膜、2,22……読出しゲートしきい値
制御用拡散領域、3,23……第1層目ポリシリコンゲート
電極、4,24……第2層目ポリシリコンゲート電極。
FIG. 1 is a diagram for explaining a CCD solid-state imaging device according to an embodiment of the present invention, and FIG. 2 is a diagram for explaining a conventional CCD solid-state imaging device. 1,21 LOCOS oxide film, 2,22 Diffusion region for read gate threshold control, 3,23 First polysilicon gate electrode, 4,24 Second polysilicon gate electrode.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板表面に設けられた複数個の光電
変換素子と、前記光電変換素子と近接して設けられ、前
記光電変換素子に蓄積された信号電荷を読み出しゲート
で順次読み出し、予め定められた方向へ転送するCCDシ
フトレジスタを有する固体撮像装置において、前記CCD
シフトレジスタは、電荷転送方向に沿って延びる埋め込
みチャンネルを備え、前記光電変換素子と前記埋め込み
チャンネルとの間に、前記読み出しゲートのしきい値制
御用拡散領域が前記埋め込みチャネルの側壁の全長にわ
たって沿うように形成され、前記光電変換素子の四辺の
うち、前記読み出しゲートしきい値制御用拡散領域に接
する一辺を除く他の三辺に隣接して選択酸化法による素
子分離領域が形成され、前記選択酸化法による素子分離
領域は前記ゲートしきい値制御用拡散領域が形成された
側で前記埋込チャンネルと接しないことを特徴とする固
体撮像装置。
1. A plurality of photoelectric conversion elements provided on a surface of a semiconductor substrate, and signal charges provided in close proximity to the photoelectric conversion elements and stored in the photoelectric conversion elements are sequentially read by a read gate, and predetermined. A solid-state imaging device having a CCD shift register for transferring in a given direction,
The shift register includes a buried channel extending along a charge transfer direction, and a threshold control diffusion region of the read gate extends along the entire length of a side wall of the buried channel between the photoelectric conversion element and the buried channel. In the four sides of the photoelectric conversion element, an element isolation region is formed by selective oxidation adjacent to three other sides except one side in contact with the read gate threshold value control diffusion region. A solid-state imaging device, wherein an element isolation region formed by oxidation does not contact the buried channel on the side where the gate threshold value control diffusion region is formed.
JP61312311A 1986-12-26 1986-12-26 Solid-state imaging device Expired - Lifetime JP2633240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61312311A JP2633240B2 (en) 1986-12-26 1986-12-26 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61312311A JP2633240B2 (en) 1986-12-26 1986-12-26 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPS63164460A JPS63164460A (en) 1988-07-07
JP2633240B2 true JP2633240B2 (en) 1997-07-23

Family

ID=18027719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61312311A Expired - Lifetime JP2633240B2 (en) 1986-12-26 1986-12-26 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2633240B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161580A (en) * 1982-03-19 1983-09-26 Toshiba Corp Charge transfer type image sensor
JPS6146061A (en) * 1984-08-10 1986-03-06 Nec Corp Solid-state image pickup device
JPH0763091B2 (en) * 1986-05-13 1995-07-05 三菱電機株式会社 Solid-state image sensor

Also Published As

Publication number Publication date
JPS63164460A (en) 1988-07-07

Similar Documents

Publication Publication Date Title
US5210433A (en) Solid-state CCD imaging device with transfer gap voltage controller
US5675158A (en) Linear solid state imaging device with trapizoid type photodiodes
JPH0666914B2 (en) Solid-state imaging device
US5418387A (en) Solid-state imaging device with nand cell structure
US6087685A (en) Solid-state imaging device
US5040038A (en) Solid-state image sensor
US4380056A (en) Charge coupled device focal plane with serial register having interdigitated electrodes
US5359213A (en) Charge transfer device and solid state image sensor using the same
JPH0525174B2 (en)
JP2633240B2 (en) Solid-state imaging device
US5196719A (en) Solid-state image pick-up device having electric field for accelerating electric charges from photoelectric converting region to shift register
JPH036658B2 (en)
JP2545801B2 (en) Solid-state imaging device
US5075747A (en) Charge transfer device with meander channel
EP0457192B1 (en) Solid-state image pick-up device having electric field for accelerating electric charges from photo-electric converting region to shift register
JPH0476952A (en) Solid-state imaging device
US6383834B1 (en) Charge coupled device
JP3247163B2 (en) Solid-state imaging device and manufacturing method thereof
JP3002365B2 (en) Charge transfer device and driving method thereof
JP2734042B2 (en) Charge transfer solid-state imaging device
JPS61121582A (en) Solid-state image pick-up element
US5986295A (en) Charge coupled device
JP3518212B2 (en) Solid-state imaging device
JPH07226497A (en) Solid-state image pickup element
JPS63313862A (en) Charge transfer device