JP2632887B2 - Photoconductive member - Google Patents

Photoconductive member

Info

Publication number
JP2632887B2
JP2632887B2 JP33162487A JP33162487A JP2632887B2 JP 2632887 B2 JP2632887 B2 JP 2632887B2 JP 33162487 A JP33162487 A JP 33162487A JP 33162487 A JP33162487 A JP 33162487A JP 2632887 B2 JP2632887 B2 JP 2632887B2
Authority
JP
Japan
Prior art keywords
layer
layer region
photoconductive
photoconductive member
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33162487A
Other languages
Japanese (ja)
Other versions
JPH01172842A (en
Inventor
孝夫 河村
直興 宮本
仁志 竹村
浩 伊藤
鴻吉 石櫃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP33162487A priority Critical patent/JP2632887B2/en
Publication of JPH01172842A publication Critical patent/JPH01172842A/en
Application granted granted Critical
Publication of JP2632887B2 publication Critical patent/JP2632887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は例えば光導電性アモルファスシリコンカーバ
イドから成る電子写真感光体又は光センサなど光導電性
を利用した各種光導電部材に関し、特に基体からのキャ
リアの注入阻止能を高めることができた光導電部材に関
するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to various photoconductive members utilizing photoconductivity, such as an electrophotographic photoreceptor or an optical sensor made of, for example, photoconductive amorphous silicon carbide. The present invention relates to a photoconductive member capable of increasing the ability to prevent carrier injection.

(従来技術及びその問題点) 近時、光導電性アモルファスシリコンカーバイド(以
下、アモルファスシリコンカーバイドをa−SiCと略
す)を用いた受光素子が用いられるようになり、例えば
電子写真感光体の分野においては、その実質上の光導電
層とすることが提案されている。
(Prior art and its problems) In recent years, light-receiving elements using photoconductive amorphous silicon carbide (hereinafter, amorphous silicon carbide is abbreviated as a-SiC) have been used, and for example, in the field of electrophotographic photoreceptors. Has been proposed to be a substantially photoconductive layer thereof.

このようにa−SiC層を光導電部材に用いた場合、受
光に伴って発生したキャリアは基板へ移動されるが、こ
れに対して、基板側より注入される他方の極性のキャリ
アは阻止されなければならない。
When the a-SiC layer is used as a photoconductive member in this manner, carriers generated in response to light reception are moved to the substrate, whereas carriers of the other polarity injected from the substrate side are blocked. There must be.

電子写真感光体の分野においては、通常、基板と光導
電層の間にキャリア注入阻止層を形成し、これにより、
光導電層で発生したキャリアは円滑に基板へ流れ、一
方、基板側のキャリアは注入阻止層により阻止され、そ
の結果、感光体自体の帯電能が高められ、残留電位が低
減される。
In the field of electrophotographic photoreceptors, usually a carrier injection blocking layer is formed between the substrate and the photoconductive layer,
Carriers generated in the photoconductive layer flow smoothly to the substrate, while carriers on the substrate side are blocked by the injection blocking layer. As a result, the charging ability of the photoconductor itself is increased, and the residual potential is reduced.

そして、このようなキャリア注入阻止層に上記光導電
層と同じa−SiC層を用いることが提案されている。
It has been proposed to use the same a-SiC layer as the photoconductive layer for such a carrier injection blocking layer.

しかしながら、このa−SiCキャリア注入阻止層は上
記のように基板側からのキャリアの注入阻止能を未だ十
分に備えておらず、そのために、所望通りの高帯電能並
びに低い残留電位が得られていない。
However, as described above, the a-SiC carrier injection blocking layer does not yet have a sufficient ability to prevent carrier injection from the substrate side, and as a result, a desired high chargeability and low residual potential are obtained. Absent.

(発明の目的) 従って本発明は上記事情に鑑みて完成されたものであ
り、その目的は基体からのキャリアの注入阻止能に優れ
たa−SiC層から成る光導電部材を提供することにあ
る。
(Object of the Invention) Accordingly, the present invention has been completed in view of the above circumstances, and an object of the present invention is to provide a photoconductive member comprising an a-SiC layer having excellent ability to prevent carrier injection from a substrate. .

本発明の他の目的は高帯電能並びに低い残留電位のa
−SiC電子写真感光体が得られるようになった光導電部
材を提供することにある。
Another object of the present invention is to provide a high chargeability and low residual potential a
-To provide a photoconductive member from which a SiC electrophotographic photoreceptor can be obtained.

(問題点を解決するための手段) 本発明によれば、導電性基体の上に少なくともa−Si
C層を形成し、該層が少なくとも第1の層領域及び第2
の層領域を具備し、第1の層領域は第2の層領域より基
体側に配置された光導電部材であって、前記第1の層領
域は50〜5000ppmの周期律表第Va族元素を含有し且つ0.1
〜10原子%の酸素及び/又は窒素を含有し、前記第2の
層領域のカーボン量はSi1-xCxのX値で0.01≦X≦0.5の
範囲内に設定されていることを特徴とする光導電部材が
提供される。
(Means for Solving the Problems) According to the present invention, at least a-Si
Forming a C layer, said layer comprising at least a first layer region and a second layer region;
Wherein the first layer region is a photoconductive member disposed closer to the substrate than the second layer region, and the first layer region is a 50 to 5000 ppm group Va element of the periodic table. And 0.1
Containing at least 10 atomic% of oxygen and / or nitrogen, and wherein the amount of carbon in the second layer region is set in the range of 0.01 ≦ X ≦ 0.5 as the X value of Si 1-x C x. Is provided.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

第1図は本発明光導電部材の基本的層構成を示してお
り、基板(1)の上にはa−SiC層(2)が形成され、
そして、この層(2)は第1の層領域(2a)及び第2の
層領域(2b)が順次形成された構成である。
FIG. 1 shows the basic layer structure of the photoconductive member of the present invention, in which an a-SiC layer (2) is formed on a substrate (1).
The layer (2) has a structure in which a first layer region (2a) and a second layer region (2b) are sequentially formed.

a−SiC層(2)は光導電性を有しており、そのため
に、第2の層領域(2b)もしくは第1の層領域(2a)と
第2の層領域(2b)の両者の層領域に光導電性を具備さ
せる。
The a-SiC layer (2) has photoconductivity, and therefore, the second layer region (2b) or the layer of both the first layer region (2a) and the second layer region (2b). The region is provided with photoconductivity.

このような光導電性はアモルファス化したりシリコン
元素とカーボン元素に対して、のダングリングボンドを
終端させるべく水素元素(H)やハロゲン元素を所要の
範囲内で含有させることによって生じる。
Such photoconductivity is caused by making amorphous or containing a hydrogen element (H) or a halogen element within a required range in order to terminate a dangling bond between the silicon element and the carbon element.

本発明者等がカーボン含有比率を幾通りにも変えて光
導電性の実験を行ったところ、Si1-xCxのX値で表した
場合、0.01≦X≦0.5、好適には0.05≦X≦0.3の範囲内
に設定するとよく、そのX値が0.01未満の場合にはバン
ドギャップを広げることができず、そのために短波長光
に対して光感度を高めることができなくなり、X値が0.
5を超えると光導電性が低下し、しかも、感光体分野に
おいては残留電位が大きくなる。
The present inventors performed a photoconductivity experiment by changing the carbon content ratio in various ways, and when expressed by the X value of Si 1-x C x , 0.01 ≦ X ≦ 0.5, preferably 0.05 ≦ It is good to set within the range of X ≦ 0.3, and when the X value is less than 0.01, the band gap cannot be widened, so that it becomes impossible to increase the light sensitivity to short wavelength light, and the X value is increased. 0.
If it exceeds 5, the photoconductivity decreases, and the residual potential increases in the photoreceptor field.

尚、第2の層領域(2b)が実質上の光導電層である場
合、第1の層領域(2a)のカーボン量はX値で0.5を越
えてもよい。
When the second layer region (2b) is a substantial photoconductive layer, the amount of carbon in the first layer region (2a) may exceed 0.5 in X value.

このようなa−SiC層(2)において、第1の層領域
(2a)に周期律表第Va族元素(以下、Va族元素と略す)
並びに酸素及び/又は窒素をそれぞれ所定の範囲内で含
有させる。
In such a-SiC layer (2), the first layer region (2a) includes a group Va element of the periodic table (hereinafter abbreviated as a group Va element).
In addition, oxygen and / or nitrogen are contained within predetermined ranges, respectively.

Va族元素を含有させるに当たって、そのドーピング分
布は層厚方向に亘って均一又は不均一のいずれでもよ
い。均一に含有させる場合、その含有量は50〜5000pp
m、好適には200〜2000ppmの範囲内に設定するとよく、5
0ppm未満の場合には基板側からの正電荷の注入に対する
阻止能が不十分となり、一方、5000ppmを越えた場合に
は膜中の欠陥が増加し、これにより、暗導電率が大きく
なり、そして、上記のようなキャリア注入阻止能が低下
する。
In containing the Va group element, the doping distribution may be uniform or non-uniform in the layer thickness direction. When it is contained uniformly, the content is 50-5000pp
m, preferably within the range of 200 to 2000 ppm, 5
If it is less than 0 ppm, the ability to stop injection of positive charges from the substrate side is insufficient, while if it exceeds 5000 ppm, defects in the film increase, thereby increasing dark conductivity, and As a result, the carrier injection stopping power as described above decreases.

一方、Va族元素を不均一にドーピングさせる場合に
は、例えば第3図〜第8図に示す通りのドーピング分布
がある。
On the other hand, when the Va group element is non-uniformly doped, for example, there is a doping distribution as shown in FIG. 3 to FIG.

これらの図中、横軸は第1の層領域(2a)の層厚を表
し、Aは第1の層領域(2a)の基板側の界面であり、B
はその反対側の界面である。
In these figures, the horizontal axis represents the layer thickness of the first layer region (2a), A is the interface of the first layer region (2a) on the substrate side, and B is
Is the opposite interface.

このように不均一にドーピングさせた場合のVa族元素
含有量は第1の層領域(2a)全体当たりの平均値により
決められ、その平均含有量も50〜5000ppm、好適には200
〜2000ppmの範囲内に設定するとよい。
The content of the Va group element when non-uniformly doped is determined by the average value of the entire first layer region (2a), and the average content is also 50 to 5,000 ppm, preferably 200 to 5,000 ppm.
It is good to set within the range of -2000 ppm.

前記Va族元素にはP、As、Sb、Biがあり、就中、Pが
共有結合性に優れて半導体特性を敏感に変え得る点で望
ましい。
The Va group elements include P, As, Sb, and Bi. Among them, P is preferable because it has excellent covalent bonding and can sensitively change semiconductor characteristics.

次に第1の層領域(2a)に含有させる酸素又は窒素に
ついては、それらの少なくとも一種が0.1〜10原子%の
範囲内で、即ち、(Si1-xCx1-y(O,N)で表される
y値を、0.001≦y≦0.1、好適には0.002≦y≦0.5の範
囲内に設定するとよい。y値が0.001未満の場合にはキ
ャリア注入の阻止効果が不十分となり、y値が0.1を越
える場合には第1の層領域(2a)自体が絶縁性を備え、
そのために整流性が失われ、例えば感光体の分野におい
ては残留電位が大きくなる。
Next, as for oxygen or nitrogen contained in the first layer region (2a), at least one of them is in the range of 0.1 to 10 atomic%, that is, (Si 1-x C x ) 1-y (O, N) The y value represented by y should be set within the range of 0.001 ≦ y ≦ 0.1, preferably 0.002 ≦ y ≦ 0.5. When the y value is less than 0.001, the effect of inhibiting carrier injection becomes insufficient, and when the y value exceeds 0.1, the first layer region (2a) itself has insulating properties,
Therefore, the rectifying property is lost, and for example, in the field of photoconductors, the residual potential becomes large.

このような酸素及び/又は窒素を含有させる場合、そ
のドーピング分布は層厚方向に亘って均一又は不均一の
いずれでもよい。そして、不均一にドーピングさせる場
合、その含有量は第1の層領域(2a)全体当たりの平均
値によって決められ、その平均含有量の範囲については
上記した通りである。
When oxygen and / or nitrogen is contained, the doping distribution may be uniform or non-uniform in the layer thickness direction. In the case of doping non-uniformly, the content is determined by the average value of the entire first layer region (2a), and the range of the average content is as described above.

また、酸素及び/又は窒素を第1の層領域(2a)に不
均一にドーピングさせる場合、そのドーピング分布には
例えば第9図〜第14図に示す通りがある。
When the first layer region (2a) is non-uniformly doped with oxygen and / or nitrogen, the doping distribution is, for example, as shown in FIG. 9 to FIG.

かくして本発明によれば、基板側からの正電荷の注入
が有効に阻止され、そして、明導電率と暗導電率との比
が著しく大きくなった高性能な光導電部材が提供でき
た。
Thus, according to the present invention, it is possible to provide a high-performance photoconductive member in which the injection of positive charges from the substrate side is effectively prevented, and the ratio between the light conductivity and the dark conductivity is significantly increased.

次に本発明の光導電部材を電子写真感光体に用いた場
合を例にとって説明する。
Next, a case where the photoconductive member of the present invention is used for an electrophotographic photosensitive member will be described as an example.

第2図は本発明の電子写真感光体の典型的層構成を表
しており、基板(3)の上にはa−SiCキャリア注入阻
止層(4)、a−SiC光導電層(5)及び表面保護層
(6)が順次積層されている。
FIG. 2 shows a typical layer structure of the electrophotographic photoreceptor of the present invention, in which an a-SiC carrier injection blocking layer (4), an a-SiC photoconductive layer (5) and The surface protection layer (6) is sequentially laminated.

キャリア注入阻止層(4)は前記第1の層領域(2a)
に、光導電層(5)は前記第2の層領域(2b)にそれぞ
れ対応している。
The carrier injection blocking layer (4) is provided in the first layer region (2a).
In addition, the photoconductive layer (5) corresponds to the second layer region (2b).

キャリア注入阻止層(4)の厚みは、感光体としてそ
の注入阻止効果が十分に発揮されるように決められ、本
発明者等が繰り返し行った実験によれば、0.5〜5μ
m、好適には1〜4μmの範囲内に設定するとよい。
The thickness of the carrier injection blocking layer (4) is determined so that the injection blocking effect of the photoreceptor is sufficiently exerted. According to experiments repeatedly conducted by the present inventors, the thickness is 0.5 to 5 μm.
m, preferably in the range of 1 to 4 μm.

また、光導電層(5)の厚みは高い表面電位が得られ
るという点で適宜決められており、その範囲は5〜100
μm、好適には10〜50μmの範囲内に設定するとよい。
The thickness of the photoconductive layer (5) is appropriately determined in that a high surface potential can be obtained, and the range is 5 to 100.
μm, preferably in the range of 10 to 50 μm.

上記表面保護層(6)は光導電層(5)を保護して耐
湿性等を向上させるものであり、更に感光体の暗抵抗率
を大きくして帯電能を高めることもできる。
The surface protective layer (6) protects the photoconductive layer (5) to improve moisture resistance and the like, and can further increase the dark resistivity of the photoreceptor to increase the charging ability.

このような目的に応じられる材料として高絶縁性、高
耐蝕性並びに高強度特性を有するものがよく、例えばポ
リイミド樹脂などの有機材料、SiC、SiO、Al2O3、SiN、
アモルファスシリコンなどの無機材料がある。
Materials having high insulating properties, high corrosion resistance and high strength properties as materials suitable for such purposes are good, for example, organic materials such as polyimide resin, SiC, SiO, Al 2 O 3 , SiN,
There is an inorganic material such as amorphous silicon.

上記のようなa−SiC層を形成するにはグロー放電分
解法、イオンプレーティング法、反応性スパッタリング
法、真空蒸着法、CVD法などの薄膜生成技術がある。
To form the a-SiC layer as described above, there are thin film forming techniques such as a glow discharge decomposition method, an ion plating method, a reactive sputtering method, a vacuum evaporation method, and a CVD method.

グロー放電分解法を用いてa−SiC層を形成する場合
にはケイ素(Si)含有ガスとカーボン(C)含有ガスを
組合せ、その混合ガスをグロー放電分解する。
When the a-SiC layer is formed using the glow discharge decomposition method, a gas containing silicon (Si) and a gas containing carbon (C) are combined, and the mixed gas is subjected to glow discharge decomposition.

このSi含有ガスにはSiH4、Si2H6、Si3H8、SiF4、SiCl
4、SiHCl3等々があり、就中、SiH4やSi2H6はそれ自体Si
元素とH元素が結合しているために膜中にH元素が取り
込まれ易く、これにより、膜中のタングリングボンドが
低減して光導電性を向上させるという点で望ましい。
This Si-containing gas includes SiH 4 , Si 2 H 6 , Si 3 H 8 , SiF 4 , SiCl
4 , SiHCl 3 and so on, of which SiH 4 and Si 2 H 6 are Si
Since the element and the H element are combined, the H element is easily taken into the film, which is desirable in that the tangling bond in the film is reduced and the photoconductivity is improved.

C含有ガスにはCH4、C2H4、C2H2、C3H8等々がある
が、就中、C2H2が高速成膜性が得られるという点で望ま
しい。
The C-containing gas includes CH 4 , C 2 H 4 , C 2 H 2 , C 3 H 8, etc. Among them, C 2 H 2 is particularly preferable in that a high-speed film-forming property can be obtained.

またVa族元素含有ガスにはPH3などがある。In addition, PH 3 or the like is used as a gas containing a Va group element.

更にまた、a−SiC層に酸素又は窒素を含有させるに
は、その成膜用ガスにO2、N2、NO、N2O、NO2、NH3、N
F3、CO、CO2などのガスを混合すればよい。
Furthermore, in order to contain oxygen or nitrogen in the a-SiC layer, O 2 , N 2 , NO, N 2 O, NO 2 , NH 3 , N 3
Gases such as F 3 , CO, and CO 2 may be mixed.

(実施例) 次に本発明の実施例を、グロー放電分解法により第1
図に示すa−SiC層を形成した場合を例にとって詳細に
説明する。
(Example) Next, an example of the present invention was first modified by a glow discharge decomposition method.
The case where the a-SiC layer shown in the figure is formed will be described in detail as an example.

(例1) グロー放電分解装置の反応室内部に表面研摩したアル
ミニウム製平板(25mm×50mm)を設置し、その平板
(7)の上に第1表に示す成膜条件により順次第1の層
領域(8)と第2の層領域(9)を形成し、しかも、第
1の層領域(8)を形成するに当たってPH3ガスを種々
の流量で導入する。次いで真空蒸着法により円板状(3m
mφ)のアルミニウム電極(10)を形成し、第15図に示
す通りの光導電部材を製作した。
(Example 1) An aluminum flat plate (25 mm x 50 mm) whose surface was polished was placed inside the reaction chamber of a glow discharge decomposition apparatus, and the first layer was sequentially formed on the flat plate (7) under the film forming conditions shown in Table 1. forming a region (8) and the second layer region (9), moreover, to introduce PH 3 gas at various flow rates in forming the first layer region (8). Next, disk-shaped (3m
mφ) aluminum electrode (10) was formed, and a photoconductive member as shown in FIG. 15 was produced.

このようにして成膜した第1の層領域(8)及び第2
の層領域(9)について、それぞれのカーボン量並びに
酸素及び窒素をESCA分析により求めたところ、第1表に
示す通りの結果が得られた。
The first layer region (8) and the second
For each layer region (9), the respective amounts of carbon and oxygen and nitrogen were determined by ESCA analysis, and the results shown in Table 1 were obtained.

そして、第1の層領域(8)の形成に当たって、PH3
ガスを導入しない場合、もしくはPH3ガスの導入量を幾
通りにも変え、これにより、P含有量が0、80ppm、350
ppm、1000ppm、6000ppmのそれぞれの光導電部材を製作
した。
In forming the first layer region (8), PH 3
When the gas is not introduced, or the amount of the PH 3 gas introduced is changed in various ways, so that the P content is 0, 80 ppm, 350 ppm.
A photoconductive member of each of ppm, 1000 ppm, and 6000 ppm was manufactured.

かくして得られた5種類の光導電部材を、第15図に示
す通り、アルミニウム電極(10)側に電圧を印加し、平
板(7)をアース側に導通させ、これによって電圧−電
流特性を測定したところ、第16図に示す通りの結果が得
られた。
As shown in FIG. 15, a voltage is applied to the five types of photoconductive members thus obtained and the flat plate (7) is electrically connected to the ground side, thereby measuring the voltage-current characteristics. As a result, the result as shown in FIG. 16 was obtained.

同図中、プロット及び特性曲線を各光導電部材との対
応は第2表に示す通りである。
In the figure, the correspondence between the plots and the characteristic curves with the respective photoconductive members is as shown in Table 2.

第16図に示す結果より明らかな通り、光導電部材D
(P含有量1000ppm)において逆方向電流が小さくなっ
ていることが判る。
As is clear from the results shown in FIG. 16, the photoconductive member D
(P content: 1000 ppm) shows that the reverse current is small.

(例2) 本例においては、光導電部材Dを形成するに当たっ
て、第1の層領域の形成に用いられるNOガスの導入量を
幾通りにも変え、その他の成膜条件を(例1)と同じに
設定し、これにより、酸素や窒素の含有量をy値で表し
た場合に、それが0、0.023、0.065、0.12のそれぞれの
光導電部材を製作した。
(Example 2) In this example, when forming the photoconductive member D, the introduction amount of the NO gas used for forming the first layer region was changed in various ways, and other film forming conditions were changed (Example 1). Thus, when the content of oxygen and nitrogen was represented by the y value, the photoconductive members of 0, 0.023, 0.065, and 0.12 were produced.

かくして得られた4種類の光導電部材の電圧−電流特
性が測定したところ、第17図に示す通りの結果が得られ
た。
When the voltage-current characteristics of the four types of photoconductive members thus obtained were measured, the results shown in FIG. 17 were obtained.

同図中、プロット及び特性曲線と各光電導部材との対
応は第3表に示す通りである。
In the figure, the correspondence between the plots and characteristic curves and the respective photoconductive members is as shown in Table 3.

第18図に示す結果より明らかな通り、光導電部材Gに
よれば、正電圧印加の場合に大きな電流値が得られ、一
方、逆方向電流が小さくなっていることが判る。
As is clear from the results shown in FIG. 18, according to the photoconductive member G, a large current value is obtained when a positive voltage is applied, while the reverse current is small.

(発明の効果) 以上の通り、本発明の光導電部材によれば、基体から
のキャリアの注入阻止効果が高くなり、例えば電子写真
感光体の分野においては高い帯電能が得られ、残留電位
が小さくなる。
(Effects of the Invention) As described above, according to the photoconductive member of the present invention, the effect of inhibiting the injection of carriers from the base is enhanced. For example, in the field of an electrophotographic photoreceptor, a high charging ability is obtained and the residual potential is reduced. Become smaller.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明光導電部材の層構成を示す断面図、第2
図は電子写真感光体の層構成を示す断面図、そして、第
3図、第4図、第5図、第6図、第7図及び第8図はVa
族元素のドーピング分布を示す線図、第9図、第10図、
第11図、第12図、第13図及び第14図は酸素及び窒素のド
ーピング分布を示す線図、第15図は光導電部材の電圧−
電流特性を測定するための説明図、第16図及び第17図は
電圧−電流特性曲線を示す線図である。 1……基板 2……アモルファスシリコンカーバイド層 2a……第1の層領域 2b……第2の層領域
FIG. 1 is a sectional view showing the layer structure of the photoconductive member of the present invention, and FIG.
The figure is a cross-sectional view showing the layer structure of the electrophotographic photoreceptor, and FIGS. 3, 4, 5, 6, 7, and 8 are Va.
Diagrams showing the doping distribution of group elements, FIG. 9, FIG.
11, 12, 13 and 14 are diagrams showing the doping distributions of oxygen and nitrogen, and FIG.
FIGS. 16 and 17 are diagrams illustrating voltage-current characteristic curves for measuring current characteristics. DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Amorphous silicon carbide layer 2a ... First layer area 2b ... Second layer area

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹村 仁志 滋賀県八日市市蛇溝町長谷野1166番地の 6 京セラ株式会社滋賀八日市工場内 (72)発明者 伊藤 浩 滋賀県八日市市蛇溝町長谷野1166番地の 6 京セラ株式会社滋賀八日市工場内 (72)発明者 石櫃 鴻吉 滋賀県八日市市蛇溝町長谷野1166番地の 6 京セラ株式会社滋賀八日市工場内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Hitoshi Takemura 1166, Haseno, Jabizo-cho, Yokaichi-shi, Shiga Prefecture 6 Inside the Shiga Yokaichi Plant, Kyocera Corporation (72) Inventor Hiroshi Ito, 1166, Haseno, Hanazo-cho, Yokaichi, Shiga Prefecture 6 Kyocera Corporation Shiga Yokaichi Plant (72) Inventor Kokichi Ishibitsu 6166 Kyoka Corporation Shiga Yokaichi Plant at 1166 Haseno, Jabizo-cho, Yokaichi City, Shiga Prefecture

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電性基体の上に少なくともアモルファス
シリコンカーバイド層を形成し、該層が少なくとも第1
の層領域及び第2の層領域を具備し、第1の層領域は第
2の層領域より基体側に配置された光導電部材であっ
て、前記第1の層領域は50〜5000ppmの周期律表第Va族
元素を含有し且つ0.1〜10原子%の酸素及び/又は窒素
を含有し、前記第2の層領域のカーボン量はSi1-xCx
X値で0.01≦X≦0.5の範囲内に設定されていることを
特徴とする光導電部材。
At least an amorphous silicon carbide layer is formed on a conductive substrate, the layer comprising at least a first silicon carbide layer.
And a second layer region, wherein the first layer region is a photoconductive member disposed closer to the substrate than the second layer region, and the first layer region has a period of 50 to 5000 ppm. It contains a Group Va element of the table and contains 0.1 to 10 atomic% of oxygen and / or nitrogen, and the amount of carbon in the second layer region is 0.01 ≦ X ≦ 0.5 as the X value of Si 1-x C x. The photoconductive member is set within the range of:
JP33162487A 1987-12-26 1987-12-26 Photoconductive member Expired - Fee Related JP2632887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33162487A JP2632887B2 (en) 1987-12-26 1987-12-26 Photoconductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33162487A JP2632887B2 (en) 1987-12-26 1987-12-26 Photoconductive member

Publications (2)

Publication Number Publication Date
JPH01172842A JPH01172842A (en) 1989-07-07
JP2632887B2 true JP2632887B2 (en) 1997-07-23

Family

ID=18245736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33162487A Expired - Fee Related JP2632887B2 (en) 1987-12-26 1987-12-26 Photoconductive member

Country Status (1)

Country Link
JP (1) JP2632887B2 (en)

Also Published As

Publication number Publication date
JPH01172842A (en) 1989-07-07

Similar Documents

Publication Publication Date Title
EP0219982B1 (en) Overcoated amorphous silicon imaging members
EP0045204A2 (en) Electrophotographic member and electrophotographic apparatus including the member
EP0155758A1 (en) Light receiving member
US4713311A (en) Homogeneous photoconductive layer of amorphous silicon and hydrogen
US4592983A (en) Photoconductive member having amorphous germanium and amorphous silicon regions with nitrogen
JP2632887B2 (en) Photoconductive member
EP0107242B1 (en) Photoconductive element for use in electrophotographic copying processes
JPH0549107B2 (en)
US5106711A (en) Electrophotographic sensitive member
US4729937A (en) Layered amorphous silicon electrophotographic photosensitive member comprises BN surface layer and BN barrier layer
EP0161848B1 (en) Light-receiving member
KR910006737B1 (en) Manufacture of electrophotographic sensitive body
EP0300807A2 (en) Electrophotographic photosensitive member
JPS6263939A (en) Electrophotographic sensitive body
JP2756569B2 (en) Electrophotographic photoreceptor
US4704343A (en) Electrophotographic photosensitive member containing amorphous silicon and doped microcrystalline silicon layers
JP2756570B2 (en) Electrophotographic photoreceptor
JPS6231862A (en) Electrophotographic sensitive body
US4780384A (en) Light receiving member with pairs of an α-Si(M) (H,X) thin layer and an α-Si(C,N,O,) (H,X) thin layer repeatedly laminated
JP2789100B2 (en) Electrophotographic photoreceptor
JP2668241B2 (en) Electrophotographic photoreceptor
JP2668242B2 (en) Electrophotographic photoreceptor
JP2761741B2 (en) Electrophotographic photoreceptor
JPS5660444A (en) Electrophotographic receptor
JP2678449B2 (en) Electrophotographic photoreceptor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees