JP2632688B2 - Surface treatment method for titanium member and coil spring using the surface treatment method - Google Patents

Surface treatment method for titanium member and coil spring using the surface treatment method

Info

Publication number
JP2632688B2
JP2632688B2 JP62317056A JP31705687A JP2632688B2 JP 2632688 B2 JP2632688 B2 JP 2632688B2 JP 62317056 A JP62317056 A JP 62317056A JP 31705687 A JP31705687 A JP 31705687A JP 2632688 B2 JP2632688 B2 JP 2632688B2
Authority
JP
Japan
Prior art keywords
surface treatment
treatment method
plating
titanium member
electroless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62317056A
Other languages
Japanese (ja)
Other versions
JPH01159358A (en
Inventor
好敏 萩原
敏夫 小曽根
貴教 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Chuo Hatsujo KK
Original Assignee
Honda Motor Co Ltd
Chuo Hatsujo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Chuo Hatsujo KK filed Critical Honda Motor Co Ltd
Priority to JP62317056A priority Critical patent/JP2632688B2/en
Publication of JPH01159358A publication Critical patent/JPH01159358A/en
Application granted granted Critical
Publication of JP2632688B2 publication Critical patent/JP2632688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、チタン部材の耐摩耗性と疲れ強度を高める
表面処理方法に関する。
Description: TECHNICAL FIELD The present invention relates to a surface treatment method for improving the wear resistance and fatigue strength of a titanium member.

従来の技術及び発明が解決しようとする問題点 チタンは、軽く、錆を生じ難く、しかも、比強度が高
いことから、近年、様々な分野で使用されるようになつ
たが、相互に、あるいは相手部材と摺動したり、衝突し
たりする部分における摩耗が大きいという欠点があるた
め、イオン窒化をはじめとして、種々のPVD(Physical
Vapor Depo−sition)処理、または、CVD(Chemical Va
por Deposition)処理により、表面に耐摩耗性に優れた
被覆層を形成する方法が試みられているが、部品形状が
複雑な場合には均一な厚さに被覆することができないば
かりでなく、特に、ばねのように、耐摩耗性とともに疲
れ強度が要求される部材においては、シヨツトピーニン
グの実施が不可欠であるにもかかわらず、従来の、PVD
またはCVD処理により形成した被覆層は母材への結合力
が弱く、シヨツトピーニングによつて簡単に剥離してし
まうという欠点があつた。
Problems to be Solved by Conventional Techniques and Inventions Titanium is light, hard to rust, and has a high specific strength, and has recently been used in various fields. There is a drawback that the part that slides or collides with the mating member has a large wear. Therefore, various PVD (Physical
Vapor Depo-sition treatment or CVD (Chemical Vapor
Although a method of forming a coating layer having excellent wear resistance on the surface by a por deposition process has been attempted, not only cannot a uniform thickness be applied when the component shape is complicated, but also in particular. For members that require fatigue strength as well as wear resistance, such as springs, the conventional PVD
Alternatively, the coating layer formed by the CVD process has a weak bonding force to the base material, and has a disadvantage that it is easily peeled off by shot peening.

問題点を解決するための手段 本発明はこのような問題点を解決するための手段とし
て、チタン部材の表面に無電解Niメツキを施し、250〜4
50℃で焼鈍した後、シヨツトピーニングを施す構成とし
た。
Means for Solving the Problems The present invention provides electroless Ni plating on the surface of the titanium member as a means for solving such problems,
After annealing at 50 ° C., shot peening was performed.

発明の作用及び効果 本発明は上記構成になり、チタン部材の表面に無電解
Niメツキを施したから、電解メツキを施した場合のよう
に水素脆性を生ずるおそれがなく、また、従来のPVD、C
VD処理に比べて複雑な形状の部材にも、均一に、かつ、
強固にNi被覆層を形成することができ、しかも、PVD処
理のように高価な真空装置を必要とせず、安価にNi被覆
を形成することが可能であり、次いで、250〜450℃で焼
鈍することによりNi被覆層中からPやBがNi3P、Ni3B等
の化合物として析出してHv1000程度まで高度が高められ
て耐摩耗性が向上するとともに、さらに、その硬度及び
耐摩性が高められたNi被覆層にシヨツトピーニングを施
すことにより圧縮残留応力が付与され、あたかも、チタ
ン部材の周りに硬い殻でタガをはめたように作用して、
チタン部材表面の硬度を高め、かつ、疲労クラツクの発
生及び、その成長を抑えることによつて疲れ強度が向上
する効果がある。
Action and Effect of the Invention The present invention has the above-described structure, and has an electroless surface on a titanium member.
Since Ni plating is applied, there is no danger of hydrogen embrittlement unlike the case of electrolytic plating, and conventional PVD, C
Even for members with complicated shapes compared to VD processing, evenly and
The Ni coating layer can be formed firmly, and the Ni coating can be formed at low cost without the need for expensive vacuum equipment such as PVD processing, and then annealing at 250 to 450 ° C. As a result, P and B are precipitated from the Ni coating layer as compounds such as Ni 3 P and Ni 3 B, and the height is increased to about Hv 1000, and the wear resistance is improved, and further, the hardness and the wear resistance are increased. Compressed residual stress is given by shot peening to the Ni coating layer that has been given, acting as if a hammer was fitted with a hard shell around the titanium member,
This has the effect of increasing the hardness of the surface of the titanium member and suppressing the occurrence and growth of fatigue cracks, thereby improving the fatigue strength.

なお、無電解Niメツキ用の水溶液中にAl2O3等の硬質
の微粒化を混入して複合分散メツキを行なうことによ
り、耐摩耗性がより向上する効果がある。
It is to be noted that mixing a hard atomizer such as Al 2 O 3 into an aqueous solution for electroless Ni plating and performing composite dispersion plating has an effect of further improving wear resistance.

また、これらの処理方法を施したコイルスプリングは
線間接触による摩耗減量が少なく、疲れ寿命が長い効果
がある。
In addition, the coil springs that have been subjected to these treatment methods have the effects of reducing the loss of wear due to line contact and extending the fatigue life.

実施例1 まず、テストピースとして、一般に、Ti−6A1−4Vと
して知られるα−β型Ti合金の丸棒(φ20×5mm)を研
掃後、脱脂、アルカリ洗浄、フツ酸・硝酸液で処理した
後、Ni−4%P(Al2O3分散)、Ni−8%P及びNi−1
%Bの液で、夫々、膜厚20μmの無電解メツキを施し、
その後、200〜500℃で1時間加熱して焼鈍し、φ0.7m
m、Hv600の硬さのカツトワイヤシヨツトを68m/sのスピ
ードで投射してシヨツトピーニングを行なつたものにつ
いて、硬さ、残留応力及び硬鋼片と擦り合わせた場合の
摩耗減量を測定した結果を、夫々、表1、表2、表3に
示す。また、膜厚20μmのNi−8%P無電解メツキを施
したテストピースの断面の顕微鏡写真を第1図に、ま
た、そのテストピースのメツキ層の焼鈍温度の変化によ
る結晶化の進行状況を示すX線回折試験結果を第2図に
示す。
Example 1 First, as a test piece, a round bar (φ20 × 5 mm) of an α-β type Ti alloy generally known as Ti-6A1-4V was polished, then degreased, alkali-washed, and treated with a hydrofluoric acid / nitric acid solution. after, Ni-4% P (Al 2 O 3 dispersion), Ni-8% P and Ni-1
% B solution, each electroless plating with a film thickness of 20 μm,
After that, it is annealed by heating at 200-500 ° C for 1 hour, φ0.7m
Measure the hardness, residual stress and abrasion loss when rubbing with a hard slab for a shot wire shot with a hardness of m, Hv600 projected at a speed of 68 m / s and shot peened. The results obtained are shown in Tables 1, 2, and 3, respectively. FIG. 1 shows a micrograph of a cross section of a test piece having a Ni-8% P electroless plating having a film thickness of 20 μm, and the progress of crystallization due to a change in the annealing temperature of the plating layer of the test piece. FIG. 2 shows the results of the X-ray diffraction test.

上記実施例1の結果から、無電解Niメツキ層はチタン
母材への拡散浸透はほとんど見られず、母材の表面を殻
で覆った状態となり、350℃以上の焼鈍により結晶化が
急速に進み、300〜400℃付近で硬さ及び圧縮残留応力が
最大で摩耗減量が最小となることが判明した。
From the results of Example 1 described above, the electroless Ni plating layer hardly diffused and penetrated into the titanium base material, became a state in which the surface of the base material was covered with a shell, and crystallization was rapidly performed by annealing at 350 ° C. or more. It was found that the hardness and compressive residual stress were maximum at around 300 to 400 ° C., and the wear loss was minimum.

実施例2 Ti−13v−11Cr−3A1の組織を有する析出硬化型のβ型
Ti合金の線材をコイリングし、425℃で20時間の時効処
理して析出硬化させた後、シヨツトピーニングにより表
面を研掃し、さらに脱脂、アルカリ洗浄、フツ酸−硝酸
液処理した後、Ni−8%Pで無電解Niメツキを施して表
4の諸元のコイルばねを製造した。メツキ層の膜厚は10
μm、20μm、30μmの3水準とした。そのあと、300
℃で1時間の硬化処理の続き、φ0.7mmのカツトワイヤ
ーシヨツトで54m/sの投射スピードでシヨツトピーニン
グを施し、供試験材として硬さと、摩耗減量を測定した
結果を表5に示す。ここで摩耗減量とは、1800rpm、50
±25kgf/mm2の低い繰り返し応力で2×107回繰り返し耐
久試験を行なつた際の線間接触による線径の減少量であ
る。
Example 2 β-type precipitation hardening type having a structure of Ti-13v-11Cr-3A1
After coiling the Ti alloy wire, precipitating and hardening by aging at 425 ° C for 20 hours, polishing the surface by shot peening, further degreasing, alkali washing, hydrofluoric acid-nitric acid solution treatment, Ni Electroless Ni plating was performed at −8% P to produce coil springs having specifications shown in Table 4. The thickness of the plating layer is 10
There were three levels of μm, 20 μm, and 30 μm. After that, 300
After hardening treatment at 1 ° C. for 1 hour, shot peening was performed at a projection speed of 54 m / s with a cut wire shot of φ0.7 mm, and the hardness and abrasion loss of the test material were measured. . Here, the wear loss is 1800 rpm, 50
This is the amount of reduction in wire diameter due to line-to-line contact when a durability test is repeated 2 × 10 7 times with a low repetitive stress of ± 25 kgf / mm 2 .

次に上記供試ばねのうち膜厚さ20μmのものを用いて
耐久性試験を行なつた結果を表6に示す。この試験は、
星型疲労試験機を用い、応力条件55±40kgf/mm2で実施
し、平均疲れ寿命(M.T.T.F)を求めた。(n=8) 上記実施例2の結果から、無電解Niメツキを施したチ
タン合金製コイルばねは、硬さが著しく向上して線間接
触により摩耗減量が著しく減少するとともに、疲れ寿命
が著しく向上することが判明した。
Next, Table 6 shows the results of a durability test performed using the test spring having a film thickness of 20 μm. This exam is
The average fatigue life (MTTF) was determined using a star type fatigue tester under a stress condition of 55 ± 40 kgf / mm 2 . (N = 8) From the results of Example 2 above, it was found that the titanium alloy coil springs to which electroless Ni plating had been applied had significantly improved hardness, reduced wear loss due to line-to-line contact, and significantly improved fatigue life. did.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、チタン母材に無電解Niメツキを施したテスト
ピースの断面の金属組織を表わす顕微鏡写真、第2図
は、無電解Niメツキ層の焼鈍温度の変化による結晶化の
進行状況を示すX線回折試験結果である。
FIG. 1 is a micrograph showing a metal structure of a cross section of a test piece in which an electroless Ni plating is applied to a titanium base material, and FIG. 2 shows a progress of crystallization due to a change in an annealing temperature of the electroless Ni plating layer. It is an X-ray diffraction test result shown.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小曽根 敏夫 愛知県西加茂郡三好町大字福田字宮下43 番地の1 中央発條株式会社技術センタ ー内 (72)発明者 五十嵐 貴教 愛知県西加茂郡三好町大字福田字宮下43 番地の1 中央発條株式会社技術センタ ー内 (56)参考文献 SAE Technical Pap er Series 850716 ”Pla ting on Tltanium A lloys”February 18− 21,1985 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Toshio Osone 43, Miyashita, Fukuda-shi, Miyoshi-cho, Nishikamo-gun, Aichi Pref. 43, Miyashita, Fukuda, Chuo-cho, Japan

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】チタン部材の表面に無電解Niメツキを施
し、250〜450℃で焼鈍した後、シヨツトピーニングを施
すことを特徴とするチタン部材の表面処理方法。
1. A method for surface treating a titanium member, comprising applying an electroless Ni plating to the surface of the titanium member, annealing at 250 to 450 ° C., and then subjecting the titanium member to shot peening.
【請求項2】無電解Niメツキ用の水溶液中にAl2O3を混
入して複合分散メツキを行うことを特徴とする特許請求
の範囲第1項記載のチタン部材の表面処理方法。
2. The method according to claim 1, wherein Al 2 O 3 is mixed into an aqueous solution for electroless Ni plating to perform composite dispersion plating.
【請求項3】特許請求の範囲第1項または第2項記載の
処理方法を適用したコイルスプリング。
3. A coil spring to which the processing method according to claim 1 or 2 is applied.
JP62317056A 1987-12-15 1987-12-15 Surface treatment method for titanium member and coil spring using the surface treatment method Expired - Fee Related JP2632688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62317056A JP2632688B2 (en) 1987-12-15 1987-12-15 Surface treatment method for titanium member and coil spring using the surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62317056A JP2632688B2 (en) 1987-12-15 1987-12-15 Surface treatment method for titanium member and coil spring using the surface treatment method

Publications (2)

Publication Number Publication Date
JPH01159358A JPH01159358A (en) 1989-06-22
JP2632688B2 true JP2632688B2 (en) 1997-07-23

Family

ID=18083926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62317056A Expired - Fee Related JP2632688B2 (en) 1987-12-15 1987-12-15 Surface treatment method for titanium member and coil spring using the surface treatment method

Country Status (1)

Country Link
JP (1) JP2632688B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2690598B2 (en) * 1990-05-21 1997-12-10 日本パーカライジング株式会社 Method of forming a film with excellent heat and wear resistance and sliding resistance on titanium or titanium alloy
US8065898B2 (en) 2008-07-29 2011-11-29 Hamilton Sundstrand Corporation Method and article for improved adhesion of fatigue-prone components
DE102009025052A1 (en) 2009-06-10 2011-04-28 Gottwald Port Technology Gmbh System for changing a battery of a ground-based transport vehicle, in particular a driverless heavy-duty transport vehicle for ISO containers
DE102009025051A1 (en) 2009-06-10 2010-12-16 Gottwald Port Technology Gmbh Floor-bound heavy-duty transport vehicle, in particular driverless heavy duty transport vehicle for ISO containers
CN112805175A (en) * 2018-10-12 2021-05-14 沃尔沃卡车集团 Battery pack arrangement for a vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAE Technical Paper Series 850716 "Plating on Tltanium Alloys"February 18−21,1985

Also Published As

Publication number Publication date
JPH01159358A (en) 1989-06-22

Similar Documents

Publication Publication Date Title
JP4078467B2 (en) Surgical needle
JP2000514507A (en) Surface oxidation of titanium or titanium alloy products
JP2002030344A (en) Method for modifying surface of alloy steel for machine structure, and surface modified material
JP2632688B2 (en) Surface treatment method for titanium member and coil spring using the surface treatment method
US5104463A (en) Blackening process for stainless steels
US3516874A (en) Method of increasing the fatigue life of metal parts
CN114934247B (en) Surface high-frequency induction treatment hardening method suitable for regular profile TC4 titanium alloy
JP3139666B2 (en) Spring excellent in nitriding characteristics and method of manufacturing the same
JP3064908B2 (en) Carburized and hardened watch parts or accessories and their methods of manufacture
JP3064909B2 (en) Carburized hardware and its manufacturing method
JPH08289927A (en) Inplant in bone and its manufacture
JP2002302715A (en) Method for manufacturing steel product
JP4116383B2 (en) Oil temper wire for valve spring or spring and manufacturing method thereof
US3439188A (en) Method for treating titanium
JP2631658B2 (en) Surface treatment method of steel spring
JPS6372894A (en) Coating of material such as titanium
JP3301088B2 (en) Spring with excellent fatigue resistance
CN111218583A (en) Low-cost small-wire-diameter titanium alloy spring and preparation method and application thereof
JPH06299307A (en) Method for modifying surface of precipitation hardening type alloy
JPH02133578A (en) Production of beta-ti alloy spring
JPH05156351A (en) Manufacture of coil spring with oil tempered wire
JPH05320948A (en) Manufacture of coil spring made of titanium alloy
JPH11343565A (en) Titanium base alloy material having hardened layer on surface and its production
JPH06158158A (en) Production of coil spring
JP2943509B2 (en) Block for continuously variable transmission

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees