JP2002030344A - Method for modifying surface of alloy steel for machine structure, and surface modified material - Google Patents

Method for modifying surface of alloy steel for machine structure, and surface modified material

Info

Publication number
JP2002030344A
JP2002030344A JP2000223865A JP2000223865A JP2002030344A JP 2002030344 A JP2002030344 A JP 2002030344A JP 2000223865 A JP2000223865 A JP 2000223865A JP 2000223865 A JP2000223865 A JP 2000223865A JP 2002030344 A JP2002030344 A JP 2002030344A
Authority
JP
Japan
Prior art keywords
alloy steel
treatment
test
shot
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000223865A
Other languages
Japanese (ja)
Other versions
JP4164995B2 (en
Inventor
Katsuyuki Matsui
勝幸 松井
Hashira Andou
柱 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2000223865A priority Critical patent/JP4164995B2/en
Publication of JP2002030344A publication Critical patent/JP2002030344A/en
Application granted granted Critical
Publication of JP4164995B2 publication Critical patent/JP4164995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PROBLEM TO BE SOLVED: To provide a method for modifying the surface of alloy steel for machine structures excellent in fatigue strength under the load condition in which stress ratio is positive, and to provide a surface modified material. SOLUTION: In this method for modifying the surface of alloy steel for machine structures, the surface of alloy steel for machine structures is subjected to vacuum carburizing treatment and is thereafter subjected to two step shot peening treatment in which the grain size of shots in the first shot peening treatment is smaller than that in the second shot peening treatment to introduce high compressive residual stress into the region directly below the surface of the alloy steel for machine structures and further to reduce the surface roughness. Moreover, as the prestage of the two step shot peening treatment superrapid-short time heating and rapid cooling treatment may be performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、機械構造用合金鋼
の表面改質方法及び表面改質材に係り、特に、歯車の歯
面改質方法及び歯面改質材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a material for modifying the surface of alloy steel for machine structures, and more particularly to a method and a material for modifying the tooth surface of a gear.

【0002】[0002]

【従来の技術】物流の高効率化、環境保全、及び資源保
護の観点から、自動車用エンジンの高出力化や自動車の
軽量化が図られている。このため、自動車用の歯車にお
いては、より一層の疲労強度の向上が求められている。
2. Description of the Related Art From the viewpoints of higher efficiency of distribution, environmental protection and resource protection, higher output of automobile engines and weight reduction of automobiles have been attempted. For this reason, further improvement in fatigue strength is required for gears for automobiles.

【0003】自動車用歯車の疲労強度を向上させるべ
く、歯車の表面(歯面)に様々な表面改質処理が施され
ている。この表面改質処理としては、従来、浸炭焼入れ
・焼戻し処理や、浸炭焼入れ・焼戻し処理とショットピ
ーニング処理の複合処理が多く用いられている。
[0003] In order to improve the fatigue strength of automotive gears, various surface modification treatments have been applied to the gear surfaces (tooth surfaces). As the surface modification treatment, conventionally, a carburizing quenching / tempering treatment, or a combined treatment of a carburizing quenching / tempering treatment and a shot peening treatment is often used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の処理を施してなる歯車の、応力比(R)が正(例え
ば、0.1)の荷重条件の時の疲労限は、せいぜい10
00MPa程度であり、疲労強度の更なる向上が望まれ
ている。
However, the gear subjected to these treatments has a fatigue limit of at most 10 under a load condition in which the stress ratio (R) is positive (for example, 0.1).
It is about 00 MPa, and further improvement in fatigue strength is desired.

【0005】以上の事情を考慮して創案された本発明の
目的は、応力比が正の荷重条件の時の疲労強度に優れた
機械構造用合金鋼の表面改質方法及び表面改質材を提供
することにある。
An object of the present invention, which has been devised in consideration of the above circumstances, is to provide a method and a surface modifying material for an alloy steel for machine structural use having excellent fatigue strength under a positive load condition with a stress ratio. To provide.

【0006】[0006]

【課題を解決するための手段】上記目的を達成すべく本
発明に係る機械構造用合金鋼の表面改質方法は、機械構
造用合金鋼の表面に真空浸炭処理を施した後、その表面
に、1段目のショット粒径よりも2段目のショット粒径
が小さいダブルショットピーニング処理を施すものであ
る。
Means for Solving the Problems In order to achieve the above object, a method for modifying the surface of alloy steel for machine structure according to the present invention comprises applying a vacuum carburizing treatment to the surface of the alloy steel for machine structure and then applying the surface to the surface. First, a double shot peening process is performed in which the shot diameter of the second shot is smaller than that of the first shot.

【0007】以上の方法によれば、機械構造用合金鋼の
表面近傍の硬さが硬くなり、表面における表面異常組織
の生成を防止でき、組織中の残留オーステナイト量を低
減させ、かつ、表面に高い圧縮残留応力を導入すること
ができる。また、機械構造用合金鋼の表面粗さを低下さ
せることができる。
[0007] According to the above method, the hardness of the alloy steel for machine structural use near the surface is increased, the formation of an abnormal surface structure on the surface can be prevented, the amount of retained austenite in the structure can be reduced, and High compressive residual stress can be introduced. Further, the surface roughness of the alloy steel for machine structural use can be reduced.

【0008】また、上記ダブルショットピーニング処理
の前工程に、超急速・短時間の加熱急冷処理を施しても
よい。
In addition, an ultra-rapid and short-time heating and quenching treatment may be performed before the double shot peening treatment.

【0009】また、上記ダブルショットピーニング処理
として、ショット粒径が400〜800μmの1段目の
ショットピーニング処理を施した後、ショット粒径が1
00μm以下の2段目のショットピーニング処理を施す
ことが好ましい。
Further, after the first-stage shot peening with a shot grain size of 400 to 800 μm is performed as the double shot peening process, the shot grain size becomes 1
It is preferable to perform a second-stage shot peening process of not more than 00 μm.

【0010】また、上記加熱急冷処理として、輪郭高周
波焼入れ処理を施すことが好ましい。
Further, it is preferable to carry out a contour induction hardening treatment as the heating and quenching treatment.

【0011】一方、本発明に係る機械構造用合金鋼の表
面改質材は、機械構造用合金鋼の表面に真空浸炭処理を
施し、その真空浸炭処理後の表面に、1段目のショット
粒径よりも2段目のショット粒径が小さいダブルショッ
トピーニング処理を施してなるものである。
On the other hand, the surface modifying material for alloy steel for machine structure according to the present invention is obtained by subjecting the surface of the alloy steel for machine structure to vacuum carburizing, and applying the first stage shot grain to the surface after the vacuum carburizing. This is obtained by performing a double shot peening process in which the shot diameter of the second stage is smaller than the diameter.

【0012】また、本発明に係る機械構造用合金鋼の表
面改質材は、機械構造用合金鋼の表面に真空浸炭処理を
施し、その真空浸炭処理後の表面に、超急速・短時間の
加熱急冷処理を施し、その加熱急冷処理後の表面に、1
段目のショット粒径よりも2段目のショット粒径が小さ
いダブルショットピーニング処理を施してなるものであ
る。
Further, the surface modifying material for alloy steel for machine structure according to the present invention is obtained by subjecting the surface of the alloy steel for machine structure to vacuum carburizing treatment, and applying the ultra-rapid and short-time treatment to the surface after the vacuum carburizing treatment. The heating and quenching treatment is performed, and 1
This is obtained by performing a double shot peening process in which the second step shot diameter is smaller than the second step shot particle diameter.

【0013】以上の構成によれば、表面近傍の硬さが硬
く、表面に異常組織が殆どなく、組織中の残留オーステ
ナイト量が低く、かつ、表面に導入された圧縮残留応力
が高い機械構造用合金鋼の表面改質材を得ることができ
る。
According to the above construction, the hardness near the surface is hard, there is almost no abnormal structure on the surface, the amount of retained austenite in the structure is low, and the compressive residual stress introduced to the surface is high for mechanical structures. An alloy steel surface modifier can be obtained.

【0014】また、上記機械構造用合金鋼の化学成分
が、C:0.15〜0.25wt%、Mn:0.40〜
1.00wt%、Mo:0.15〜0.60wt%、C
r:0.05〜1.35wt%、Ni:0.05〜2.
00wt%、Si:0.03〜0.35wt%、P:
0.030wt%以下、S:0.030wt%以下、残
部がFe及び不可避不純物であることが好ましい。
The chemical composition of the alloy steel for machine structural use is as follows: C: 0.15 to 0.25 wt%, Mn: 0.40 to
1.00 wt%, Mo: 0.15 to 0.60 wt%, C
r: 0.05-1.35 wt%, Ni: 0.05-2.
00 wt%, Si: 0.03 to 0.35 wt%, P:
It is preferable that 0.030 wt% or less, S: 0.030 wt% or less, and the balance be Fe and unavoidable impurities.

【0015】また、表面炭素濃度が0.7〜0.9wt
%であることが好ましい。
The surface carbon concentration is 0.7 to 0.9 wt.
%.

【0016】[0016]

【発明の実施の形態】以下、本発明の好適一実施の形態
を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of the present invention will be described.

【0017】本発明者らが鋭意研究した結果、応力比
(R)が正の荷重条件の時には、以下に示すことが、疲
労強度向上にとって重要であるということを見出だし
た。
As a result of extensive studies by the present inventors, it has been found that when the stress ratio (R) is a positive load condition, the following is important for improving the fatigue strength.

【0018】(1) 表面近傍の硬さ(HV)を可能な限り
向上させる。
(1) The hardness (HV) near the surface is improved as much as possible.

【0019】(2) (1) と共に、表面直下に大きな圧縮残
留応力を導入する。
(2) Along with (1), a large compressive residual stress is introduced just below the surface.

【0020】(3) き裂進展の第I段階(Stage I)にお
けるき裂伝播距離を短くし、降伏応力を大きくするため
に、可能な限り結晶粒径を小さくする。
(3) In order to shorten the crack propagation distance in Stage I of crack propagation and increase the yield stress, the crystal grain size is made as small as possible.

【0021】以上、(1) 〜(3) に基づいて、R≧0の荷
重条件の時、浸炭焼入処理を施した機械構造用合金鋼の
疲労強度を向上させる方法を詳細に検討すると、以下の
5つの項目、すなわち、 粒界酸化層等の表面異常組織生成の低減・防止、 結晶粒の微細化、 残留オーステナイト(γR )量の低減、 表面直下の高硬さ化、 表面直下に大きな圧縮残留応力(好ましくは降伏応
力に等しい圧縮残留応力)を導入、 が重要な因子となる。
As described above, based on the above (1) to (3), a method for improving the fatigue strength of a carburized and quenched alloy steel for a machine structure under a load condition of R ≧ 0 will be examined in detail. The following five items, namely, reduction / prevention of the formation of abnormal surface structure such as grain boundary oxide layer, refinement of crystal grains, reduction of retained austenite (γ R ), high hardness just below the surface, just below the surface Introducing a large compressive residual stress (preferably a compressive residual stress equal to the yield stress) is an important factor.

【0022】尚、ここで用いる機械構造用合金鋼の定義
は、合金鋼素材及びそれを用いた部材である。
The alloy steel for machine structure used herein is defined as an alloy steel material and a member using the same.

【0023】先ず、を達成するためには、浸炭炉内の
雰囲気の低酸素分圧化が必要である。そのための浸炭処
理法として、真空浸炭(Vacuum Carburizing(以下、V
Cと示す))を用いる。
First, in order to achieve the above, it is necessary to reduce the oxygen partial pressure of the atmosphere in the carburizing furnace. Vacuum carburizing (hereinafter referred to as V)
C))).

【0024】次に、を達成するためには、焼入れ時
に、オーステナイト化温度への急速加熱や、急熱・急冷
の繰返しが重要となる。それらを実現可能な焼入れ方法
として、超急速・短時間の加熱急冷処理である輪郭高周
波焼入れ(Contour InductionHardening (以下、CI
Hと示す))法が有用である。ここで、VC処理を施し
た機械構造用合金鋼に、CIH処理を施すことにより、
硬さの向上と結晶粒の微細化を同時に達成することが可
能となる。また、CIH処理により、機械構造用合金鋼
の熱処理ひずみを低減させたり、表面直下に大きな圧縮
残留応力を導入することができる。
Next, in order to achieve the following, it is important to rapidly heat the steel to the austenitizing temperature and to repeatedly heat and cool rapidly during quenching. As a quenching method that can realize them, Contour Induction Hardening (hereinafter referred to as CI) is an ultra-rapid and short-time heating and quenching treatment.
H)) method is useful. Here, by subjecting the VC-processed alloy steel for machine structural use to CIH processing,
It is possible to simultaneously improve the hardness and refine the crystal grains. Further, by the CIH treatment, it is possible to reduce the heat treatment strain of the alloy steel for machine structural use and to introduce a large compressive residual stress immediately below the surface.

【0025】次に、〜を同時に達成する手段とし
て、ショットピーニング法が挙げられる。特に、ダブル
ショットピーニング(Double Shot Peening (以下、D
SPと示す))とし、かつ、2段目のピーニングに用い
るショット粒径を1段目のピーニングに用いるショット
粒径よりも小さい100μm以下とすることで、機械構
造用合金鋼の疲労強度の向上の上で重要な、表面直下の
残留応力分布や表面粗さを大幅に改善することができ
る。
Next, as a means for simultaneously achieving the above, there is a shot peening method. In particular, Double Shot Peening (hereinafter D)
SP)), and by setting the shot grain size used for the second stage peening to 100 μm or less, which is smaller than the shot grain size used for the first stage peening, to improve the fatigue strength of the alloy steel for machine structural use. It is possible to greatly improve the residual stress distribution and surface roughness just below the surface, which are important in the above.

【0026】以上を踏まえ、本発明に係る機械構造用合
金鋼の表面改質方法は、先ず、機械構造用合金鋼(例え
ば、自動車用歯車)の表面に、表面炭素濃度狙い値が
0.7〜0.9wt%のVC処理を施す。
Based on the above, the method for modifying the surface of alloy steel for machine structures according to the present invention firstly sets the surface carbon alloy target steel (for example, gears for automobiles) to a surface carbon concentration target value of 0.7. A VC treatment of about 0.9 wt% is performed.

【0027】次に、VC処理後の機械構造用合金鋼の表
面に、ショット粒径が400〜800μmの1段目のシ
ョットピーニング処理およびショット粒径が100μm
以下の2段目のショットピーニング処理を順次施すこと
で、表面改質処理がなされた機械構造用合金鋼(機械構
造用合金鋼の表面改質材)が得られる。
Next, a first-stage shot peening treatment with a shot grain size of 400 to 800 μm and a shot grain size of 100 μm
By successively performing the following second-stage shot peening treatment, alloy steel for machine structure (surface modified material of alloy steel for machine structure) subjected to surface modification treatment is obtained.

【0028】ここで、機械構造用合金鋼としては、応力
比が正の荷重条件の時に高い疲労強度が要求される合金
鋼であればよく、特に限定するものではないが、好まし
くは自動車用歯車鋼、一般的な肌焼鋼などが挙げられ
る。この自動車用歯車鋼としては、例えば、化学成分
が、C:0.15〜0.25wt%、好ましくは0.1
8〜0.22wt%、より好ましくは0.20前後、M
n:0.40〜1.00wt%、好ましくは0.80〜
0.90wt%、より好ましくは0.85前後、Mo:
0.15〜0.60wt%、好ましくは0.30〜0.
50wt%、より好ましくは0.40前後、Cr:0.
05〜1.35wt%、好ましくは0.08〜0.12
wt%、より好ましくは0.10前後、Ni:0.05
〜2.00wt%、好ましくは0.08〜0.12wt
%、より好ましくは0.10前後、Si:0.03〜
0.35wt%、好ましくは0.05〜0.07wt
%、P:0.030wt%以下、S:0.030wt%
以下、残部がFe及び不可避不純物であるものが挙げら
れる。
Here, the alloy steel for machine structure may be any alloy steel that requires a high fatigue strength when the stress ratio is a positive load condition, and is not particularly limited. Steel, general case hardened steel, and the like. As the automotive gear steel, for example, the chemical component is C: 0.15 to 0.25 wt%, preferably 0.1%.
8 to 0.22 wt%, more preferably around 0.20, M
n: 0.40-1.00 wt%, preferably 0.80-1.00
0.90 wt%, more preferably around 0.85, Mo:
0.15 to 0.60 wt%, preferably 0.30 to 0.
50 wt%, more preferably around 0.40, Cr: 0.
05 to 1.35 wt%, preferably 0.08 to 0.12
wt%, more preferably around 0.10, Ni: 0.05
~ 2.00wt%, preferably 0.08 ~ 0.12wt
%, More preferably around 0.10, Si: 0.03 to
0.35 wt%, preferably 0.05 to 0.07 wt
%, P: 0.030 wt% or less, S: 0.030 wt%
In the following, those whose balance is Fe and inevitable impurities are mentioned.

【0029】また、VC処理の処理条件は、機械構造用
合金鋼の表面改質材で許容される表面異常組織の量(又
は表面異常組織層の深さ)に応じて適宜選択されるもの
であり、特に限定するものではない。
The treatment conditions of the VC treatment are appropriately selected according to the amount of the abnormal surface structure (or the depth of the abnormal surface structure layer) allowed in the surface modifier of the alloy steel for machine structural use. There is no particular limitation.

【0030】さらに、DSP処理の処理条件は、機械構
造用合金鋼の表面改質材に要求される残留オーステナイ
ト量、表面直下の硬さ、及び表面直下に導入される圧縮
残留応力の大きさに応じて適宜選択されるものであり、
特に限定するものではない。ここで、2段目のショット
ピーニング処理のショット粒径を100μm以下に限定
したのは、ショット粒径が100μmを超えると、最大
圧縮残留応力の得られる表面からの深さは深くなるもの
の、表面粗さの改善(表面粗さをより小さくする)効果
が望めなく(又は殆ど望めなく)なるためである。
Further, the processing conditions of the DSP processing are determined by the amount of residual austenite required for the surface modifier of the alloy steel for machine structural use, the hardness just below the surface, and the magnitude of the compressive residual stress introduced just below the surface. It is appropriately selected according to the
There is no particular limitation. Here, the shot grain size in the second-stage shot peening treatment is limited to 100 μm or less. When the shot grain size exceeds 100 μm, the depth from the surface where the maximum compressive residual stress is obtained becomes deep, This is because the effect of improving the roughness (reducing the surface roughness) cannot be expected (or hardly expected).

【0031】本発明に係る機械構造用合金鋼の表面改質
方法及び表面改質材によれば、機械構造用合金鋼の表面
にVC処理を施すことで、疲労強度上有害な粒界酸化な
どの表面異常組織が生成しない(又は殆ど生成しな
い)。
According to the method and the surface modifying material of the alloy steel for machine structure according to the present invention, by subjecting the surface of the alloy steel for machine structure to VC treatment, the grain boundary oxidation which is harmful to the fatigue strength can be obtained. No (or almost no) surface abnormal tissue is formed.

【0032】また、VC処理後にDSP処理を施すこと
で、ピーニング効果により、(a) 機械構造用合金鋼の表
面改質材の、表面から深さ100μm程度までの領域の
残留オーステナイト量が著しく減少し、(b) 機械構造用
合金鋼の表面改質材の、表面部の最高硬さが1000H
V以上の超高硬さとなり、(c) 機械構造用合金鋼の表面
改質材の、表面直下に導入される最大圧縮残留応力が1
800MPa以上と極めて高くなると共に、最大の圧縮
残留応力値が表面に位置するようになる。ここで、(a)
は、ピーニング時に加工誘起マルテンサイト変態が起こ
り、残留オーステナイトがマルテンサイト化したためで
あり、(c) は、通常のダブルショットピーニングの効果
と(a) の効果との重畳効果によるものである。
Further, by performing the DSP treatment after the VC treatment, (a) the amount of retained austenite in the region from the surface to a depth of about 100 μm of the surface modifier of the alloy steel for machine structure is significantly reduced due to the peening effect. (B) The maximum hardness of the surface portion of the surface modifier of the alloy steel for machine structural use is 1000H.
(C) The maximum compressive residual stress introduced just below the surface of the surface modifier of alloy steel for machine structure is 1
The pressure becomes extremely high at 800 MPa or more, and the maximum compressive residual stress value is located on the surface. Where (a)
(C) is due to the effect of superposition of the effect of normal double shot peening and the effect of (a), because work-induced martensite transformation occurs during peening and retained austenite is transformed into martensite.

【0033】さらに、前述の(a) 〜(c) の効果により、
本発明に係る機械構造用合金鋼の表面改質材は、応力比
が正(例えば、R=0.1)の荷重条件の時、疲労限が
1800MPa以上となる。この値は、機械構造用合金
鋼にVC処理のみを施した従来の表面改質材と比較する
と、2倍以上の値である。この時、疲労限まで到達した
(例えば、破断までのサイクル数が107 回の)機械構
造用合金鋼の表面改質材の残留応力を計測すると、表面
の最大圧縮残留応力は若干低下するものの、それでも1
500MPa以上の極めて高い圧縮残留応力が存在して
おり、また、内部の圧縮残留応力分布は疲労試験の前後
で殆ど変化していない。すなわち、本発明に係る機械構
造用合金鋼の表面改質材は、優れた疲労強度を有してい
る。
Further, due to the above-mentioned effects (a) to (c),
The fatigue limit of the surface modifier for a mechanical structural alloy steel according to the present invention is 1800 MPa or more when the stress ratio is a positive load condition (for example, R = 0.1). This value is more than twice as large as that of a conventional surface modifier in which only VC treatment is applied to alloy steel for machine structural use. At this time, it has reached the fatigue limit (e.g., the number of cycles to failure is 10 7 times) when measuring the residual stress of the surface modifier of the machine structural alloy steel, although the maximum compressive residual stress of the surface is reduced slightly , But still 1
An extremely high compressive residual stress of 500 MPa or more exists, and the internal compressive residual stress distribution hardly changes before and after the fatigue test. That is, the surface modifier for alloy steel for machine structural use according to the present invention has excellent fatigue strength.

【0034】次に、他の実施の形態の機械構造用合金鋼
の表面改質方法及び表面改質材について説明する。
Next, a description will be given of a method of modifying the surface of alloy steel for machine structural use and a surface modifier according to another embodiment.

【0035】本実施の形態に係る機械構造用合金鋼の表
面改質方法は、先ず、機械構造用合金鋼(例えば、自動
車用歯車)の表面に、表面炭素濃度狙い値が0.7〜
0.9wt%のVC処理を施す。
In the method for modifying the surface of alloy steel for machine structure according to the present embodiment, first, the target value of the surface carbon concentration on the surface of the alloy steel for machine structure (for example, gears for automobiles) is set to 0.7 to 0.7.
A 0.9 wt% VC process is performed.

【0036】次に、VC処理後の機械構造用合金鋼の表
面に、超急速・短時間のCIH処理(加熱急冷処理)を
施す。
Next, the surface of the alloy steel for machine structural use after the VC treatment is subjected to an ultra-rapid and short-time CIH treatment (heating and quenching treatment).

【0037】その後、CIH処理後の機械構造用合金鋼
の表面に、ショット粒径が400〜800μmの1段目
のショットピーニング処理およびショット粒径が100
μm以下の2段目のショットピーニング処理を順次施す
ことで、表面改質処理がなされた機械構造用合金鋼(機
械構造用合金鋼の表面改質材)が得られる。
Thereafter, a first-stage shot peening treatment with a shot grain size of 400 to 800 μm and a shot grain size of 100 mm were applied to the surface of the alloy steel for machine structural use after the CIH treatment.
By successively performing the second-stage shot peening treatment of μm or less, alloy steel for machine structure (surface modified material of alloy steel for machine structure) which has been subjected to surface modification treatment can be obtained.

【0038】ここで、CIH処理の処理条件は、機械構
造用合金鋼の表面改質材に要求される硬さ及び結晶粒度
に応じて適宜選択されるものであり、特に限定するもの
ではない。
Here, the treatment conditions of the CIH treatment are appropriately selected according to the hardness and the grain size required for the surface modifier of the alloy steel for machine structural use, and are not particularly limited.

【0039】本実施の形態に係る機械構造用合金鋼の表
面改質方法及び表面改質材においても、本発明に係る機
械構造用合金鋼の表面改質方法及び表面改質材と同様の
作用効果を奏することは言うまでもない。
The surface modifying method and the surface modifying material for the alloy steel for machine structure according to the present embodiment also have the same functions as the surface modifying method and the surface modifying material for the alloy steel for machine structure according to the present invention. It goes without saying that it works.

【0040】また、本実施の形態によれば、VC処理と
DSP処理との間の工程で、CIH処理を施すことで、
二次焼入効果によって、結晶粒径がより微細になるとい
う新たな効果を発揮する。これによって、機械構造用合
金鋼の表面改質材の疲労限が更に高くなる(例えば、本
発明に係る機械構造用合金鋼の表面改質材と比較して1
0数%以上も高くなる)。
According to the present embodiment, CIH processing is performed in the step between the VC processing and the DSP processing,
Due to the secondary quenching effect, a new effect of making the crystal grain size finer is exhibited. Thereby, the fatigue limit of the surface modified material of the alloy steel for machine structure is further increased (for example, as compared with the surface modified material of the alloy steel for machine structure according to the present invention, the fatigue limit is 1%).
0% or more).

【0041】[0041]

【実施例】機械構造用合金鋼として、NiおよびMoの
含有量を高くして浸炭層を強靭化し、また、Siおよび
Crの含有量を低くして表面異常層の低減を狙った高強
度歯車用鋼(大同特殊鋼(株)製(以下、DSG1鋼と
示す))を用いた。ここで、このDSG1鋼の化学成分
組成は、Cが0.19wt%、Mnが0.84wt%、
Moが0.4wt%、Crが0.107wt%、Niが
0.09wt%、Siが0.06wt%、Pが0.01
0wt%、およびSが0.019wt%であり、残部が
Fe及び不可避不純物である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS High-strength gears as alloy steels for machine structural use aimed at increasing the contents of Ni and Mo to strengthen the carburized layer and reducing the contents of Si and Cr to reduce the surface abnormal layer. A steel for use (manufactured by Daido Steel Co., Ltd. (hereinafter, referred to as DSG1 steel)) was used. Here, the chemical composition of this DSG1 steel is as follows: C is 0.19 wt%, Mn is 0.84 wt%,
Mo: 0.4 wt%, Cr: 0.107 wt%, Ni: 0.09 wt%, Si: 0.06 wt%, P: 0.01
0 wt%, S is 0.019 wt%, and the balance is Fe and inevitable impurities.

【0042】DSG1鋼からなるφ80mmの棒鋼に、
熱間鍛造加工を施してφ130mmに形成した後、焼鈍
処理を施し、ビッカース硬さが約200HVの棒鋼を作
製した。この棒鋼に切削加工を施し、モジュールが3、
歯数が36、右捩れ角度が17°、圧力角が14°3
0′、およびオーバーバール径が123.584mmの
歯車を4つ作製した。各歯車に異なる表面改質処理を施
し、それぞれ供試歯車1〜4とした。
In a steel bar of φ80 mm made of DSG1 steel,
After performing hot forging to form φ130 mm, annealing was performed to produce a steel bar having a Vickers hardness of about 200 HV. This bar is cut and the module is 3,
36 teeth, right twist angle 17 °, pressure angle 14 ° 3
Four gears having 0 'and an overbar diameter of 123.584 mm were produced. Each gear was subjected to a different surface modification treatment to obtain test gears 1-4.

【0043】ここで、供試歯車1はVC(真空浸炭)処
理のみを施したもの、供試歯車2はVC処理後にDSP
(ダブルショットピーニング)処理を施したもの、供試
歯車3はVC処理後にCIH(輪郭高周波焼入れ)処理
を施したもの、供試歯車4はVC処理後にCIH処理を
施し、その後、DSP処理を施したものである。
Here, the test gear 1 was subjected to only the VC (vacuum carburizing) treatment, and the test gear 2 was subjected to the DSP after the VC treatment.
(Double shot peening) treatment, the test gear 3 was subjected to CIH (contour induction hardening) treatment after the VC treatment, and the test gear 4 was subjected to the CIH treatment after the VC treatment, and then subjected to the DSP treatment. It was done.

【0044】VC処理の加熱は誘導加熱により行うと共
に、浸炭ガスとしてはプロパンガスを用い、炉内圧力は
6.67×10-2kPa、表面炭素濃度狙い値は0.8
wt%とした。また、浸炭処理条件は、図1に示すよう
に、先ず、1223Kで2880秒(48分)の浸炭処
理を行った後、1173Kで60秒の1次浸炭処理を施
し、窒素ガスによる冷却を行う。続いて、433Kで7
200秒(2時間)の2次浸炭処理を施し、自然冷却を
行った。
The heating in the VC treatment is performed by induction heating, propane gas is used as the carburizing gas, the furnace pressure is 6.67 × 10 −2 kPa, and the target value of the surface carbon concentration is 0.8.
wt%. As shown in FIG. 1, the carburizing conditions are as follows: first, carburizing is performed at 1223K for 2880 seconds (48 minutes), then primary carburizing is performed at 1173K for 60 seconds, and cooling with nitrogen gas is performed. . Next, 7 at 433K
A secondary carburizing treatment was performed for 200 seconds (2 hours), and natural cooling was performed.

【0045】CIH処理は、図2に示すように、先ず、
周波数が3kHzの高周波を用い、1.5秒で925K
まで超急速・短時間の加熱を行った後、0.9秒放置
し、その後、周波数が150kHzの高周波を用い、
0.2秒で1137Kまで超急速・短時間の加熱を行
い、スプレー焼入(spray hardening )を行う。続い
て、周波数が3kHzの高周波を用い、0.5秒で48
3Kまで超急速・短時間の加熱を行った後、2.0秒放
置し、その後、水冷を行う。
In the CIH process, as shown in FIG.
Using high frequency of 3kHz, 925K in 1.5 seconds
After heating for ultra-rapid and short time until then, leave for 0.9 seconds, then use a high frequency of 150 kHz,
Ultra-rapid, short-time heating to 1137K in 0.2 seconds, spray hardening. Subsequently, using a high frequency of 3 kHz, 48 seconds in 0.5 seconds.
After heating up to 3K for a very rapid and short time, leave it for 2.0 seconds, and then perform water cooling.

【0046】DSP処理における1段目のショットピー
ニングの条件は、空気圧が490kPa、ノズル径が1
0mm、ショット粒径が0.6mm、ショット硬度が約
700HV、アークハイトが0.35mmCである。ま
た、2段目のショットピーニングの条件は、空気圧が3
92kPa、ノズル径が4mm、ショット粒径が0.0
8mm、ショット硬度が約700HV、アークハイトが
0.26mmNである。
The conditions of the first stage shot peening in the DSP processing are as follows: air pressure is 490 kPa, nozzle diameter is 1
The shot hardness is 0 mm, the shot particle diameter is 0.6 mm, the shot hardness is about 700 HV, and the arc height is 0.35 mmC. The condition of the second shot peening is that the air pressure is 3
92 kPa, nozzle diameter 4 mm, shot particle diameter 0.0
The shot hardness is 8 mm, the shot hardness is about 700 HV, and the arc height is 0.26 mmN.

【0047】(試験1)各供試歯車1〜4の歯底R部を
ウィンドウ法でマスキングした後、所定の深さまで電解
研磨し、残留オーステナイト(γR )量および残留応力
(σr )の測定を行った。γR 量は、マルテンサイトと
γR のそれぞれの回折プロファイル面積比から求めた。
(Test 1) The root portions R of the test gears 1 to 4 were masked by a window method, and then electrolytically polished to a predetermined depth to determine the amount of residual austenite (γ R ) and residual stress (σ r ). A measurement was made. gamma R content was determined from the respective diffraction profile area ratio of martensite and gamma R.

【0048】ここで、残留オーステナイト(γR )量お
よび残留応力(σr )の測定装置としては、微小部X線
測定装置を用いた。また、γR 量およびσr の測定部位
は、曲げ疲労強度において特に重要な歯底フィレットR
部の歯形方向とした。さらに、γR 量およびσr の測定
には、X線としてCr−Kα 線を用い、入射X線のビ
ーム径は0.3mmとした。
Here, as a device for measuring the amount of residual austenite (γ R ) and the residual stress (σ r ), a minute portion X-ray measuring device was used. Also, gamma R amount and the measurement site of sigma r is bent particularly important tooth bottom fillet R in fatigue strength
Of the tooth profile. Furthermore, the measurement of gamma R amount and sigma r, using Cr-K alpha ray as an X-ray beam diameter of the incident X-ray was set to 0.3 mm.

【0049】(試験2)各供試歯車1〜4について、疲
労試験を行った。疲労試験方法としては、加圧用シャフ
ト側の歯と固定用シャフト側の歯との間に荷重を負荷す
る2歯同時疲労試験を採用した。2歯同時疲労試験は、
疲労限まで到達する試験体数が2個であることから、信
頼性が高い疲労試験方法である。予め、負荷歯の歯底R
部の鈍角側端部に貼付けた歪みゲージ(ゲージ長は0.
2mm)出力と荷重との関係を求めておき、この関係か
ら歯元応力を評価した。負荷条件は、応力比(R;σ
min/σmax )を0.1と一定、周波数を10Hz、応
力波形を正弦波とした。尚、歯車の疲労限は、破断まで
のサイクル数を107 回とした時の繰返し応力とした。
(Test 2) A fatigue test was performed on each of the test gears 1 to 4. As a fatigue test method, a two-tooth simultaneous fatigue test in which a load was applied between the teeth on the pressing shaft side and the teeth on the fixing shaft side was adopted. Two teeth simultaneous fatigue test
Since the number of test pieces reaching the fatigue limit is two, this is a highly reliable fatigue test method. In advance, the root R of the loaded tooth
Strain gauge attached to the obtuse end of the section
2 mm) The relationship between the output and the load was determined, and the root stress was evaluated from this relationship. The load condition is the stress ratio (R; σ
min / σ max ) was fixed at 0.1, the frequency was 10 Hz, and the stress waveform was a sine wave. In addition, the fatigue limit of the gear, and the number of cycles to failure and repeated stress at the time of the 10 seven times.

【0050】先ず、表面改質部の特性について評価を行
う。
First, the characteristics of the surface modified portion are evaluated.

【0051】(1) 表面粗さ 供試歯車1の表面粗さ(Rmax )は6.0μmであっ
た。供試歯車2のRmaxは5.6μmであり、供試歯車
1より若干小さな値であった。供試歯車3のRmax
7.0μmであった。供試歯車4のRmax は4.6μm
であり、供試歯車3より小さな値であった。以上の結果
から、供試歯車1,3にDSP処理を施してなる供試歯
車2,4では、Rmax が改善されることがわかった。
(1) Surface Roughness The surface roughness (R max ) of the test gear 1 was 6.0 μm. R max of the test gear 2 was 5.6 μm, which was slightly smaller than that of the test gear 1. R max of the test試歯vehicle 3 was 7.0 .mu.m. R max of the test gear 4 is 4.6 μm
Which was smaller than the test gear 3. From the above results, the test試歯vehicles 2 and 4 subjected試歯vehicle 1,3 formed by subjecting the DSP process, it was found that R max is improved.

【0052】(2) 炭素濃度分布 各供試歯車1〜4を構成するDSG1鋼と炭素濃度が略
等しい機械構造用合金鋼材(SCM420H(JIS規
格))からなる棒鋼(φ25mm、長さ100mm)に
機械加工を施し、炭素濃度分布測定用の試験片を作製し
た。また、炭素濃度測定方法には、JIS規格に準拠し
た赤外線吸収法を用いた。表面から深さ50μmの位置
の炭素濃度は、0.77wt%であり、略目的の炭素濃
度となっていた。また、炭素濃度の計算結果と実測値と
は略一致していた。
(2) Carbon Concentration Distribution A steel bar (φ25 mm, length 100 mm) made of alloy steel for machine structure (SCM420H (JIS standard)) having a carbon concentration substantially equal to that of DSG1 steel constituting each of the test gears 1 to 4. Machine processing was performed to produce a test piece for measuring carbon concentration distribution. In addition, an infrared absorption method based on JIS standard was used as a carbon concentration measuring method. The carbon concentration at a position 50 μm deep from the surface was 0.77 wt%, which was almost the target carbon concentration. In addition, the calculation results of the carbon concentration and the measured values were substantially the same.

【0053】(3) 焼入硬化層 供試歯車4の表面改質処理後の断面模式図を図3に示
す。
(3) Hardened Hardened Layer FIG. 3 is a schematic cross-sectional view of the test gear 4 after the surface modification treatment.

【0054】図3に示すように、供試歯車4(図3中の
31)の硬化層は、歯先部34から歯底部35に亘って
略均一に浸炭されたVC層32と、二次焼入で生成した
CIH層33で構成されている。ここで、CIH層33
の層厚は、歯底部35と比較して歯先部34の方が厚く
なっている。
As shown in FIG. 3, the hardened layer of the test gear 4 (31 in FIG. 3) includes a VC layer 32, which is substantially uniformly carburized from the tooth tip portion 34 to the tooth bottom portion 35, and a secondary layer. It is composed of a quenched CIH layer 33. Here, the CIH layer 33
Is thicker at the tooth tip portion 34 than at the tooth bottom portion 35.

【0055】(4) 組織 供試歯車1,3,4の歯底R部の組織観察図を図4に示
す。ここで、図4(a)〜(c)は、それぞれ供試歯車
1,3,4の観察図である。
(4) Structure FIG. 4 shows a structure observation diagram of the tooth bottom R portions of the test gears 1, 3, and 4. Here, FIGS. 4A to 4C are observation views of the test gears 1, 3, and 4, respectively.

【0056】供試歯車1の組織は、図4(a)に示すよ
うに、針状マルテンサイト+γR であった。また、VC
処理を施していることから、表面異常組織は観察されな
かった。供試歯車3の組織は、図4(b)に示すよう
に、極めて微細なラス状マルテンサイト+γR であっ
た。また、表面直下は、γR 量が多いため、白っぽくな
っていた。さらに、VC処理およびCIH処理の複合処
理を施していることから、供試歯車1と同様に、表面異
常組織は観察されなかった。供試歯車4の組織は、図4
(c)に示すように、極めて微細なラス状マルテンサイ
ト+γR であった。表面直下には、供試歯車3のように
γR は観察されず、また、塑性流動した痕跡が僅かに観
察された。
[0056] The test試歯vehicle 1 organization, as shown in FIG. 4 (a), was acicular martensite + gamma R. Also, VC
Because of the treatment, no abnormal surface structure was observed. Subjected試歯vehicle 3 of tissue, as shown in FIG. 4 (b), was a very fine lath martensite + gamma R. The surface immediately below, gamma for R large amount, had become whitish. Further, since the composite treatment of the VC treatment and the CIH treatment was performed, no abnormal surface structure was observed as in the case of the test gear 1. The structure of the test gear 4 is shown in FIG.
(C), the it was a very fine lath martensite + gamma R. Immediately below the surface, gamma R as provided試歯vehicle 3 is not observed, also, the plastic flow was trace was slightly observed.

【0057】(5) 結晶粒度 供試歯車1,3,4の歯底R部の旧オーステナイト結晶
粒度の観察図を図5に示す。ここで、図5(a)は供試
歯車1の200倍の観察図を、図5(b),(c)は供
試歯車3,4の600倍の観察図を示している。尚、オ
ーステナイト結晶粒度番号(N)は、JIS規格に準拠
して求めた。
(5) Grain Size FIG. 5 shows an observation diagram of the prior austenite grain size at the roots R of the test gears 1, 3, and 4. Here, FIG. 5A is a 200-times observation view of the test gear 1, and FIGS. 5B and 5C are 600-times observation views of the test gears 3 and 4. The austenite grain size number (N) was determined according to JIS standards.

【0058】図5(a)〜(c)に示す供試歯車1,
3,4のNは、それぞれNo.8.6、No.13.4 、No.13.5 で
あり、供試歯車3,4の結晶粒度が特に微細であった。
The test gears 1 and 2 shown in FIGS.
N of Nos. 3 and 4 was No. 8.6, No. 13.4 and No. 13.5, respectively, and the test gears 3 and 4 had particularly fine crystal grains.

【0059】ここで、各供試歯車1,3,4の結晶粒径
を球と仮定し、Nから平均結晶粒径(dγ )を求め
た。その結果、供試歯車1のdγ は20.3μm、供
試歯車3のdγ は3.8μm、供試歯車4のdγ
3.7μmであった。これから、供試歯車3,4のd
γ は極めて微細であることがわかる。このように、d
γ が微細になるのは、超急速・短時間の加熱急冷処理
であるCIH処理の二次焼入効果によるものである。
Here, the average crystal grain size (d γ ) was obtained from N, assuming that the crystal grain size of each of the test gears 1, 3, and 4 was spherical. As a result, the d gamma of the test試歯vehicle 1 20.3Myuemu, the d gamma of the test試歯vehicle 3 3.8 .mu.m, the d gamma of the test試歯wheel 4 was 3.7 .mu.m. From now on, the d of the test gears 3 and 4
It can be seen that γ is extremely fine. Thus, d
The reason why γ becomes fine is due to the secondary quenching effect of the CIH process, which is an ultra-rapid and short-time heating and quenching process.

【0060】(6) 残留オーステナイト(γR )量分布 各供試歯車1〜4の表面からの深さ(μm)とγR
(vol%)との関係を図6に示す。ここで、白菱印が
供試歯車1を、黒四角印が供試歯車2を、白三角印が供
試歯車3を、黒丸印が供試歯車4を示している。
(6) Distribution of Retained Austenite (γ R ) FIG. 6 shows the relationship between the depth (μm) from the surface of each of the test gears 1 to 4 and the amount of γ R (vol%). Here, a white diamond indicates the test gear 1, a black square indicates the test gear 2, a white triangle indicates the test gear 3, and a black circle indicates the test gear 4.

【0061】供試歯車1の表面のγR 量は11.5vo
l%であった。また、γR 量の最大値は、深さ100μ
mの位置であり、その値は26.8vol%であった。
The γ R amount on the surface of the test gear 1 is 11.5 vo.
1%. The maximum value of gamma R content, the depth 100μ
m, and the value was 26.8 vol%.

【0062】供試歯車2の表面のγR 量は1.8vol
%と非常に少なかった。また、γR量の最大値は、深さ
165μmの位置であるが、供試歯車1と比較して著し
く少なく、その値は16.5vol%であった。
The amount of γ R on the surface of the test gear 2 was 1.8 vol.
% Was very low. The maximum value of gamma R content is the position in the depth 165 .mu.m, significantly less compared to the test試歯vehicle 1, the value was 16.5vol%.

【0063】供試歯車3の表面のγR 量は24.5vo
l%と極めて多く、供試歯車2の最大値よりも大きかっ
た。また、γR 量の最大値は、深さ15μmの位置であ
り、その値は31.3vol%であった。さらに、γR
量は、深さ210μmの位置でも21.2vol%と高
い値であった。これらの値は、VC処理のみを施した供
試歯車1と比較しても非常に大きな値である。このよう
に、VC処理後、CIH処理を施した供試歯車3のγR
量が多いのは、炭素量が多く、かつ、図2に示した焼入
れ加熱温度がやや高かったことに起因していると考えら
れる。
The γ R amount on the surface of the test gear 3 is 24.5 vo.
1%, which is larger than the maximum value of the test gear 2. The maximum value of gamma R content is the position of the depth 15 [mu] m, the value was 31.3vol%. Furthermore, γ R
The amount was a high value of 21.2 vol% even at a position at a depth of 210 μm. These values are very large compared to the test gear 1 subjected to only the VC processing. Thus, the γ R of the test gear 3 subjected to the CIH treatment after the VC treatment is obtained.
It is considered that the large amount is due to the large amount of carbon and the slightly higher quenching heating temperature shown in FIG.

【0064】供試歯車4の表面のγR 量は3.6vol
%と非常に少なかった。また、γR量の最大値は、深さ
100μmの位置であり、その値は23.8vol%で
あった。このように、VC処理およびCIH処理後、D
SP処理を施した供試歯車4のγR 量は、供試歯車3の
γR 量と比較して非常に少なくなっていた。
The γ R amount on the surface of the test gear 4 is 3.6 vol.
% Was very low. The maximum value of the amount of γ R was at a position at a depth of 100 μm, and the value was 23.8 vol%. Thus, after VC processing and CIH processing, D
Gamma R content of the test試歯wheel 4 which has been subjected to SP treatment was very small as compared to gamma R of test試歯vehicle 3.

【0065】γR は疲労強度の上で有害であることか
ら、歯車の疲労限を向上させるには、表面近傍のγR
を少なくすることが重要である。以上の結果から明らか
なように、DSP処理を施した供試歯車2,4は、DS
P未処理の供試歯車1,3と比較して、表面近傍のγR
量が著しく少なかった。これは、DSP処理によって、
加工誘起マルテンサイト変態が起こり、γR がマルテン
サイト化したためである。このことから、DSP処理を
施すことで、疲労強度の上で有害なγR の相当量をマル
テンサイト化することが可能であることがわかる。
Since γ R is harmful in terms of fatigue strength, it is important to reduce the amount of γ R near the surface in order to improve the fatigue limit of the gear. As is evident from the above results, the test gears 2 and 4 subjected to the DSP treatment
Γ R near the surface compared to the untreated test gears 1 and 3
The amount was significantly lower. This is due to the DSP processing
This is because work-induced martensitic transformation has occurred and γ R has been converted to martensite. From this, it can be seen that by performing the DSP treatment, it is possible to convert a considerable amount of harmful γ R into martensite in terms of fatigue strength.

【0066】(7) 硬さ分布 各供試歯車1〜4の表面および表面近傍における硬さ分
布を調べた。硬さの評価は、微小硬さ試験機を用いて行
った。試験荷重は、JISに準拠して2.942Nとし
た。ただし、表面から10μmの位置の硬さは、2.9
42Nの荷重では測定不可能であるため、0.9807
Nの荷重で測定した。
(7) Hardness Distribution The hardness distribution on the surface and near the surface of each of the test gears 1 to 4 was examined. The hardness was evaluated using a microhardness tester. The test load was 2.942N according to JIS. However, the hardness at a position of 10 μm from the surface is 2.9.
Since it is impossible to measure with a load of 42N, 0.9807
It was measured at a load of N.

【0067】各供試歯車1〜4の表面からの深さ(μ
m)とビッカース硬さ(HV)との関係を図7に示す。
ここで、白菱印が供試歯車1を、黒四角印が供試歯車2
を、白三角印が供試歯車3を、黒丸印が供試歯車4を示
している。
The depth (μ) from the surface of each test gear 1-4
FIG. 7 shows the relationship between m) and Vickers hardness (HV).
Here, the white diamond indicates the test gear 1 and the black square indicates the test gear 2.
, The white triangle indicates the test gear 3, and the black circle indicates the test gear 4.

【0068】供試歯車1における深さ10μmの位置の
ビッカース硬さは735HVであり、また、最大硬さは
799HVであった。
The Vickers hardness of the test gear 1 at a depth of 10 μm was 735 HV, and the maximum hardness was 799 HV.

【0069】供試歯車2における深さ10μmの位置の
ビッカース硬さは1040HVであり、極めて高い値で
あった。また、深さ200μmの位置においても、80
4HVという高い値を示した。ビッカース硬さは104
0HVであり、極めて高い値であった。つまり、供試歯
車2の最大硬さは、供試歯車1の最大硬さと比較して、
約240HVも高かった。これは、前述したように、D
SP処理によって、加工誘起マルテンサイト変態が起こ
り、γR がマルテンサイト化したためである。
The Vickers hardness of the test gear 2 at a depth of 10 μm was 1040 HV, which was an extremely high value. Also, even at a position of 200 μm depth, 80
It showed a high value of 4 HV. Vickers hardness is 104
0 HV, which was an extremely high value. That is, the maximum hardness of the test gear 2 is compared with the maximum hardness of the test gear 1,
About 240 HV was also high. This is, as mentioned above,
This is because, by the SP treatment, a work-induced martensitic transformation occurs, and γ R is transformed into martensite.

【0070】供試歯車3における深さ10μmの位置の
ビッカース硬さは784HVであり、供試歯車1と比較
して約50HV高かった。また、最大硬さを示すのは深
さ200μmの位置であり、その値は893HVであっ
た。
The Vickers hardness of the test gear 3 at a depth of 10 μm was 784 HV, which was about 50 HV higher than that of the test gear 1. The position showing the maximum hardness was a position at a depth of 200 μm, and the value was 893 HV.

【0071】供試歯車4における深さ10〜75μmの
位置のビッカース硬さは1057〜1067HVであ
り、極めて高い値であった。また、深さ約200μmま
では、供試歯車2より更に高い硬さを有していた。
The Vickers hardness of the test gear 4 at a depth of 10 to 75 μm was 1057 to 1067 HV, which was an extremely high value. In addition, it had a higher hardness than the test gear 2 up to a depth of about 200 μm.

【0072】ここで、供試歯車4の表面近傍で、100
0HVを超える超高硬さが得られた原因としては、 VC処理を施していることにより、粒界酸化などの
表面異常組織が生成されなかった。
Here, 100 near the surface of the test gear 4
The reason why the ultra-high hardness exceeding 0 HV was obtained was that the surface treatment such as grain boundary oxidation was not generated due to the VC treatment.

【0073】 CIH処理による超急速・短時間の加
熱急冷処理により、表面近傍の硬さが上昇した。
The ultra-rapid and short-time heating and quenching treatment by the CIH treatment increased the hardness near the surface.

【0074】 DSP処理による塑性変形効果と、そ
れによって生じた加工誘起マルテンサイト変態との重畳
効果により、表面直下の硬さが著しく上昇した。
The hardness immediately below the surface was significantly increased due to the superposition effect of the plastic deformation effect by the DSP treatment and the resulting work-induced martensitic transformation.

【0075】という3つの要因の複合効果によるものと
考えられる。
This is considered to be due to the combined effect of the three factors.

【0076】(8) 残留応力(σr )分布 各供試歯車1〜4の表面からの深さ(μm)と残留応力
(σr )との関係を図8に示す。ここで、白菱印が供試
歯車1を、黒四角印が供試歯車2を、白三角印が供試歯
車3を、黒丸印が供試歯車4を示している。
[0076] (8) Residual stress (sigma r) shows distribution relationship between the depth ([mu] m) and the residual stress (sigma r) from the surface of each test試歯vehicle 1-4 in FIG. Here, a white diamond indicates the test gear 1, a black square indicates the test gear 2, a white triangle indicates the test gear 3, and a black circle indicates the test gear 4.

【0077】供試歯車1の表面近傍においても、圧縮残
留応力が導入されているが、その値は約390MPa前
後と小さい。
The compressive residual stress is also introduced near the surface of the test gear 1, but its value is as small as about 390 MPa.

【0078】供試歯車2では極めて大きな圧縮残留応力
が導入されており、その最大値(1838MPa)は表
面であった。また、表面からの深さが90μmの位置に
おいても、1173MPaという高い圧縮残留応力が導
入されていた。しかし、表面からの深さが約200μm
以上の領域では、供試歯車1と同程度の圧縮残留応力分
布となっている。
In the test gear 2, an extremely large compressive residual stress was introduced, and the maximum value (1838 MPa) was at the surface. Further, even at a position at a depth of 90 μm from the surface, a high compressive residual stress of 1173 MPa was introduced. However, the depth from the surface is about 200 μm
In the above region, the compressive residual stress distribution is almost the same as that of the test gear 1.

【0079】供試歯車3の表面では801MPaの圧縮
残留応力が導入されていた。また、最大残留応力は、1
054MPaとそれ程高い値ではないものの、表面か
ら、深さ約350μmまでの領域には、約900MPa
以上の圧縮残留応力が導入されていた。これは、CIH
処理による表面のみの超急速・短時間の加熱急冷処理の
効果によるものである。
A compressive residual stress of 801 MPa was introduced on the surface of the test gear 3. The maximum residual stress is 1
Although the value is not so high as 054 MPa, the area from the surface to a depth of about 350 μm is about 900 MPa.
The above compressive residual stress was introduced. This is CIH
This is due to the effect of ultra-rapid and short-time heating and quenching of only the surface by the treatment.

【0080】供試歯車4では極めて大きな圧縮残留応力
が導入されており、その最大値(1862MPa)は表
面であった。また、供試歯車3と同様に、表面から、深
さ約250μmまでの領域には、約900MPa以上の
圧縮残留応力が導入されていた。
In the test gear 4, an extremely large compressive residual stress was introduced, and its maximum value (1862 MPa) was on the surface. Further, similarly to the test gear 3, a compressive residual stress of about 900 MPa or more was introduced into a region from the surface to a depth of about 250 μm.

【0081】ここで、供試歯車2,4の表面近傍で、極
めて高い圧縮残留応力が得られたのは、前述した(7) 硬
さ分布におけるおよびと同じ効果によるものと考え
られる。
Here, it is considered that the extremely high compressive residual stress was obtained in the vicinity of the surfaces of the test gears 2 and 4 due to the same effect as in the above (7) hardness distribution.

【0082】次に、疲労強度と疲労試験後の残留応力分
布について評価を行う。
Next, the fatigue strength and the residual stress distribution after the fatigue test are evaluated.

【0083】( ア) S−N線図 疲労試験は、供試歯車1,2,4に対して行った。供試
歯車1,2,4のS−N線図を図9に示す。ここで、横
軸は破断までのサイクル数(回)を、縦軸は疲労強度
(σR (MPa))を示している。また、白菱印が供試
歯車1を、黒四角印が供試歯車2を、黒丸印が供試歯車
4を示している。
(A) SN Diagram The fatigue test was performed on the test gears 1, 2, and 4. FIG. 9 shows an SN diagram of the test gears 1, 2, and 4. Here, the horizontal axis indicates the number of cycles (times) until fracture, and the vertical axis indicates the fatigue strength (σ R (MPa)). Also, white diamonds indicate the test gear 1, black squares indicate the test gear 2, and black circles indicate the test gear 4.

【0084】図9に示すように、VC処理のみを施した
供試歯車1の疲労限(σup)は883MPaであった。
また、供試歯車2のσupは1931MPaであり、供試
歯車1のσupの2.18倍であった。さらに、供試歯車
4のσupは2207MPaであり、供試歯車1のσup
2.50倍であった。
As shown in FIG. 9, the fatigue limit (σ up ) of the test gear 1 subjected to only the VC treatment was 883 MPa.
The σ up of the test gear 2 was 1931 MPa, which was 2.18 times the σ up of the test gear 1. Further, the σ up of the test gear 4 was 2207 MPa, which was 2.50 times the σ up of the test gear 1.

【0085】ここで、供試歯車2,4において、極めて
高いσupが得られた原因としては、 VC処理を施していることにより、粒界酸化などの
表面異常組織が生成されなかった。
Here, the reason why extremely high σ up was obtained in the test gears 2 and 4 was that the surface treatment such as grain boundary oxidation was not generated due to the VC treatment.

【0086】 DSP処理により、表面近傍のγR
が著しく低減した。
The amount of γ R near the surface was significantly reduced by the DSP treatment.

【0087】 DSP処理の効果により、1000H
V以上の超高硬さが得られた。
Due to the effect of the DSP processing, 1000H
An ultra-high hardness of V or more was obtained.

【0088】 表面に1800MPa以上の極めて高
い圧縮残留応力を導入することができた。
An extremely high compressive residual stress of 1800 MPa or more could be introduced to the surface.

【0089】という4つの要因の複合効果によるものと
考えられる。
It is considered that this is due to the combined effect of the four factors.

【0090】また、供試歯車2のσupより、供試歯車4
のσupの方が270MPa以上高くなったのは、CIH
処理の効果により、dγ が極めて微細になったためで
あると考えられる。
Further, from the σ up of the test gear 2, the test gear 4
Σ up was higher than 270MPa by CIH
It is considered that d γ became extremely fine due to the effect of the treatment.

【0091】( イ) 破面観察 各供試歯車1〜4の破面を観察すると、疲労破壊起点
は、いずれも歯すじ方向端部の鈍角側であった。また、
疲労き裂は、表面から発生していた。
(A) Observation of fracture surface Observation of the fracture surface of each of the test gears 1 to 4 revealed that the fatigue fracture starting point was on the obtuse angle side of the end in the direction of the tooth trace. Also,
Fatigue cracks originated from the surface.

【0092】( ウ) 疲労試験後の残留応力分布 供試歯車の疲労強度に対する高い圧縮残留応力の有効性
を確認するため、疲労限(107 回)まで到達した歯車
の残留応力分布を計測した。ここで、計測には、供試歯
車2を用いた。
[0092] (c) to confirm the effectiveness of the high compressive residual stress on the fatigue strength of the residual stress distribution subjected試歯car after fatigue test were measured residual stress distribution of the gear has reached the fatigue limit (10 7 times) . Here, the test gear 2 was used for the measurement.

【0093】供試歯車2の表面からの深さ(μm)と残
留応力(σr )との関係を図10に示す。ここで、黒四
角印が疲労試験前を、白四角印が1710MPaの荷重
で、107 回の疲労試験を行った後を、黒丸印が193
1MPaの荷重で、107 回の疲労試験を行った後を示
している。
FIG. 10 shows the relationship between the depth (μm) from the surface of the test gear 2 and the residual stress (σ r ). Here, the black squares indicate the values before the fatigue test, the white squares indicate the values after the fatigue test was performed 10 7 times under a load of 1710 MPa, and the black circles indicate the values of 193.
The figure shows a state after a fatigue test was performed 10 7 times under a load of 1 MPa.

【0094】図10に示すように、1710MPaの荷
重で、107 回の疲労試験を行った後の供試歯車2の歯
底R部には、疲労試験後にも1540MPaという極め
て高い圧縮残留応力が存在していることがわかる。ま
た、試験条件が1931MPaの荷重で、107 回の疲
労試験を行った後の供試歯車2の歯底R部には、疲労試
験後にも1627MPaという高い圧縮残留応力が存在
している。
As shown in FIG. 10, a very high compressive residual stress of 1540 MPa was maintained at the root R of the test gear 2 after the fatigue test was performed 10 7 times under a load of 1710 MPa even after the fatigue test. You can see that it exists. In addition, a high compressive residual stress of 1627 MPa exists at the root R of the test gear 2 after the fatigue test is performed 10 7 times under a load of 1931 MPa even after the fatigue test.

【0095】図示しないが、他の供試歯車1,3,4に
おいても、表面においては、疲労試験前後で圧縮応力が
211〜298MPa低下しており、また、表面からの
深さが約50μm以上の領域では、疲労試験前後の圧縮
残留応力分布に殆ど差異は認められなかった。
Although not shown, also in the other test gears 1, 3, and 4, the compressive stress on the surface was reduced by 211 to 298 MPa before and after the fatigue test, and the depth from the surface was about 50 μm or more. In the region of No.1, there was almost no difference in the distribution of compressive residual stress before and after the fatigue test.

【0096】つまり、R≧0の場合、疲労試験によって
圧縮残留応力はあまり消失しないと考えられる。
That is, when R ≧ 0, it is considered that the compressive residual stress does not disappear much by the fatigue test.

【0097】次に、表面改質特性の疲労強度に及ぼす影
響について評価を行う。
Next, the effect of the surface modification characteristics on the fatigue strength will be evaluated.

【0098】S50Cからなる母材に窒素ガスを主成分
とする軟窒化処理を施したもので歯車1を、SCr42
0Hからなる母材に吸熱性ガスを主成分とする浸炭処理
を施したもので歯車2を、SCM420Hからなる母材
に吸熱性ガスを主成分とする浸炭処理を施したもので歯
車3を、SCM420Hからなる母材に窒素ガスを主成
分とする浸炭処理を施したもの、歯車5はDSG1鋼か
らなる母材にVC処理を施したもので歯車4を、S50
Cからなる母材にCIH処理を施したもので歯車6を、
S50Cからなる母材にCIH処理およびDSP処理を
施したもので歯車7を、DSG1鋼からなる母材にVC
処理およびDSP処理を施したもので歯車8を、DSG
1鋼からなる母材にVC処理、CIH処理、およびDS
P処理を施したもので歯車9を作製する。
The gear 1 was made of SCr42 by subjecting a base material made of S50C to a soft nitriding treatment mainly containing nitrogen gas.
The gear 2 is formed by subjecting a base material made of 0H to a carburizing process mainly containing an endothermic gas, and the gear 3 is formed by performing a carburizing process mainly made of an endothermic gas to a base material made of SCM420H. The base material made of SCM420H was subjected to carburizing treatment mainly containing nitrogen gas, and the gear 5 was made of a base material made of DSG1 steel subjected to VC treatment.
The gear 6 is made by subjecting a base material made of C to a CIH treatment.
The gear 7 is made by subjecting the base material made of S50C to CIH processing and DSP processing, and the VC7 is made to the base material made of DSG1 steel.
Gear 8 with DSG processing and DSP processing
VC treatment, CIH treatment, and DS
The gear 9 is manufactured using the P treatment.

【0099】各歯車1〜9の表面改質特性および疲労強
度を表1に示す。
Table 1 shows the surface modification characteristics and fatigue strength of each of the gears 1 to 9.

【0100】[0100]

【表1】 [Table 1]

【0101】(i) 表面硬さ及び最大圧縮残留応力(σ
rmax)と疲労限(σup)との関係 R=0.1の負荷条件で使用される歯車では、硬さ、最
大圧縮残留応力、結晶粒度の表面改質特性の内、どの特
性が最も有効であるかを検討してみた。そこで、先ず、
降伏応力(σY )と最大圧縮残留応力(σrmax)の和を
第1因子とし、この第1因子と歯車の疲労限(σup)と
の関係を求めてみた。
(I) Surface hardness and maximum compressive residual stress (σ
Rmax ) and fatigue limit (σ up ) For gears used under the load condition of R = 0.1, which property among the surface modification properties of hardness, maximum compressive residual stress and grain size is most effective I examined whether it is. So, first,
The sum of the yield stress (σ Y ) and the maximum compressive residual stress (σ rmax ) was used as the first factor, and the relationship between this first factor and the gear fatigue limit (σ up ) was determined.

【0102】降伏応力(σY )と最大圧縮残留応力(σ
rmax)の和と疲労限(σup)との関係を図11に示す。
ここで、σY はHV・N/3(MPa)とした(図7の
単位系では、HVの単位はKg/cm2 であり、σY
3.27HV(MPa))。
The yield stress (σ Y ) and the maximum compressive residual stress (σ
rmax ) and the fatigue limit (σ up ) are shown in FIG.
Here, σ Y is HV · N / 3 (MPa) (in the unit system of FIG. 7, the unit of HV is Kg / cm 2 , and σ Y =
3.27 HV (MPa)).

【0103】図11に示すように、σupはσY +σrmax
に比例し、σY +σrmaxの増加に伴ってσupも増加して
いる。この関係を最小二乗法で求めると、以下に示す
式(図11中の直線L1 )が得られる。
As shown in FIG. 11, σ up is σ Y + σ rmax
Σ up increases with an increase in σ Y + σ rmax . When this relationship is obtained by the least square method, the following equation (straight line L 1 in FIG. 11) is obtained.

【0104】 σup=0.478(σY +σrmax)−454… この結果、σupが高い歯車8,9では、1000HV以
上の超高硬さで、かつ、表面に1800MPa以上の高
い圧縮残留応力が導入されている。また、σupが171
0MPaの歯車7にも、表面直下に1514MPaの高
い圧縮残留応力が導入されている。さらに、表面直下に
高い圧縮残留応力を導入することにより、応力拡大係数
(K値)は、表面近傍だけではなく内部の方まで小さく
なる。したがって、CIH処理およびDSP処理の組合
わせることで、表面直下の高硬さ化と高圧縮残留応力の
導入が可能となり、歯車の疲労強度を向上させる上で極
めて有効と考えられる。
Σ up = 0.478 (σ Y + σ rmax ) -454... As a result, the gears 8 and 9 having a high σ up have an ultra-high hardness of 1000 HV or more and a high compression residual of 1800 MPa or more on the surface. Stress has been introduced. Also, σ up is 171
The 0 MPa gear 7 is also introduced with a high compressive residual stress of 1514 MPa immediately below the surface. Furthermore, by introducing a high compressive residual stress just below the surface, the stress intensity factor (K value) becomes smaller not only near the surface but also toward the inside. Therefore, by combining the CIH treatment and the DSP treatment, it is possible to increase the hardness immediately below the surface and introduce a high compressive residual stress, and it is considered to be extremely effective in improving the fatigue strength of the gear.

【0105】(ii)結晶粒径の疲労限(σup)に及ぼす影
響 図11に示したように、結晶粒径(dγ )が微細な歯
車9(dγ =3.7μm)、歯車7(dγ =7.4μ
m)、歯車6(dγ =7.9μm)では、σupがいず
れも直線L1 の上側に位置している。これに対して、結
晶粒径(dγ )が大きい歯車8(dγ =20.3μ
m)、歯車5(dγ =20.3μm)、歯車3(dγ
=21.0μm)、歯車2(dγ =29.7μm)で
は、σupがいずれも直線L1 の下側に位置している。
(Ii) Effect of Grain Size on Fatigue Limit (σ up ) As shown in FIG. 11, the gear 9 having a fine grain size (d γ ) (d γ = 3.7 μm), the gear 7 (D γ = 7.4 μ
m) and the gear 6 (d γ = 7.9 μm), σ up is located above the straight line L 1 . On the other hand, the gear 8 (d γ = 20.3 μ) having a large crystal grain size (d γ )
m), gear 5 (d γ = 20.3 μm), gear 3 (d γ
= 21.0 μm) and the gear 2 (d γ = 29.7 μm), σ up is located below the straight line L 1 .

【0106】この結果、R=0.1の負荷条件において
は、歯車の疲労限を決定する第1因子は式の(σY
σrmax)であり、第2因子は結晶粒径であることがわか
る。
As a result, under the load condition of R = 0.1, the first factor that determines the fatigue limit of the gear is (σ Y +
σ rmax ), indicating that the second factor is the crystal grain size.

【0107】そこで、疲労限に関する式は、次に示す
式のように表される。
Thus, the equation relating to the fatigue limit is expressed as the following equation.

【0108】 σup=0.478(σY +σrmax)+a+bdγ -1/2… (ここで、a,bは定数、dγ の単位はmである) 図11の全ての実験結果から式のaおよびbを求める
と、式は、次に示す式のように表される。
Σ up = 0.478 (σ Y + σ rmax ) + a + bd γ -1/2 (where a and b are constants and the unit of d γ is m) From all the experimental results in FIG. When a and b are obtained, the equation is expressed as the following equation.

【0109】σup=0.478(σY +σrmax)+1.
363dγ -1/2−894…パラメータX(0.47
8(σY +σrmax)+1.363dγ -1/2)と疲労限
(σup)との関係を図12に示す。
Σ up = 0.478 (σ Y + σ rmax ) +1.
363d γ -1/2 -894 ... parameter X (0.47
FIG. 12 shows the relationship between 8 (σ Y + σ rmax ) + 1.363d γ -1/2 ) and the fatigue limit (σ up ).

【0110】図12に示すように、R=0.1の条件で
得られた歯車の疲労限(σup)とパラメータXとの間に
は、極めて良好な相関があることがわかる。
As shown in FIG. 12, it can be seen that there is a very good correlation between the fatigue limit (σ up ) of the gear obtained under the condition of R = 0.1 and the parameter X.

【0111】これらの結果から、降伏応力(σY )、最
大圧縮残留応力(σrmax)、および平均結晶粒径(d
γ )と歯車の疲労限(σup)との間に、比例関係があ
ることがわかった。また、R≧0の負荷条件の歯車の疲
労限を向上させるためには、表面近傍の高硬さ化および
表面近傍に大きな圧縮残留応力を導入することが重要で
あるが、結晶粒径を小さくすることも重要であることが
わかった。
From these results, the yield stress (σ Y ), the maximum compressive residual stress (σ rmax ), and the average crystal grain size (d
It has been found that there is a proportional relationship between γ ) and the gear fatigue limit (σ up ). Further, in order to improve the fatigue limit of the gear under the load condition of R ≧ 0, it is important to increase the hardness near the surface and introduce a large compressive residual stress near the surface. It turned out to be important.

【0112】以上、本発明の実施の形態は、上述した実
施の形態に限定されるものではなく、他にも種々のもの
が想定されることは言うまでもない。
As described above, the embodiments of the present invention are not limited to the above-described embodiments, and it goes without saying that various other embodiments can be envisaged.

【0113】[0113]

【発明の効果】以上要するに本発明によれば、機械構造
用合金鋼の表面に、真空浸炭処理とダブルショットピー
ニング処理または真空浸炭処理、超急速・短時間の加熱
急冷処理、及びダブルショットピーニング処理を施すこ
とで、応力比が正の荷重条件の時の疲労強度に優れた機
械構造用合金鋼を得ることができるという優れた効果を
発揮する。
In summary, according to the present invention, the surface of alloy steel for machine structural use is subjected to vacuum carburizing and double shot peening or vacuum carburizing, ultra-rapid and short-time heating and quenching, and double shot peening. By performing the above, an excellent effect that an alloy steel for machine structural use having excellent fatigue strength when the stress ratio is a positive load condition can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例における浸炭処理の処理条件を示す図で
ある。
FIG. 1 is a view showing processing conditions of a carburizing process in an example.

【図2】実施例における輪郭高周波焼入れ処理の処理条
件を示す図である。
FIG. 2 is a diagram showing processing conditions of a contour induction hardening process in the embodiment.

【図3】実施例における供試歯車4の表面改質処理後の
断面模式図である。
FIG. 3 is a schematic cross-sectional view of a test gear 4 according to an example after a surface modification treatment.

【図4】実施例における供試歯車1,3,4の表面改質
処理後の歯底R部の組織観察図である。
FIG. 4 is a structural observation view of a root portion R after surface modification treatment of test gears 1, 3, and 4 in an example.

【図5】実施例における供試歯車1,3,4の表面改質
処理後の歯底R部の旧オーステナイト結晶粒度の観察図
である。
FIG. 5 is an observation diagram of the prior austenite grain size at the root portion R after the surface modification treatment of the test gears 1, 3, and 4 in Examples.

【図6】実施例における各供試歯車1〜4の表面からの
深さと残留オーステナイト含有量との関係を示す図であ
る。
FIG. 6 is a diagram showing the relationship between the depth from the surface of each test gear 1 to 4 and the retained austenite content in the example.

【図7】実施例における各供試歯車1〜4の表面からの
深さとビッカース硬さとの関係を示す図である。
FIG. 7 is a diagram showing the relationship between the depth from the surface of each test gear 1 to 4 and Vickers hardness in the example.

【図8】実施例における各供試歯車1〜4の表面からの
深さと残留応力との関係を示す図である。
FIG. 8 is a diagram showing the relationship between the depth from the surface of each of the test gears 1 to 4 and the residual stress in the example.

【図9】実施例における供試歯車1,2,4のS−N線
図である。
FIG. 9 is an SN diagram of test gears 1, 2, and 4 in the embodiment.

【図10】実施例における供試歯車2の、疲労試験前後
の表面からの深さと残留応力との関係を示す図である。
FIG. 10 is a diagram showing the relationship between the depth from the surface and the residual stress before and after the fatigue test of the test gear 2 in the example.

【図11】実施例における降伏応力と最大圧縮残留応力
の和と疲労限との関係を示す図である。
FIG. 11 is a diagram showing the relationship between the sum of the yield stress and the maximum compressive residual stress and the fatigue limit in Examples.

【図12】パラメータXと疲労限との関係を示す図であ
る。
FIG. 12 is a diagram showing a relationship between a parameter X and a fatigue limit.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C21D 1/10 C21D 1/10 A 7/06 7/06 A C22C 38/00 301 C22C 38/00 301N 38/44 38/44 C23C 8/22 C23C 8/22 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C21D 1/10 C21D 1/10 A 7/06 7/06 A C22C 38/00 301 C22C 38/00 301N 38 / 44 38/44 C23C 8/22 C23C 8/22

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 機械構造用合金鋼の表面に真空浸炭処理
を施した後、その表面に、1段目のショット粒径よりも
2段目のショット粒径が小さいダブルショットピーニン
グ処理を施し、機械構造用合金鋼の表面直下に、高い圧
縮残留応力を導入すると共に、表面粗さを低下させるこ
とを特徴とする機械構造用合金鋼の表面改質方法。
After performing vacuum carburizing on the surface of the alloy steel for machine structural use, the surface is subjected to a double shot peening process in which the second step shot diameter is smaller than the first step shot diameter. A method for modifying the surface of alloy steel for machine structure, characterized by introducing a high compressive residual stress directly below the surface of the alloy steel for machine structure and reducing the surface roughness.
【請求項2】 上記ダブルショットピーニング処理の前
工程に、超急速・短時間の加熱急冷処理を施す請求項1
記載の機械構造用合金鋼の表面改質方法。
2. An ultra-rapid and short-time heating and quenching treatment is performed before the double-shot peening treatment.
The surface modification method of the alloy steel for a machine structure according to the above.
【請求項3】 上記ダブルショットピーニング処理とし
て、ショット粒径が400〜800μmの1段目のショ
ットピーニング処理を施した後、ショット粒径が100
μm以下の2段目のショットピーニング処理を施す請求
項1又は請求項2記載の機械構造用合金鋼の表面改質方
法。
3. After performing a first-stage shot peening process with a shot grain size of 400 to 800 μm as the double shot peening process, a shot grain size of 100 to 800 μm is obtained.
The method for modifying the surface of alloy steel for machine structural use according to claim 1 or 2, wherein a second-stage shot peening treatment of not more than μm is performed.
【請求項4】 上記加熱急冷処理として、輪郭高周波焼
入れ処理を施す請求項2記載の機械構造用合金鋼の表面
改質方法。
4. The method for modifying the surface of alloy steel for machine structural use according to claim 2, wherein a contour induction hardening treatment is performed as the heating and quenching treatment.
【請求項5】 機械構造用合金鋼の表面に真空浸炭処理
を施し、その真空浸炭処理後の表面に、1段目のショッ
ト粒径よりも2段目のショット粒径が小さいダブルショ
ットピーニング処理を施してなることを特徴とする機械
構造用合金鋼の表面改質材。
5. A double-shot peening process in which the surface of the alloy steel for machine structure is subjected to vacuum carburizing, and the surface after the vacuum carburizing is subjected to a double-shot peening process in which the second-stage shot particle size is smaller than the first-stage shot particle size. A surface modifying material for alloy steel for machine structural use, characterized by being subjected to a heat treatment.
【請求項6】 機械構造用合金鋼の表面に真空浸炭処理
を施し、その真空浸炭処理後の表面に、超急速・短時間
の加熱急冷処理を施し、その加熱急冷処理後の表面に、
1段目のショット粒径よりも2段目のショット粒径が小
さいダブルショットピーニング処理を施してなることを
特徴とする機械構造用合金鋼の表面改質材。
6. A vacuum carburizing treatment is performed on the surface of the alloy steel for machine structural use, an ultra-rapid and short-time heating and quenching treatment is performed on the surface after the vacuum carburizing treatment.
A surface modifying material for alloy steel for machine structural use, characterized by being subjected to a double shot peening treatment in which the second step shot diameter is smaller than the first step shot diameter.
【請求項7】 上記機械構造用合金鋼の化学成分が、
C:0.15〜0.25wt%、Mn:0.40〜1.
00wt%、Mo:0.15〜0.60wt%、Cr:
0.05〜1.35wt%、Ni:0.05〜2.00
wt%、Si:0.03〜0.35wt%、P:0.0
30wt%以下、S:0.030wt%以下、残部がF
e及び不可避不純物である請求項5又は請求項6に記載
の機械構造用合金鋼の表面改質材。
7. The chemical composition of the alloy steel for machine structural use is as follows:
C: 0.15 to 0.25 wt%, Mn: 0.40 to 1.
00 wt%, Mo: 0.15 to 0.60 wt%, Cr:
0.05-1.35 wt%, Ni: 0.05-2.00
wt%, Si: 0.03 to 0.35 wt%, P: 0.0
30 wt% or less, S: 0.030 wt% or less, the balance is F
The surface-modified material for alloy steel for machine structural use according to claim 5 or 6, which is e and inevitable impurities.
【請求項8】 表面炭素濃度が0.7〜0.9wt%で
ある請求項5から請求項7いずれかに記載の機械構造用
合金鋼の表面改質材。
8. The surface modifying material for alloy steel for machine structural use according to claim 5, wherein the surface carbon concentration is 0.7 to 0.9 wt%.
JP2000223865A 2000-07-19 2000-07-19 Surface modification method and surface modification material for alloy steel for machine structure Expired - Fee Related JP4164995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000223865A JP4164995B2 (en) 2000-07-19 2000-07-19 Surface modification method and surface modification material for alloy steel for machine structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000223865A JP4164995B2 (en) 2000-07-19 2000-07-19 Surface modification method and surface modification material for alloy steel for machine structure

Publications (2)

Publication Number Publication Date
JP2002030344A true JP2002030344A (en) 2002-01-31
JP4164995B2 JP4164995B2 (en) 2008-10-15

Family

ID=18717904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000223865A Expired - Fee Related JP4164995B2 (en) 2000-07-19 2000-07-19 Surface modification method and surface modification material for alloy steel for machine structure

Country Status (1)

Country Link
JP (1) JP4164995B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7422643B2 (en) 2003-03-11 2008-09-09 Komatsu Ltd. Rolling element and method of producing the same
WO2008130742A2 (en) * 2007-04-17 2008-10-30 Meritor Suspension Systems Company, U.S. Peening method for vehicle suspension spring with ceramic peening media
US7544255B2 (en) 2003-03-04 2009-06-09 Komatsu Ltd. Rolling element
JP2009249700A (en) * 2008-04-08 2009-10-29 Kobe Steel Ltd Steel component having excellent bending fatigue strength, and method for producing the same
JP2012017499A (en) * 2010-07-08 2012-01-26 Jfe Bars & Shapes Corp Gear with excellent fatigue resistance and method of manufacturing the same
WO2012032630A1 (en) 2010-09-09 2012-03-15 トヨタ自動車株式会社 Gear
JP2012214900A (en) * 2007-04-09 2012-11-08 Aisin Aw Co Ltd Method for manufacturing machine components
JP2013007077A (en) * 2011-06-23 2013-01-10 Air Water Inc Steel product
JP2014210294A (en) * 2013-04-17 2014-11-13 大同特殊鋼株式会社 Shot-peening method for forming gear excellent in abrasion resistance and pitching strength
JP2015009335A (en) * 2013-06-28 2015-01-19 オーエスジー株式会社 Surface modification method of rolling flat die
US9073176B2 (en) 2010-07-27 2015-07-07 Sintokogio, Ltd. Method for shot-peening and a shot-peening machine
CN104864039A (en) * 2014-02-26 2015-08-26 谐波传动系统有限公司 Flexible externally toothed gear for strain wave gearing and method for manufacturing same
JP2016125985A (en) * 2015-01-08 2016-07-11 いすゞ自動車株式会社 Method for measuring internal residual stress in induction hardening member
EP2436795A4 (en) * 2009-05-27 2016-08-10 Nippon Steel & Sumitomo Metal Corp Carburized component and manufacturing method therefor
CN106438887A (en) * 2015-08-07 2017-02-22 本田技研工业株式会社 Continuously variable transmission
CN110023519A (en) * 2016-10-28 2019-07-16 Mvo奥斯塔尔博金属加工有限公司 Method for manufacturing gear strip and the rack gear according to the method processing
JP2022077008A (en) * 2020-11-10 2022-05-20 Jfeスチール株式会社 High-pressure gas container and method for manufacturing same
CN115070623A (en) * 2022-07-18 2022-09-20 上海交通大学 High-entropy alloy shot blasting treatment process

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2771090C (en) 2009-08-07 2017-07-11 Swagelok Company Low temperature carburization under soft vacuum
CA2861180A1 (en) 2012-01-20 2013-07-25 Swagelok Company Concurrent flow of activating gas in low temperature carburization
US10330564B2 (en) * 2013-05-03 2019-06-25 The Boeing Company System and method for predicting distortion of a workpiece resulting from a peening machine process

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544255B2 (en) 2003-03-04 2009-06-09 Komatsu Ltd. Rolling element
US7691212B2 (en) 2003-03-04 2010-04-06 Komatsu Ltd. Rolling element and method of producing the same
US7422643B2 (en) 2003-03-11 2008-09-09 Komatsu Ltd. Rolling element and method of producing the same
US7691213B2 (en) 2003-03-11 2010-04-06 Komatsu Ltd. Case hardened gear and method of producing the same
JP2012214900A (en) * 2007-04-09 2012-11-08 Aisin Aw Co Ltd Method for manufacturing machine components
WO2008130742A2 (en) * 2007-04-17 2008-10-30 Meritor Suspension Systems Company, U.S. Peening method for vehicle suspension spring with ceramic peening media
WO2008130742A3 (en) * 2007-04-17 2009-02-19 Meritor Suspension Systems Co Peening method for vehicle suspension spring with ceramic peening media
US7946009B2 (en) 2007-04-17 2011-05-24 Mssc Us Peening method for vehicle suspension spring
JP2009249700A (en) * 2008-04-08 2009-10-29 Kobe Steel Ltd Steel component having excellent bending fatigue strength, and method for producing the same
EP2436795A4 (en) * 2009-05-27 2016-08-10 Nippon Steel & Sumitomo Metal Corp Carburized component and manufacturing method therefor
JP2012017499A (en) * 2010-07-08 2012-01-26 Jfe Bars & Shapes Corp Gear with excellent fatigue resistance and method of manufacturing the same
US9073176B2 (en) 2010-07-27 2015-07-07 Sintokogio, Ltd. Method for shot-peening and a shot-peening machine
CN103097774A (en) * 2010-09-09 2013-05-08 丰田自动车株式会社 Gear
US9457451B2 (en) 2010-09-09 2016-10-04 Toyota Jidosha Kabushiki Kaisha Method of manufacturing a gear
JP5569588B2 (en) * 2010-09-09 2014-08-13 トヨタ自動車株式会社 gear
WO2012032630A1 (en) 2010-09-09 2012-03-15 トヨタ自動車株式会社 Gear
JP2013007077A (en) * 2011-06-23 2013-01-10 Air Water Inc Steel product
JP2014210294A (en) * 2013-04-17 2014-11-13 大同特殊鋼株式会社 Shot-peening method for forming gear excellent in abrasion resistance and pitching strength
JP2015009335A (en) * 2013-06-28 2015-01-19 オーエスジー株式会社 Surface modification method of rolling flat die
CN104864039A (en) * 2014-02-26 2015-08-26 谐波传动系统有限公司 Flexible externally toothed gear for strain wave gearing and method for manufacturing same
JP2015161346A (en) * 2014-02-26 2015-09-07 株式会社ハーモニック・ドライブ・システムズ Flexible external tooth gear of wave gear device and manufacturing method thereof
JP2016125985A (en) * 2015-01-08 2016-07-11 いすゞ自動車株式会社 Method for measuring internal residual stress in induction hardening member
CN106438887A (en) * 2015-08-07 2017-02-22 本田技研工业株式会社 Continuously variable transmission
CN110023519A (en) * 2016-10-28 2019-07-16 Mvo奥斯塔尔博金属加工有限公司 Method for manufacturing gear strip and the rack gear according to the method processing
CN110023519B (en) * 2016-10-28 2021-09-24 Mvo奥斯塔尔博金属加工有限公司 Method for producing a toothed rack and toothed rack produced according to said method
JP2022077008A (en) * 2020-11-10 2022-05-20 Jfeスチール株式会社 High-pressure gas container and method for manufacturing same
CN115070623A (en) * 2022-07-18 2022-09-20 上海交通大学 High-entropy alloy shot blasting treatment process

Also Published As

Publication number Publication date
JP4164995B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP2002030344A (en) Method for modifying surface of alloy steel for machine structure, and surface modified material
Unal et al. Effects of conventional shot peening, severe shot peening, re-shot peening and precised grinding operations on fatigue performance of AISI 1050 railway axle steel
Asi et al. The effect of high temperature gas carburizing on bending fatigue strength of SAE 8620 steel
JP5631044B2 (en) Spring and manufacturing method thereof
US6790294B1 (en) Spring with excellent fatigue endurance property and surface treatment method for producing the spring
JP4354277B2 (en) Method for manufacturing carburized and quenched members
JPWO2012073896A1 (en) Rolled steel bar or wire rod for hot forging
JP2009249700A (en) Steel component having excellent bending fatigue strength, and method for producing the same
JP2008261037A (en) Carburized component or carbonitrided component made of steel and subjected to shot peening
JPWO2007023936A1 (en) Shot peening method
JP3006034B2 (en) High strength mechanical structural members with excellent surface pressure strength
US9457451B2 (en) Method of manufacturing a gear
Epp et al. Comparison of alternative peening methods for the improvement of fatigue properties of case-hardened steel parts
JP2004169065A (en) Method for improving strength of cold-worked part with ultrasonic shock treatment and its metallic product
Bayraktar et al. Heat treatment, surface roughness and corrosion effects on the damage mechanism of mechanical components in the very high cycle fatigue regime
Matsui et al. Increase in fatigue limit of gears by compound surface refining using vacuum carburizing, contour induction hardening and double shot peening
Mondal et al. Effect of heat treatment on mechanical properties of FeMnAlC alloys
JP4436225B2 (en) High-strength mechanical parts with excellent fatigue characteristics and methods for improving the fatigue characteristics
JPH04201128A (en) Manufacture of high bearing part
JPH06145785A (en) Hot peening method for carburized steel
JP3847350B2 (en) Spring with excellent fatigue resistance and surface treatment method for producing the spring
JP2005120479A (en) High strength spring and production method therefor
Pandey et al. Shot peening and its impact on fatigue life of engineering components
JPH032319A (en) Manufacture of high strength gear
JPH0754050A (en) High strength gear excellent in root of tooth bending fatigue strength and tooth surface pitching resistance and manufacture therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees