JP3847350B2 - Spring with excellent fatigue resistance and surface treatment method for producing the spring - Google Patents

Spring with excellent fatigue resistance and surface treatment method for producing the spring Download PDF

Info

Publication number
JP3847350B2
JP3847350B2 JP55152299A JP55152299A JP3847350B2 JP 3847350 B2 JP3847350 B2 JP 3847350B2 JP 55152299 A JP55152299 A JP 55152299A JP 55152299 A JP55152299 A JP 55152299A JP 3847350 B2 JP3847350 B2 JP 3847350B2
Authority
JP
Japan
Prior art keywords
spring
hardness
diameter
projection
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55152299A
Other languages
Japanese (ja)
Inventor
雅昭 石田
和弘 宇津巻
裕司 礒野
圭一郎 寺床
凱朗 山田
博 鈴木
弘暢 笹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANCALL CORPORATION
Original Assignee
SANCALL CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANCALL CORPORATION filed Critical SANCALL CORPORATION
Priority claimed from PCT/JP1999/004539 external-priority patent/WO2000049186A1/en
Application granted granted Critical
Publication of JP3847350B2 publication Critical patent/JP3847350B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/08Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for polishing surfaces, e.g. smoothing a surface by making use of liquid-borne abrasives
    • B24C1/086Descaling; Removing coating films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Articles (AREA)
  • Springs (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【0001】
耐疲労特性に優れたばねとこのばねを製造するための表面処理方法技術分野本発明は内燃機関用弁ばね、自動車などのトランスミッション用クラッチばねや高強度薄板ばね等を、徴細な硬質金属粒子投射によって高性能化する表面処理方法とこの表面処理方法で製作した高性能ばねに関する。
【0002】
【背景技術】
本発明に関連する従来技術とてしては以下のものがある。
1.特公平2−17607号「金属成品の表面加工熱処理法」
この技術は、成品硬度と同等以上の硬度を有する40〜200μmのショットを、速度100m/sec以上の速度で噴射し、表面付近の温度をA3変態点以上に上昇させる表面加工熱処理法に関するものである。
この方法は、ワーク表面層の衝突による発熱によって被加工材のオーステナイト化と急冷却による金属組織の変態を起こさせる方法であり、本特許とは技術思想と内容が異なる。
【0003】
2.特開平9−279229号「鋼製ワークの表面処理方法」
この公報による技術では、20〜100μmφの多数の硬質金属粒子を鋼製ワーク表面へ速度80m/sec以上で衝突させ、ワークの表面の昇温限界を150℃以上であって回復・再結晶温度よりは低温に制御することを主な内容としている。
この特許では、窒化のことは言及されていない。また、この特許では、金属粒子の材質の規定、例えばその比重、硬さなどの限定がほとんどなく、また、衝突速度が80m/sec以上との限定があるが、果たしてどこに最適速度があるのか明確ではない。この特許記載の実施例では180m/secのみが記載されていて、効果があることは判るが、最良の条件か否かは不明といえる。
【0004】
3.特開平10−118930号「ばねのショットピーニング方法およびばね成品」
0.64%C−Si−Mn−Cr−Mo−V系の鋼製ばねに窒化を施し、さらに0.5〜1.0mm径のショットでショットピーニングの後、投射材の比重が12〜16、粒径が0.05〜0.2mmかつ硬さがHv1200〜1600のピーニングで、表面の残留応力σR=−1950MPa,繰返し数5×107回で、疲労限度は700±620MPaが得られている。この疲労限度応力は、本特許の請求項の疲労強度に達していない。
【0005】
この特許の目的と方法は本願発明と似ている部分があるが、この特許では寸法0.05〜0.2mm、比重12〜16で高硬度かつ高価でメーカの限られる超硬合金粒子を利用するのに対し、本順発明では0.01〜0.08mm径のより安価で入手容易な鉄系などの金属粒子を使用する。また、その結果得られる疲労強度も、この従来特許に比し本顆発明は優れた効果を得ることができる。
【0006】
4.特許第2613601号(特開平1−83644号)「高強度スプリング」重量でC0.6〜0.7%、Si 1.2〜1.6%、Mn 0.5〜0.8%、Cr0.5〜0.8%、V、Mo、Nb、Taの1種又は2種以上の合計0.05〜0.2%、残部鉄及び不純物で、非金属介在物の大きさが最大15μm以下、表面粗さRmax15μm以下、表面近傍の最大圧縮残留応力が、85〜110kgf/mm2(833〜1079MPa)であるばねが記載されている。この特許では、表層近傍の最大圧縮残留応力が110kgf/mm2(=1079MPa)を超えると製造が困難となること及び表面粗さの低下を招き、かえって疲労強度が低下する旨記載されている。この発明者のひとりとその他の研究開発者が、この特許出願後の1990年4月3日、ドイツ・デュッセルドルフでのESF(European Spring Federation)主催のばね技術国際会議でこの発明技術で製造されたばねの性能を詳しく説明している。この論文のタイトルは自動車エンジン用高強度ばね(A High Strength Spring for Automotive Engine)で、著者はM.Abe,K.Saitoh,N.Takamura及びH.Yamamotoである。この論文に記載されている特許2613601号発明該当のばねの表層最大圧縮残留応力は同論文第9図より、約950MPa、最表面のそれは約820MPa、同論文第2表よりこのばねの表面粗さはRmax10.6μmである。その疲労限は、同論文第11図より、繰返し数5×107回でτm=588MPa、τa=±(450〜480)MPa程度である。
一方、本順発明では、表層の圧縮残留応力最大値が1079MPaを超えてもばねの表面粗さの増大を招くことはなく、しかも、残留応力は最表面またはごく表面近傍で最大となり、表面からの疲労破壊を効果的に防止できるので、窒化をしなくても、以下の(2)式の疲労限を満足するばねを得ることが出来る。
繰返し応力τm±τa,繰返し数:5×10 7 として、τm=690−xのとき,
τa≧470+x/5………(2)
ここで、x:0〜183、単位:MPa
【0007】
5.特開平5−339763号「コイルばねの製造方法」
ショットピーニングによって表面粗さを低く抑えてデスケールしたのち窒化しさらに0.8mm径のカットワイヤでショットピーニングすることによって、ばねの製品で表面粗さRmaxを5μm以下とし、5×107回の応力繰返し数で、60±57kgf/mm2(588±559MPa)の疲労強度を得たとの記載がある。しかし、この方法で得られた実施例記載のデータでは、疲労強度は本願請求項の(1)式を満足していない。また、この方法特許では、本願発明のような微細粒子投射が開示されていない。
【0008】
6.特開平7−214216号「高強度ばねの製造方法」
鉄鋼線材ばねに電解研磨を施し、その後窒化処理、さらに第一段目のショットとして硬さHv600〜800、径が0.6〜1.0mmの粒子を使用し、引き続き第二段ショットとして0.05〜0.2mm程度の径で硬さがHv700〜900の範囲の粒子を使用するのが良いとの記載があるが、0.05mm〜0.2mmの粒子寸法に関するそれ以上の分析や解析及び考察はされていない。また、実施例では、第二段ショットとして粒径0.15mm、硬さHvで800のスチールボールを使用し、繰返し数5×107回におけるばねの疲労限は平均応力637MPa、振幅応力±560MPaが報告されていて、本願発明の請求項記載のばね疲労限をあらわす(1)式を満たさない。また、第二段粒子投射条件の規定が本願発明とは異なる。
【0009】
7.特開平5−177544号「コイルばねの製造法」
この特許はばね成形後、窒化を施し、さらにショットピーニングを実施する方法である。このショットピーニングとは、まず第一段ショットピーニング、低温焼鈍、ついで第一段ショットピーニングよりも小さいショットを使用した第二段ショットピーニングを順次実施する方法である。この発明の詳細な説明欄には、第二段ショットピーニングとして寸法0.05〜0.20mm程度でその硬さHv700〜900のものを使用し、それを高圧で投射することが残留応力的に好ましいと記されている。しかし、0.05mm径の粒子投射と0.1mm径または0.2mm径の粒子投射の効果の差などについてそれ以上の詳しい解析や解説はされていなく、実施例では直径0.1mmのスチールボールを使用し、Hv800、投射圧力5kgf/cm2の条件で第二段ショットピーニングを実施している。その結果得られた疲労限は、繰返し数5×107回で平均応力τm=686MPa、振幅応力τA=±567MPaと記載されており、そのごく表層の圧縮残留応力は図3より1400MPaに達せず、いずれの値も本願発明8項を満足しない。
【0010】
【発明の開示】
上記の従来技術欄にすでに個々の技術ごとに問題点を指摘した。従来技術では、表面窒化した比較的表層硬さの高いばねに対するショット投射方法として、50μm以上200μm以下の径の超硬粒子投射(従来技術3)、また、鋼製ワークの疲労特性改善に20〜100μmの粒子投射は言及されており、粒子径などの限定はおおまかにされているものの(従来技術2、6及び7も同様)、真に有効かつ適切な投射方法と投射されたばねの性能の関係がかなりあいまいであった。
【0011】
その他、従来技術3の特許では、使用する超硬粒子の値段は高く、投射粒子の経済性に問題があると推定される。また、実施例のばね疲労強度も本発明に比して低位にあることより、技術的課題を十分に解明・解決したとは考えられない。
【0012】
従来より、内燃機関用弁ばねその他自動車用の各種ばねの小型軽量化を図ることが強く求められてきた。本発明はこのような要請を汲んで、各種ばねの疲労強度を従来以上に上昇させ、それによって自動車なとの走行性能の向上、小型軽量化による燃費改善などを実現できるばね加工方法とばねを実現することを目的とする。このような優れた性能のばねを実現するためには、高応力の繰返し下でのばね表層からの微細亀裂の発生、成長の阻止及びばね表層直下の内部に存在する非金属介在物からの微細亀裂の成長を防止することが技術課題となる。本発明請求項1と2(窒化工程あり)はこの技術課題に対応する技術であり、この技術によって生産された高性能ばねが請求項である。これら請求項は上記の二つの技術課題に対する回答を比較的経済的に提供するものである
【0013】
本願発明で言う投射速度はばね表面への投射粒子衝突直前の速度のことである。粒子投射方法として本願発明は、インペラー方式と空気などのガスを担体とするホーニング方式を採用する。また、外部応力を静的又は定ひずみ状態で負荷して、ばねに粒子を投射するいわゆるストレスピーニングを採用しても微細粒子などの粒子投射効果を損なわず、むしろ表層圧縮残留応力をさらに改善し、疲労折損防止効果があるので、応力負荷で粒子を投射する方法も本願発明の方法に含まれる。ただし、ストレスピーニングには特殊な専用治具又は装置が必要であり、コスト増加をもたらす。本発明の請求項4は、ストレスピーニングではなく、応力又はひずみを付与せずに粒子投射を施されたばねに関するもので、ストレスピーニングに拠らずとも得られる高疲労強度ばねである。
【0014】
その他、本願発明の微細粒子投射はばねを予め100〜250℃程度の温度に加熱して行ってもその効果は失われず、本発明方法に含まれる。また、同様、本願請求項記載の粒子投射と次のより微細な粒子投射の間に、及び最終粒子投射工程後に150〜250℃のひずみ時効硬化処理または低温焼鈍を施すことや粒子投射後に温間/冷間セッチングを施すことも本願発明の内容に含まれる。
【0015】
ばねの受ける応力が高くなると、ばね表層に大きな応力がかかり、表層部が応力繰返しに耐え切れずに微細亀裂を生ずる。この微細亀裂の防止には、まず、ばね表層の残留応力を圧縮状態とし、かつその絶対値を出来るだけ高めることが必要である。圧縮残留応力はその弾性限以上に付与できないが、本発明はこれを克服するため、微細粒子投射によるばね表層の加工硬化によって弾性限向上を同時に実現して、圧縮残留応力を高い水準に押し上げる。併せて、ばね表層の延靭性を損なうことなく降伏点や硬さを出来るだけ上昇させることによって、繰返し応力によるすべり変形を防止して、表層の微細亀裂の生成と成長を防止する。この他に、粒子投射によって、ばね表層に微細なへこみや亀裂を生ずると、これが疲労亀裂の元になるので、粒子投射で表層にこのような表面欠陥を作らない配慮と投射条件が必要になる。このような要件を満たすために、本発明では、10μm以上100μm未満の径、さらに望ましくは10〜80μm径の最適形状と物性を有する微細金属粒子を最適な速度条件で投射する。特に、本発明では、ばね表層において、A3変態点を超えることなく投射速度と投射密度を上げていくと、回復・再結晶を起こさない時でもばね表層に微細な亀裂又は強加工による表層の延靭性劣化を生じて、疲労強度がより低速投射の場合よりも低下することがわかった。ばね表層でこのような微細亀裂を生じないように、かつ、A3変態点よりも低温で、かつ、鉄地が回復再結晶を起こすよりも低温で、表層に加工硬化又はひずみ時効を伴う加工硬化を十分に起こすが延靭性劣化や微細亀裂を生じないように微細粒子を適切な条件で投射することによって、優れた特性のばねを得ることができる。線径が2mm程度以上または板厚が1.5mm〜2mm程度以上のばねでは、窒化後または窒化しないばねに0.2〜0.9mm径の鉄系粒子投射をして内部に深く残留応力を付与してから上記の微細粒子投射を行うことが必要である。この時、まず上記0.2〜0.9mm径の粒子投射として、まず0.5〜0.9mm径の粒子を投射、引続き0.2〜0.4mm径の粒子投射を行うことも含まれる。
【0016】
次に、ばね表層下の内部の非金属介在物による疲労折損の防止のためには、おおまかにいって、次の三つの方法がある。そのひとつは、ばね用材料に含まれる非延性非金属介在物の寸法低減である。有害となる介在物の最小寸法(臨界寸法)は、ばねの硬さが高くなるほど小さくなり、介在物周りの鉄地の硬さがHv520〜580程度の場合、20〜15μm程度であり、同じくそれがHv580〜630では、10μm程度である。従って、ばね材料内部に存在する非金属介在物の寸法が臨界寸法以上であれば、その最大寸法に応じてばね材料の内部硬さを規制することが必要になる。二番目の方法は、有害な非金属介在物の存在する場所の周囲の残留応力を圧縮状態に保ち、それによって介在物回りの微細亀裂の成長を防止する。このために、0.5〜0.90mmφないし1.0mmφまでの比較的径の大きなラウンドカットワイヤを、速度40〜90m/secで投射して、ばね表面から0.2mmないし0.5mmの深さまで圧縮残留応力を付与することが従来より行われている。ばねの線径または板厚が1.5ないし2.0mm以上2.5mm以下の場合、0.2〜0.4mm径のラウンドカットワイヤを40〜90m/secの速度で投射して、0.06〜0.13mm程度の深さ位置に圧縮残留応力を付与して介在物からの折損を防止することも必要である。これらのとき、投射速度が速くなると、ばね材料表層には局部的に不均一な変形領域が発生して表層に微細な凹みや亀裂を生じてばね表層からの疲労折損を起こしやすくするので、前述のようにこのような欠陥のないように投射することが必要である。このような微細亀裂などの発生を防止するには、投射速度は90m/secを上限として、具体的なばね毎の最大投射速度を決める必要がある。また、投射速度が40m/secを下回ると残留応力付与効果が小さくなり十分に深くまで付与できないので下限速度は40m/secとした。
【0017】
第三の方法は介在物を含むばね用材料の硬さを下げることであるが、硬さをむやみに下げると、ばねの重要な特性のひとつであるへたりが大きくなり、ばね性能が損なわれるので、この方法はむやみに採用できない。このため、本願発明の請求項では、0.2〜0.5mm深さの位置における硬さが少なくともHv520以上となるようにする。通常、介在物を起点とするばねの疲労破壊はばね表面からの深さ0.2〜0.5mmで起こり、この深さ領域の鉄地の硬さと疲労強度は密接な関係がある。有害な炭化物、窒化物、硼化物などを含む介在物の破壊破面における平均寸法を20μm未満ないし15μm程度以下になるように製鋼工場での介在物制御と製線工場での熱処理などでの炭化物などの寸法制御をすることによって、この深さ領域における硬さがHv520〜580の場合、介在物などによる疲労破壊は防止できる。介在物のばね破断面での平均寸法が10μm以下となるように制御できれば、表面から0.2〜0.5mm深さ位置における硬さが、Hv630以下で介在物などによる疲労祈損を防止できるので、本願発明請求項では0.2〜0.5mm深さ位置における硬さをHv630以下に限定する
【0018】
上記の介在物含有状態は、ばね用材料の種類によっても変わる。すなわち、一般的にSi,Cr,Mo,V,Nb,W,Alなどの合金添加量の増大は、ばね用鉄鋼材料の非延性非金属介在物のレベルを悪化することがある。ピアノ線の場合、現状の技術で10μm以上の介在物はほぼ皆無のことが多い。弁ばね用合金網オイルテンパー線の場合、有害な介在物としてAl23(アルミナ)、MgO・Al23(スピネル)、SiO2(シリカ)などがある。これらの硬質の非延性酸化物系介在物は、製鋼時の延性介在物への形態制御によって無害化できる。一方、VC,NbC,TiC,TiNなどの炭化物又は窒化物又は炭窒化物は球状又は角張った形状を保つので、V,Nb,Tiなどの元素を比較的多く含むばね用鋼材の場合、この対策として、圧延、焼鈍の加熱条件の検討、製鋼段階での原材料からのTiなどの混入防止、などの方策によって無害化又はその生成防止を図らねばならない。有害介在物の存在によるばねの疲労折損防止には、ばね用鋼材に含まれるV,Nb,Tiなどの含有量を極力低減させることが望ましいが、請求項の成分鋼(1)ではV及び/又はNbはそれぞれ0.03〜0.60%、0.02〜0.20%の添加で結晶粒微細化に有効でばねの延靭性を改善するとともに、窒化を促進する。成分鋼(1)に添加されるNiはばね鋼の延靭性改善効果があり、高強度に調質されたばねの疲労損傷防止及び疲労亀裂伝播防止にも有効と考えられる。しかし、0.5%を超えると、線材及び線の加工において、残留オーステナイトを生成しやすくなり、かえって製造途中のばね鋼の延靭性を低下させるので、上限を0.5%とした。また、成分鋼(1)へのCo添加はパーライト変態などの高温からの冷却時の変態時間を減少させ、線の製造中における金属組織を冷間加工性の良い微細パーライトにさせるなどの効果をもたらし、線の製造を容易にする。しかし、3.0%を超えて添加しても、経済的に高価な元素であり、費用の割に効果が少なくなるので、添加量上限は3.0%とした。
【0019】
請求項の成分鋼(1)または(2)に対して、Mo,Cr及びAlの添加はいずれもばね窒化時の窒素進入を促進する。いずれの元素もその添加量が増え過ぎると、ばねのごく表面に窒素化合物が析出してばね内部の深さ方向への拡散浸透が妨げられて、ばねの疲労耐久性向上効果が小さくなる。このため、本発明では、Mo,Cr及びAlの添加量上限をそれぞれ質量%で0.6%、1.8%及び0.5%とした。Wは耐熱性を高め、ばねの脱炭防止に有効であるが、成分鋼(1)または(2)に0.5%を超えて添加すると焼入れ性が過度になって焼きなまし回数が増えるなど、製造上の煩雑さとコストアップが顕著になるのでその上限を0.5%とする。成分綱(1)で、Cは鋼の強度を回上させ、疲労強度のためにも必要であり、0.5%を下回るとその効果が小さくなるので、その下限を0.5%とする。
【0020】
また、Cが0.8%を超えると強さ向上効果が小さくなり脆性を示すようになるので、その上限を0.8%とした。なお、表層に脱炭層があっても、その程度が極端でなければ、窒化によって硬さは補償されるので、このような脱炭した材料も本願発明の方法を適用できる。Siはばねの強さと耐へたり性に良い効果を発揮する。また、焼入れ焼戻しされて強化するばねでは、1.2%より少量では効果が小さく、2.5%を超えると製造時の脱炭助長や延靭性劣化による加工性に問題が生じやすいので、その下限と上限は成分綱(1)において1.2%及び2.5%とする。
【0021】
このほか、本発明では請求項(4)の成分を有するマルエージング鋼でも疲労強度向上効果があるので、これを(4)として請求範囲に含めた。
【0022】
マルエージング鋼は800〜900℃程度の高温加熱による合金元素溶体化とオーステナイト化(溶体化)処理、冷却によって比較的軟らかいマルチンサイトとなり、これに冷間で伸線処理を施し、加工硬化させてからばね成形をする。このあと500℃近傍で時効処理を施し強さとばね性を得る。この後に窒化処理を施して請求項1または2記載の方法で疲労強度を高めることができる。
【0023】
マルエージング鋼ばねは低合金鋼線ばねに比して優れた耐へたり性を有するので、時効後の引張強さは1900MPa以上でその性能が発揮でき、とくに耐へたり性と耐疲労性を要求される用途に適している。なお、溶体化処理とは、ステンレス綱や高マンガン鋼などの高合金鋼に適用される熱処理であって、炭化物などを高温で固溶(鋼の組織の中に溶け込ませる)させた状態から急冷して、析出物を再析出せずに常温にもたらす熱処理である。
【0024】
本発明は、(1)加工工程で窒化(窒素添加が主目的の低温浸炭窒化も含む)処理するばね(請求項)とその製造方法(請求項1、2、3)からなっている。
【0025】
(1)の窒化処理するばねでは、窒化前に行うデスケール処理方法として、酸洗、電解研磨、ショットピーニングなどが従来より知られている。酸洗ではばね表面の水素脆性による微細亀裂生成などの問題があり、本発明には適さない。電解研磨は大量生産に適用するにはその装置が大掛かりになるなどの問題点を有するので、本発明では窒化前のデスケールに、ショットピーニング(粒子投射)を取り上げたが、有害な表面の微細亀裂や局所的せん断変形帯を発生しないようにその投射速度、投射粒子径などを調整する必要がある。窒化前の粒子投射によるこのような表層欠陥は、窒化処理後も消滅せずに残る。窒化前のデスケールのために粒子投射を施す場合、比較的深くまでかっ比較的低温で窒化を促進するには、材質は綱系などで、0.3〜0.8mmの比較的大きな粒子をばね表面層に40〜90m/secのいずれかの速度で損傷を与えないように投射するのがよい。また、ばねに応力がかかった時に、ばね端末近くの隣合う線同士が接触を起しやすいが、このような線間接触部にデスケーリングを十分に起こさせて窒化時に窒素の進入を促進して、ばね端末近傍からの疲労破壊を防止するには、上記0.3〜0.8mm粒子投射のあとに10μm以上100μm未満、さらに望ましくは10〜80μm径の微細粒子投射が効果を発揮することが判った。この時の投射条件として、表層に疲労に有害な微細亀裂や局所的変形帯をせずに微細粒子投射をするには、その投射速度は50〜160m/sec、さらに望ましくは60〜140m/secにし、さらに微細粒子投射時のばね表層温度を回復・再結晶を起こすより低温に制御することが、表層欠陥防止に有効であることがわかった。窒化温度が500℃以下450℃程度以上では、微細粒子投射による表面塑性変形域の深さは比較的浅いが、窒素は0.3〜0.8mm径の粒子投射と遜色のない深さまで進入することがわかったので、0.3〜0.8mmの粒子投射をせずに微細粒子投射のみを施すことも有効である。請求項2はこのような目的と理由でその投射条件を限定した。
【0026】
窒化処理または低温浸炭窒化処理は500℃程度以下の温度で実施され、主として窒素、場合により一部炭素も付加してばね表層部に導入する処理であり、ばね表層部における窒素(場合により炭素も少量)侵入の結果、圧縮残留応力を表層部に高く付与する。本願発明の微細粒子投射は窒化後のばね表面硬さHv800〜1100程度の比較的硬いばねにも効果がよく認められる。窒化後の0.2〜0.9mm径の粒子投射は圧縮残留応力の深さを窒化のままよりもさらに深い位置まで持ち来す。このため、表面近傍から0.5mm深さ位置での非金属介在物や微細亀裂からの疲労破壊を防止する効果を発揮する。
【0027】
上記のように比較的大きな0.2〜0.9mm径の鉄系粒子投射後に、さらに本願発明の微細金屈粒子の最適条件での投射によって、表層からと内部非金属介在物からの疲労折損を高応力での繰返し負荷下でも防止できる。
【0028】
窒化後の粒子投射は、まず、硬さHv500〜800であって、かつ、処理されたばねの最表層硬さ(最表面から5μm程度の深さ位置でのマイクロビッカース硬さ)よりも軟らかく、粒子径200〜900μmの鋼などの硬質金属粒子を40m/sec〜90m/secで投射し、これにより表層の有害な微細亀裂生成を防止しつつ圧縮残留応力をばねの比較的内部まで付与するか(請求項1及び2)、または、0.5〜0.9mm径の硬さHv500〜800の粒子投射を実施し、さらに0.2〜0.4mm径の硬さHv500〜800の粒子投射をして、表層の有害な微細亀裂などを防止しつつ比較的表層近くを含む内部の圧縮残留応力を高く付与する(請求項)。
【0029】
これに引き続き、硬さHv600以上Hv1100以下、かつ、上記粒子投射前の窒化ままのばね最表層硬さと同等又は同等以下の硬さを有する、全投射粒子平均径80μm以下、個々の粒子の平均径10μm以上100pm未満、さらに望ましくは全粒子の平均径65μm以下、個々の粒子平均径10〜80μm、比重7.0〜9.0、形状として球形又は球形に比較的近い金属粒子を速度50〜190m/secの速度で、また、さらに望ましくは、速度60m/sec〜140m/secで投射する(本願発明のこのような微細硬質金属粒子投射技術を、以下、SS処理と呼ぶ)。
【0030】
図1はC:0.60%,.Si:1.45%,Mn:0.68%,Ni:0.28%,Cr:0.85%,V:0.07%(単位:質量%)を含有するばね鋼に窒化後、0.6mm径の高炭素鋼粒子(硬さHv550)を速度70m/secで投射した表面硬さHv930のばね表面への、投射微細粒子による衝突速度が投射も後の表面近傍の圧縮残留応力に及ぼす影響を求めた実験結果であり、最表層と表層10μm深さでの圧縮残留応力を共に1900(N/mm2)以上の高応力とする衝突速度が95m/sec前後で最適であることが分かる。ここで、投射粒子の呼称径は50μmで、n=60個の測定で全粒子平均径は初期品(新品)で約63μm、最大粒子の平均径は80μm以下、最小粒子平均径は50μm、個々の粒子それぞれの最大/最小径比1.1以下が大半でごく一部に1.5以上の粒子が混在するが角張った鋭いエッジを持たない球形または球形に近い楕円球粒子であって、平均硬さはHv860、比重8.2であった。また、温度制御に関しては、衝突によるばね表面窒化層の鉄地(窒素化合物層を除外)の瞬間的昇温限界を、窒素原子との相互作用下で有効に加工硬化を起こさせるが、ばね表面層の回復再結晶による軟化が起こるよりは低温に制御しつつ投射した。このような温度制御がなされていることの確認は、ショット後の試料ワーク表層の、マイクロビッカース硬さ測定や電子顕微鏡にる高倍率組織観察などの手法でなされる。
【0031】
前記実験の結果を示す図1から分かるように、速度v=90〜152m/secの問で、表層近傍(最表層〜10μm深さ)の最大圧縮残留応力値は1800MPaを超え、良好な分布を示した。特に、v=90m/secの条件では最表面の圧縮残留応力はほぼ2000MPaとなり、分布も良好で、疲労強度向上効果が大きいことが分かる。すなわち、v≦152m/sec、全粒子平均径63μmの高速度鋼粒子投射では、ワーク表面近傍に局部的な断熱せん断帯や窒化化合物層のクラックなどの、疲労寿命を阻害する可能性のある欠陥は殆ど発生しないのである。
【0032】
しかし、同じ粒子投射でも速度が170〜190m/secを越えると、表面近傍に微細亀裂や強変形帯が出現するとともに、残留応力もより低速の場合より低下する。このため、本発明では、微粒子投射速度の上限を190m/secとした。ここで、微細粒子投射速度が190m/secより速くなると、窒化表面に微細亀裂が生成するか、あるいは、表層の加工脆化によって疲労耐久向上効果が小さくなる。
【0033】
また、この微細粒子寸法のばね疲労強度に及ぼす影響は、投射粒子の中に、角張った鋭い角片状の粒子が存在すると、疲労強度向上効果が少なくなり、また、平均径が100μm以上の大きな粒子が混在すると、疲労強度向上効果が損なわれる。さらに、最表層と10μm深さの応力曲線が交差する点におけるショット速度は95m/secであるが、この交差点の前後20%のショット速度(76〜114m/sec)では表層圧縮残留応力が1800MPa以上となり、比較的厚い表層範囲で大きな圧縮残留応力を形成可能であることが分かる。なお、10μm深さまでの表面層の圧縮残留応力が最大値を得る条件よりも低速側で疲労強度向上がより期待され、投射速度60m/sec以上で残留応力は1700MPa程度以上で良好な疲労試験結果が得られる。また、投射速度が130〜150m/sec、平均140m/sec以下でも同様に疲労特性に特によい結果が期待されるので、望ましい速度として60〜140m/secを本願発明の範囲とする。
【0034】
上記全粒子平均径63μmの微粒子投射速度が90m/sec、190m/secの場合の残留応力分布を図2に示す。
【0035】
次に、粒子の硬さを少し下げてHv700とし、全粒子平均粒径は呼称50μm、実質40μm、最大粒子径が約75μmの鋼粒子を使用して前記と同様の実験を行った。この結果、速度190m/secの場合、高速度鋼粒子投射と同様、化合物層のミクロクラック発生と一部剥落が認められた。また、速度v=60m/secから140m/secの場合、表層近傍の最大圧縮残留応力は上記の高速度鋼粒子投射のときよりやや小さいものの1700MPaを超える値を示し、耐久性向上に大きな効果が期待できることが分かった。この時使用した供試窒化ばねの表面硬さはHv930程度である。微細粒子投射完了後のばね表層硬さは微増のHv950程度に止まったが、上述のように、ワーク最表層硬さと同等以下の便さの粒子投射でワーク表屠に大きな圧縮残留応力が形成されることが確認された。図3は高強度弁ばね用オイルテンパー線に窒化処理後、0.6mmの高炭素調粒子投射を施した図1の試験で供試したと同じばねに寸法の異なる粒子投射をして、横軸に投射粒子初期呼称径(袋入り新品に表示の呼称径)を取り、縦軸に表面の圧縮残留応力をとって整理した図である。いずれも投射粒子の材質は比重8.2の高速度鋼で、粒子の初期平均硬さは呼称径50μmでHv860(初期の全粒子平均径は実測でほぼ63μm)、呼称径が大きくなるとともに低下し、呼称径200μmでHv770である。なお、図中の数字は粒子のばね表面への衝突速度(単位:m/sec)である。この図から、呼称径100μm粒子投射では、50μmの場合に比べて表面の圧縮残留応力付与効果は大幅に低下することが明らかである。なお、呼称径100μmの新品粒子の中で、最大粒子の平均径は125μm、同じく新品の呼称径50μmの粒子中の最大粒子平均径は80μmであった(いずれもn=60の測定結果)。いずれの粒子も鋭い角を持たず、主として球状で、一部、球に比較的近い楕円球形状であった。
【0036】
形状が鋭い辺を有する微粒子は疲労を阻害する傾向をもたらすので望ましくない。また、たとえば、平均径44μmの微細粒子個々の粒子径ばらつきが大きく、その中に90以上105μm以下の寸法の粒子が数%以上混在している場合、疲労強度向上効果は平均径44μm、最大粒子径が約75μmの場合に比べて少ない。このように、ばねの疲労強度向上効果は、全投射粒子の平均径も影響するが、それ以外に、最大粒子径が大きな粒子の混在が疲労強度を阻害する。そのため、本特許では、実質、80μmより大きな粒子の混在は疲労強度向上効果はあるもののその効果の程度が低下するため、上限の寸法を100μm未満、さらに望ましくは80μmとする。なお、個々の投射粒子の平均径が全粒子の平均径もしくは公称径よりも小さい粒子は、その形状が、角張らず、比重7.0〜9.0、硬さHv700以上、1100以下の球状又はそれに近い場合は、投射効果を阻害しない。むしろ、個々の粒子平均径が50μmより小さくなるとばね極表層の硬さと圧縮残留応力上昇に有効である。しかし、粒子径が小さくなるにつれて硬さと残留応力の影響厚さが減少するので、本発明の処理方法(請求項1と2)では全粒子平均径20μm以上を望ましい条件とする。また、10μm以下の微小粒子は、比較的少量混在しても、形状、比重等の特徴が請求項記載の粒子に準ずるものは、投射効果に悪影響はない。なお、投射粒子呼称径が小さくなるとともに、一般的に、その寸法のばらつきなく粒子を生産または使用するのは困難となる。従って、呼称径が決まっても、実際には粒子寸法は分布を持ち、この分布を加味して粒子を選定しないと良い効果が得られない。
【0037】
窒化によって、表層の硬さがHv850程度以上である場合、硬さが同等以下の粒子であっても、衝突時に粒子の持つ運動エネルギーの一部はばね表層の変形に費やされ、このため、表層の温度も瞬間的であるが上昇する。これによって、窒化されたばね表層部の降伏と塑性変形が進行し、固溶窒素原子と運動転位との相互作用による転位増殖の促進と転位固着による硬化が進行すると考えられる。
【0038】
微細粒子の硬さがHv600より低くなるとばね表層における残留応力生成効率が小さくなるのでその下限をHv600とする。ただし、Hv500〜600であればばね表層の変形と圧縮残留応力形成は可能であるので、場合によって、下限の硬さをHv500以上としてもよい。投射粒子の硬さが窒化されたばね表面の硬さよりも硬くなると、ばね表面からの微細亀裂を生成する傾向を生じてばねの疲労強度を損なうので、ここでは粒子の硬さ上限をばねの表面硬さと同等以下とする。
【0039】
ここで「窒素原子との相互作用下での加工硬化」について説明することとする。窒化されたばね鋼材表面には、イプシロン鉄窒化物などの鉄系窒素化合物が形成されることがある。さらにその内部には、鋼中に拡散浸透した窒素原子の一部によって比較的微細な鉄窒化物が形成されて硬さ上昇に奇与する。しかし、これら以外にも鉄地中には固溶した窒素が存在し、この固溶窒素はそれ自体で硬さ上昇と圧縮残留応力同上に寄与する。この固溶窒素は、SS処理の時には型性変形に対する抵抗となるが、ワーク表層が塑性変形を開始すると、転位が運動すると共に発熱の影響を受けて、窒素原子の鉄中の拡散速度が上昇する過程で、転位の少なくとも一部を固着し、転位増殖を促して転位セル(サブグレイン)を微細化する。これによって、ばね使用時の表層の繰返し応力によるすべり変形帯の発生を防止し、その結果として疲労破壊の微小亀裂生成を防止すると考えられる。窒素は炭素に比較してその固溶度ははるかに大きく、しかも鋼中のマンガンやシリコンなどとの共存によってその固溶度は鉄−窒素二元系の場合の固溶度よりもはるかに大きくなると考えられる。この点からもばね鋼に対する窒化とその後のSS処理は、ばね特性向上のために非常に有効であるといえる。
【0040】
以上のような投射粒子寸法の影響をふまえ、本願発明では初期全粒子平均径を80μm以下、かつ個々の粒子が10μm以上100μm未満、形状として、角張らず、球形またはそれに近い形状で、安価で入手の容易な鉄鋼系の材質を主に考えて比重7.0〜9.0、硬さはHv600〜1100、かつ、ばね表層の粒子投射前の硬さと同等以下とする。さらに望ましくは、初期全粒子平均径65ないし50〜20μm、個々の粒子それぞれの平均径を80μm以下とする。
【0041】
次に、(2)の窒化(及び低温浸炭窒化)を施さないばねの疲労強度向上に関する本発明方法の手段について記す。
【0042】
従来から窒化又は低温での浸炭窒化処理によらずに、ばね表面の圧縮残留応力を上げるには、(i)従来よりも高強度の材料を使用してショットピーニングの改善・工夫をするか(ii)従来と同じ材料を使用してショットピーニングの改善・工夫をする場合がある。(i)及び(ii)のショットピーニング方法の改善としては、ばねに予め応力を負荷して粒子投射を施す方法(ストレスピーニング)や2〜3段に分けて粒子投射を施し、順次投射粒子径を小さくする方法、ばねを温間に加熱した状態で粒子投射を施す方法などが知られている。ばねが高強度になるに従い、その弾性限が向上するので、より高い残留応力が付与できる。
【0043】
しかし、たとえば、既述の従来技術4、特開昭64−83644号「高強度スプリング」に記載されているように、JIS規格G3561(1994)に規定されている弁ばね用シリコンクロム鋼オイルテンパー線の引張強さよりも高い引張強さを有し、その化学成分も上記JIS規格と異なる高強度オイルテンパー線に対して、表層近傍の圧縮残留応力を従来の技術で1079MPa(110kgf/mm2)以上に付与すれば、ばね特性の信頼性も低下するのは、残留応力以外に表面の微細亀裂生成などが関係するためと考えられる。
【0044】
成形して調質された、表層の硬さHv400〜750であるばねの表面へ、(A)硬さHv350〜900であって、粒径200〜900μmの硬質金属粒子を速度40m/sec〜90m/secで投射し、これにより表層の有害な微細亀裂の発生を防止しつつ圧縮残留応力をばねの比較的内部まで付与する工程と、(B)前記(A)工程の後のばね表面へ上記請求項3記載の表面処理方法を施す工程、を有することを特徴とする表層に疲労強度を阻害する有害な微小亀裂などを生成せず、表面から30ないし50μm以下の表層部の硬さと圧縮残留応力を特に向上させるばねの耐久性改善を図る表面処理方法の(B)工程で、投射微細粒子材質が高炭素鋼または高速度鋼などでばねと類似材質であるため、ばねと同等の弾性係数であるので、弾性変形がばね表層と投射粒子に同時に分配されて起こること及び粒子形状が角張らず、微細であることが、疲労強度を阻害する微細亀裂の生成や過度の表層加工を抑制する一因と考えられる。このように表面の圧縮残留応力が徴細粒子投射で大きく上昇するのは、表層での大きな塑性変形による転位の導入と、導入された多数の転位の炭素原子による固着が粒子投射毎に繰返し進行することが関係している。すなわち、炭素原子の供給は、もともと欽炭化物の形でばね用材料に存在した炭素が、微細粒子投射によるごく短時間の高圧力と温度上昇によって熱力学的に不安定となり、その一部が短時間で分解して、その結果自由になった炭素原子が転位の周りに拡散して転位の弾性応力場を緩和するとともに転位の移動の抵抗となって、転位の増殖を促進する。このため、転位セル構造が微細化され、靭延性を損なわずに表層の硬化と高い圧縮残留応力を付与する。ただし、請求項(4)のほとんど炭素を含まないマルエージング鋼では、微細粒子投射による表面近傍の圧縮残留応力増加と硬さの増加は、上記の鉄炭化物の分解よりも、転位密度の増加が主として寄与する(窒化している場合は窒素化合物の分解と転位固着による転位の易動度低下が転位密度増加と転位固着を進める)と考えられる。
【0045】
図4は、C:0.57%,Si:1.5%,Mn:0.7%,Cr:0.68%(単位はいずれも質量%)、残部不純物及び鉄よりなる微細パーライト組織の冷間伸線、その後冷間圧延仕上げの厚さ0.97mm、平均表面硬さHv537〜589の板の曲げ疲労強度に及ぼす呼称50μm径(n=60個の実測で、高炭素鋼粒子の初期平均硬さHv865、比重7.5、全粒子平均径は37μm、個々の粒子の平均径は10〜75μmに分布しており、いずれも球形またはそれに近く、鋭いエッジはない。高速度鋼粒子の初期平均硬さHv860、比重8.2、全粒子平均径は63μm、最大粒子平均径80μm、最小粒子平均径50μm)の鉄系微粒子投射速度が投射後の疲労強度に及ぼす影響を整理したものである。この場合、衝突速度が100m/secのあたりに最適投射速度があることがわかる。粒子投射による衝突速度が107m/sec及び183m/secの高炭素鋼粒子投射では、最表面の圧縮残留応力はいずれも950MPaであった。それにも関わらず、前者の疲労強度が後者より高いのは、残留応力以外に表層の微細亀裂発生又はばね表面の延靭性が関係することを示す。すなわち、投射速度が183m/secの場合、ばね表層の微細亀裂生成、延靭性の劣化を招いたと考えられる。このように速度が183m/secになると、疲労強度改善効果が認められるものの、投射速度160m/sec以下の場合よりもその効果は小である。投射速度が50m/secを下回ると疲労強度改善効果は小さくなるので、これを下限とした。さらに望ましくは60m/secを下限速度とした。また、投射粒子の全粒子平均径を変化させて、上記と同一材質の粒子投射を図4の被加工ばねと同じばねに施した。その結果、投射粒子の新品での呼称径が100μm、200μm、300μmと大きくなるにつれ、粒子投射後のばねの疲労強度は大幅に低下した(図5)。粒子寸法が大きくなるにつれて疲労強度向上効果が小さくなるのは、ごく表層の圧縮残留応力付与効果の低下と硬さ上昇程度の低下などによると考えられる。このため、本願発明では投射粒子の全平均径は80μm以下、かつ、個々の粒子の平均径は100μm未満とする。これを超えると、効果はあるものの有効性は低下する。
【0046】
化しないばね表面への投射金属粒子の最小平均粒径を10μmとしたのは、それ以下では投射による圧縮残留応力の深さが数μm以下となり、十分な圧縮残留応力が得られる深さが浅くなることによる。ただし、10μm以下の径の粒子が混在しても、少量であれば品質上の問題はない。また最大平均粒径を100μm未満としたのは、それ以上の粒径では表層の残留応力と硬さ改善効果が小さくなるためである。
【0047】
全投射粒子の最大平均寸法を80μmとしたのは、全粒子平均寸法100μmの場合よりもその耐久性向上効果が大なるためである。比重7.0〜9.0としたのは、比較的安価かつ容易に入手できる鉄鋼材料で作られた粒子の活用を狙ったものである。鋼製ばねの弾性係数の約196GN/m2に比べて、超硬合金では450〜650GN/m2であり、弾性変形及び型性変形は投射された粒子よりもむしろ、被投射ばね表面層に集中することになる。このため、超硬合金では、表面の凹凸が比較的大きくなり、また、断熱せん断変形帯などの不均一変形が比較的発生しやすくなる。過度に変形が被加工材であるばねに集中するのを避ける目的もあり、鉄系粒子使用を意図してその密度を7.0〜9.0に設定する。
【0048】
また、窒化しないばねに対する投射粒子の硬さ下限をHv350としたのは、被加工材ばね表面の硬さとして、Hv400〜600のばねが多いが、被加工材硬さよりもやや軟らかい粒子投射でも効果が発揮されるためである。
【0049】
また、投射粒子硬さ上限をHv1100としたのは、比較的安価に入手できる鋼製粒子の硬さの上限としてHv1100が設定できるのと、硬さがHv1100以下では、耐疲労性向上効果が十分に認められるためである。
【0050】
粒径10から100μm未満、比重7.0〜9.0、硬さHv350〜1100の硬質金属粒子の投射速度下限を50m/secとする理由は、それ以下では、投射エネルギー/粒子投影面積が不足して、十分な耐久性改善が出来ないためである。また、上記粒子の投射速度の上限を160m/secとしたのは、それを超える速度では投射エネルギー/粒子投影面積が過大となり、ばね表層の圧縮残留応力がそれ以下の速度よりも低下するとともに、表層の微小亀裂生成が促進されて、ばねの耐久性向上効果が消費エネルギーの割に低下するためである。
【0051】
前述の図4、図5などに対応する窒化されていない薄板ばねのサンプルで、全粒子平均径37μm、硬さHv865の高炭素鋼粒子を90m/secの速度で投射し、最終工程の230℃の低温焼なましを省略したばねと、同じ加工工程で最終の低温焼なましを実施したばねに160℃でへたり試験を実施した。その結果、最終の230℃の低温焼なましを省略したばねのへたりは、それを実施したばねと同等であり、すぐれた耐へたり性であった。他方、0.3mm径のスチールショットを速度100m/secで投射したばねサンプルでは、最終の低温焼きなましを施したほうが実施しないサンプルより良好な耐へたり性であった。
この原因は、前者では鋼中の炭化物の変形が後者よりも激しく起こり、これに助けられて分解した遊離炭素原子が比較的多く、この遊離炭素が160℃のクリープ試験中の転位の移動阻止効果を有効に発揮したためと考えられる。ただし、上記の230℃の低温焼きなまし有無の2種類のばねに室温で短時間のセッチングを同一応力条件で施すと、セッチングへたりは低温焼きなましを施さないばねのほうが、それを施したばねよりも大きかった。
このことから、微細硬質金属粒子投射だけでは、投射でばね表層に生成した転位の固着が不充分であることが分かる。また、前記の160℃のへたり試験のへたりが、あらかじめ施す230℃の低温焼きなましの有無にかかわらないのは、微細硬質金属粒子投射によって、0.3mm径の金属粒子投射よりもばね表層部の鉄炭化物、セメンタイトの変形と消滅が促進され、160℃に昇温された時に分解した炭素原子による歪時効が短時間に進行することを意味している。ただし、粒子投射によるばね表層の瞬間的発熱による温度上昇は、同一投射速度であれば、投射粒子の直径にほぼ反比例すると推定される。これは、同一粒子硬さ、同一ばね材質であれば、衝突によるばね表層の変形に要する時間は粒子径に比例するが、粒子径が小さくなると、変形に要する時間が短くなり、変形中の変形熱が変形領域の外へ逃散する時間が短くなる結果、変形領域の温度が上昇するからと考えられる(バウデン・テイバー著、曽田範宗訳、固体の摩擦と潤滑、第4版、丸善、昭和50年発行、256頁の説明と(8)式参照。ここでは衝突物体の接触時間は、(質量M/粒子半径r)の平方根、√(M/r)に比例するとの説明がある。これによると、√(M/r)∝rであるので、結局接触時間はrに比例する。)。
【0052】
本発明の微細粒子投射によるばね表層では、衝突、変形による発熱と炭素、窒素原子によるひずみ時効硬化が0.3mm径の粒子よりもよりよく進行しているものと考えられる。また、セメンタイトが変形されるのは、セメンタイトは温度が上昇するほど変形抵抗が小さくなる特性を持つことが一因と考えられる。なお、徴細粒子投射速度が180m/sec程度では、セメンタイトが変形、一部消滅するとともに、分断が促進される。セメンタイト分断は変形により生成、移動する鉄中の転位運動阻止効果を小さくするので、投射速度とともに表面残留応力が低下する一因となると考えられる。なお、本発明で使用される投射徴細粒子の平均粒径に対して、その寸法ばらつきが大きくなって、より寸法の大きな粒子の比率が高まると、耐久性向上効果が小さくなる。このため、最大粒子平均径は、実質、100μm未満、また、望ましくは80μm以下とする必要がある。
【0053】
本発明の微細粒子投射によるその他の作用効果として、微細粒子投射によるばね変形の減少を実現でき、この結果として、大量生産でばねの寸法ばらつきの発生を小さく出来ることが判明した。この理由は、本発明の微細粒子投射の影響層が比較的薄く、これがばねの大変形を抑制すること、及び微細粒子投射時に本発明では比較的低速の粒子衝突によっているため、より高速投射に比べて投射速度ばらつきが小さくできることが推定できる(図6)。
【0054】
このように処理した高炭素鋼製ばねの表面層を透過電子顕微鏡によって観察すると、表面の変形による変形帯のなかに非常に微細かつ湾曲を伴う微細組織(サブグレイン)の発達と、セメンタイト析出物の一部の分断とその間隔の微細化及び鉄中の転位増加が認められるが、本発明の最適投射速度で微細粒子を投射した場合、セメンタイト分断は殆ど起こらない。また、回復再結晶による明瞭な微細組織(ポリゴン化組織)はまったく観察されなかった。また、マルテンサイトやペイナイトという過冷却組織も認められなかった。
【0055】
なお、比較的線径又は板厚の大きなばね、具体的には線ばねでは1.5ないし2.0mm以上の線径では多段ショットピーニングによってその表層のかなり内部まで圧縮残留応力を付与することが有効であり、自動車等の内燃機関用弁ばねのような用途で広く実施されている。[0044]段の1−7行の(A)にあるように0.2〜0.9mm径の粒子を速度40〜90m/secで投射するのは、比較的内部まで圧縮残留応力を付与して非金属介在物からの疲労折損を防止するためである。たたし、線径が2.0ないし2.5mmよりも大きいばねでは、0.5〜0.9mm径の粒子投射後、0.2〜0.4mm径の粒子投射で、比較的表暦の残留応力を高めて内部と表面近傍からの亀裂発生をある程度防止することが出来る。このような0.2〜0.9mm径の粒子投射後には表面の圧縮残留応力はまだ不十分であり、これを本願発明の微細粒子投射によって疲労破壊に有害な微細亀裂などの欠陥を生ずることなく高める
【0056】
このような比較的寸法の大きな粒子投射の欠点を克服するために、上記の比較的大きな寸法の粒子投射後に、径10〜100μm未満、全粒子平均径20〜80μm、球形またはそれに近い角張りのない比重7.0〜9.0、硬さHv350〜1100の硬質金属微粒子を速度50〜160m/secで十分に投射することによって表層に疲労強度に有害な微小亀裂や大きな凹みなとを起こすことなく、均一に強加工層を形成し高い圧縮残留応力を付与する。
【0057】
本発明における10〜100μm未満又は好ましくは10〜80μmの粒子投射のカバレッジは、目標とするばねの耐久性改善が必要な部位に対して、100%以上とすることが望ましく、上記の十分に投射するの意味はこれに該当する。
【0058】
0.2〜0.9mm径の粒子の初期硬さ下限をHv350としたのは粒子衝突の繰返しによってばね表面よりも硬さの低い粒子は変形が繰返されて次第に加工硬化して、その硬さが上昇する。また、硬さが低くてもHv350以上であれば、衝突のエネルギーの一部はばね表層の変形に使われるので、ここでは、Hv350を下限とした。
【0059】
このように、前記の窒化したばねよりも表層硬さが低い窒化をしないばねにおいても、窒化したばねと類似の条件で良い結果が得られることが判明した。
【0060】
なお、本願発明の投射粒子の初期硬さとは、新品での値であり、請求項の硬さ、その他の値は新品のそれである。本願発明において、投射する粒子は繰返し使用によって次第に磨耗・摩滅するので、実際には上記新品の寸法よりも小さい粒子が使用されることになり、使用中に破壊によって鋭い角張った辺を有する粒子に変化しないことが必要である。また、本発明のばねの製造工程において冷間成形したばねの250〜500℃程度の温度での残留応力除去のための低温焼鈍実施、コイルばね成形後又はコイルばね成形後の残留応力除去焼鈍後、又は窒化後などの座面研磨、微細粒子投射後又はその前工程の0.2〜0.9mm径粒子投射後の耐へたり性改善のための200〜250℃程度の温度に加熱しての低温焼鈍、同目的の温間又は冷間のセッチング、などの工程は本発明のばね製造に含まれる。
本願特許の硬質金属粒子投射の効果は、ばね表層に疲労破壊に有害な微小亀裂生成又は過大な塑性加工によるばね表層の延靭性劣化を起こすことなく、高い圧縮残留応力を付与することによって、疲労破壊の原因となるばね表面及び表層近傍内部の欠陥部からの微細亀裂の伝播を防止して、疲労耐久性を向上させることである。本願発明の硬質微細粒子投射は、ばね表層に疲労に有害な損傷を与えることなく、ばねごく表層の金属組織の加工変形による加工硬化を実現し、その結果として極めて高い圧縮残留応力を付与する。この微粒子投射による瞬間的発熱と高圧によって、ばね鋼中Fe3Cの強変形と一部分解による消滅によって発生する固溶C原子による転位固着と転位増殖が促進される。窒化されたばね表層には固溶窒素が微粒子投射時の瞬間的変形と発熱によって、上述のC原子同様、転位の固着と増殖を起こす。これらによって、ばね表層のセル構造の微細化と加工硬化が特に促進される。これらの様相は数万倍の透過電子顕微鏡写真によって明確となった。表層の大きな加工硬化は、表層の弾性限を向上させ、その結果、弾性限内に留まる残留応力向上に寄与すると考えられる。最高の効果が発揮できるのは、微細粒子投射によるばねへの衝突速度が60ないし140m/secであり、これよりも高速では、効果はあるものの、特に窒化ばねについては衝突速度とともに次第に加工による残留応力が小さくなるとともに、微細な亀裂や加工による材質の脆化が現れ、その結果、疲労強度向上効果も小さくなる。窒化処理されたばねに対して速度190m/sec、また、さらに厳密には、170m/secを超えると特にそれらの損傷が顕著になり、窒化されないばねでは、160m/secを超えると、効果はあるものの、最適条件から大きく外れる。また、投射による衝突速度が60m/sec又は50m/secよりも低下すると、衝突の影響で加工される深さが小さくなり、残留応力も低くなる。このため、疲労強度向上効果はあるものの、最適条件からは明らかに劣るようになる。
【0061】
【図面の簡単な説明】
【図1】 窒化後0.6mm径の鋼製粒子を投射し、さらに鋼製微細粒子(新品平均径63μm)を投射したハイテンばね表面の圧縮残留応力と投射速度の関係曲線図。
【図2】 図1と同じ0.6mm粒子投射後の窒化ばねへの平均63μm径高速度鋼微細粒子投射速度90m/secと190m/secの場合の圧縮残留応力曲線
【図3】 図1と同じ窒化、0.6mm粒子投射をざれた高強度ばねへの第二段粒子投射による圧縮残留応力と投射粒子径の関係曲線図。
【図4】 呼称径50μmの2種類の銅製粒子投射によるばねへの衝突速度が、投射後のばねの疲労限振幅応力に及ぼす効果を示す図。この図は図5のデータの一部を抽出して再整理したものである。
【図5】 ばね綱薄板ばねに対して硬質金属粒子投射の影響を調査した結果で、材質が高炭素鋼及び高速度鋼である投射粒子の平均直径と粒子投射後の疲労限振幅応力(平均応力、786N/mm2で一定)の関係を示す。図中の数字は粒子の衝突速度である。
【図6】 硬質金属粒子投射による薄板ばねの高さの減少を測定した結果を示す。
この図は、図4,5のデータと同じ試験における測定から取ったものである。プロット点に添えた数字は呼称粒子径を示す。
【図7】 4.0mm径ピアノ線で製造した弁ばねの表層部のX線による鉄地残留応力分布曲線。
【0062】
【発明を実施するための最良の形態】
以下に本発明の実施形態につき説明する。
【0063】
(実施形態1)
窒化によって弁ばね、クラッチばね等の耐久性、特に耐疲労強度を向上させるため、次のような工程が従来より採用されている。
【0064】
ばね用合金鋼オイルテンパー線(以下OT線という)→ばね成型(冷間コイリング)→残留応力除去焼鈍→座面研磨→表面スケール除去→窒化処理→ショットピーニング→低温焼鈍ここで、窒化後のショットピーニングとして、通常、一段ショットの場合は粒径0.5〜0.9mm程度のHv500〜800の鋼球、又はカットワイヤ等の多数の硬質金属粒子を投射する。また二段ショットの場合は、粒径0.5〜0.9mm程度の多数の鋼球のショット後に、粒径0.2〜0.4mm程度の多数の金属粒子を投射する。
【0065】
本願発明では、窒化後のショットピーニングの方法を提供し、これらの第一段後または第一段と引続く第二段後に全粒子平均径80μm以下かつ20μm以上、個々の粒子平均径10μm以上100μm未満、形状として球形またはそれに近い角張った個所のない、比重7.0〜9.0、硬さHv600以上Hv1100以下かつ窒化後または浸炭窒化後のばね表面硬さと同等以下の硬さを有する金属粒子を速度50〜190m/secで投射し、ばね表層の加工硬化と微細亀裂生成防止を効果的に行い、最表面層に高い残留応力と硬さを付与する。
【0066】
さらに、これらの工程の後、低温焼鈍によってショットの影響層(表層150〜200μm)における転位固着を確実にすることによって、耐疲労性及び附へたり性において、従来の方法のみによっては得ることができなかった非常に良好な耐久性を有するばねを得ることができた。
【0067】
また、窒化前のスケール除去(デスケール)方法には、酸洗、電解研磨、金属粒子投射などがあるが、本願発明では、窒化前のデスケール処理方法を請求項2において提供する。この方法は微細な鉄系などの粒子投射によって窒化後に高い疲労耐久性を得ようとするものである。
【0068】
実施形態1のばねの製造と性能について以下に記す。
【0069】
請求項2の方法によって、窒化前のデスケール、その後、窒化処理と引続く粒子投射を施して、請求項に該当する高性能ばねを製造することが出来る。
C:0.59%,Si:1.90%,Mn:0.84%,Ni:0.27%,Cr:0.96%,V:0.09%(単位はいずれも重量%)を含有する3.2mm径の高強度弁ばね用オイルテンパー線(請求項(2)の材料)を用いて、冷間コイリング、420℃応力除去焼鈍、座面研磨の後、デスケール処理として全粒子平均径37μm、各粒子の平均径が75〜10μm、各粒子の最大/最小径比1.2以下で角張っていなく、比重7.5、硬さHv865の粒子を速度107m/secで投射し、ついで、窒化して表層(深さ3〜5μm位置)の硬さHv910を得た。さらに、0.6mm径、硬さHv550のラウンドカットワイヤを速度70m/secで十分に投射して比較的内部まで圧縮残留応力を付与した。この時の表層硬さはHv930であった。これに引続き、全粒子の平均径が37μm、個々の粒子のうち、最大粒子の平均径が75μm以下、個々の粒子最小径がほぼ10μm、長短径比1.2以下で角張っていないほほ球状の、比重7.6、平均硬さHv865の高炭素鋼粒子を平均速度107m/secで十分に投射した。その後、220℃で低温焼鈍を実施した。この時の表面硬さはHv975であった。
【0070】
この時のばね最表層の圧縮残留応力は2010MPaとなった。また、このときの表面から0.2mm深さ位置及び0.5mm深さ位置でのばねの硬さは、それぞれHv570及びHv545であった。また、鋼中の非金属介在物は15μm以下、炭窒化物は10μmより小さかった。窒化のままでのこのばねの最表面の硬さはHv910であり、投射した0.6mm径の炭素鋼粒子の硬さはHv550、高炭素鋼微細粒子の平均初期硬さはHv865、使用済みの同粒子の平均硬さはHv960であった。このばねを平均応力:686MPaで振幅応力を変化させて一定振幅応力下で1000回/min.の速度で疲労試験した。その結果、5×107回で、疲労限度は振幅応力で±677MPa以上となり、n=6個のいずれのばねでも折損しなかった。このばねは本請求項に、また、その製造方法は請求項1および2に該当する。
【0071】
次に、デスケール処理として、まず0.6mm径、硬さHv550のカットワイヤを速度70m/secでばねに投射後、全粒子平均径37μmの高炭素鋼粒子を速度107m/secで投射してから窒化以降の工程を上記の実施形態1のばねと同じとしたばねで上記と同様の疲労耐久性を確保できた。なお、この時、デスケール方法として硬さHv550の0.6mmカットワイヤのみの投射では、窒化後に本発明の二段投射を施しても、N=5×107回における疲労限は686MPa±647MPaとなった。弁ばね用コイルバネの疲労強度は、応力繰返し数Nをある一定値に決めると、平均応力τmと振幅応力±τaによって表現できる。ここでは、N=5×107回に決める。従来技術では、τm=686MPaの場合、τaとして610〜620MPa程度の値が達成されていた。しかし、本発明のようにτm=686MPaでτa≧677MPaのような高い疲労強度は従来、達成されていなかった。同じ品質、形状のばねの場合、平均応力τmが大きくなると、疲労限の応力振幅τaは小さくなることは従来から知られている。τmのxMPa増加に対し、疲労限のτaは近似的にx/5低下することが判明している。そのため、疲労限τm±τaは、(定数1−x)±(定数2+x/5)で表示できる。今、定数1として800MPaを取ると、疲労限は(800−x)±(定数2+x/5)と表現できる。上記の疲労限686MPa±647MPaをこの式にあてはめると、定数2は624.2MPaとなる。そこで、本発明では、疲労限応力として、請求項に記載のように、次の(1)式を満足するばねを請求項に含める。
【0072】
すなわち、τm=800−xの時、τa≧620+x/5…(1)
ここで、単位;いずれもMPa,x:変数で0以上150以下
上記の、窒化前に0.6mm径の鉄系粒子投射によってデスケールしたばねは、かろうじて(1)式を満足できたが、平均応力686MPa、振幅応力±677MPaという高い応力繰返しで、ばね端末部で線間接触を生じて疲労破壊を生ずることが散発した。しかし、デスケール法として0.6mm径の粒子投射に続いて本発明のSS処理を十分に施すと、このような線間接触部の疲労破壊が改善できたので、このようなSS処理を含む二段ショットによるデスケールも本発明に含まれる。
【0073】
・実施形態1の比較ばね(1)(2)
なお、上記のばねで、第二段の徴細粒投射を省略した比較ばね(1)は、平均応力:686MPaで疲労限度の振幅応力は±510MPaとなり、請求項の疲労強度を満たさない。また、第二段のみを変化させ、全粒子平均径約72μm、最大粒子平均径約200μm、最小粒子径約7μmの鋼粒子を空気圧0.5MPaで投射(平均径72μm粒子の衝突速度は約130m/sec)した比較ばね(2)を試作した。このばねの疲労限応力は平均応力が上記実施形態1のばねと同じで、振幅応力は±530MPaとなり,効果は少しは認められるが請求項を満足しない。
【0074】
なお、前記実験は窒化後に0.6mm径、硬さHv550の鋼粒子を投射してからSS処理をしたが、とりわけ線径や板厚が1.5〜2mm以下のワークについて、このような事前投射をしても利点は少なく、むしろ窒化後直ちにSS処理をも行った方が、耐疲労性をはじめとする性能面やコスト面で有利である。
【0075】
参考例1
窒化をしないばねに平均径10μm以上100μm未満、比重7.0〜9.0、硬さHv350〜1100の多数の硬質金属粒子を投射してばねの表面粗さを極力低く押さえつつ、かつ、局所的過大変形(局所的せん断変形帯、断熱変形帯ともいう)を発生せずに、ばね極表層に比較的均一に強加工層を発生させるとともに極力高い残留応力を付与することによって、窒化を施さなくてもばね表面層からの疲労折損を防止することを狙ったばねの加工方法である。
【0076】
ばねの表面に硬さHv350〜1100、比重7.0〜9.0、平均粒径10μm以上100μm未満、望ましくは10〜80μmの硬質金属粒子を速度50m/sec以上、160m/sec以下、望ましくは60m/sec〜140m/secで投射することによって、表層近傍に耐久性に有害な微小亀裂や不均一せん断変形帯を発生することなく、極表層の圧縮残留応力を高めて、表層からのばねの疲労折損を防止する。これによって、細径ピアノ線や細径オイルテンパー線から製造した小物ばねや各種薄板ばねの疲労強度、耐久性を向上させる。
【0077】
射速度の影響を詳しく調査研究して、従来、微粒子投射速度vを100m/sec以上に規定した特公平2−17607号「金属成品の表面加工熱処理方法」のように、A3変態点を超えることなく、また、速度V>160m/secで投射して表面層の変形が過度になることなく、速度V≦160m/sec、望ましくは60m/sec≦V≦140m/secで投射し、その瞬間的温度上昇を回復再結晶を起こすよりも低温度に制御するとともに表層の過度の変形を避けることによって、より高い耐久性を得ることを特徴とする。
【0078】
供試ばねとして、すでに記載したように断面形状が板厚0.97mm,板幅5.1mm,硬さHv537〜589で、化学成分が0.55%C、1.47%Si、その他を含むパテンティング、伸線、冷間圧延されたばね鋼で、ばね加工工程が、ばね成形→応力除去焼鈍→微細粒子投射→低温焼きなまし(230℃)の順序で、ばね加工工程の微細粒子投射条件は(1)全粒子平均径37μm(新品)、硬さHv865、比重7.6の炭素鋼微細粒子、及び、(2)全粒子平均径63μm(新品)、硬さHv860、比重8.2の高速度鋼微細粒子を用いた。そして、種々の速度でばねに上記微細粒子を十分に投射した。その後、ばねの疲労試験を行い、微細粒子投射速度と疲労強度の関係を求めた。その結果を図3に示す。このときの疲労限応力は平均応力が785MPaで、繰返し数107回で破壊しない振幅応力を取っている。その結果、炭素鋼粒子、高速度鋼粒子ともに、衝突速度が60〜140m/secでもっとも良好な疲労強度改善効果が得られることがわかった。(2)の高速度鋼粒子投射では、衝突速度vが50m/secから140m/secで、疲労限振幅応力が700MPaを超えると考えられる。また、(1)の高炭素鋼粒子投射では、衝突速度Vが約60m/secから約160m/secで疲労限振幅応力が700MPaを超えると考えられ、非常に良好な改善効果が認められる。
【0079】
上記の参考例1の比較例として、ショットなしのばねでは、疲労限振幅応力は440MPaであり、疲労限は低い。また、0.3mm径スチールショットを速度V=100m/secで十分に投射したばねでは疲労限振幅応力は±300MPaであり(このサンプルは微粒子投射を0.3mm径のスチールショットに替え、それ以外の工程は参考例1のばねと同じ)、粒子投射の効果は見出せない。
【0080】
参考例2
また、比較的断面寸法の大きい高強度ばね、例えば線径2mm以上の窒化しないばねには、微粒子投射処理の前処理として、0.2〜0.9mm径の鋼系粒子をv=40〜90m/secで投射して比較的内部まで圧縮残留応力を付与する。これによって圧縮残留応力は表面から数+μm以上入った場所で最高の値に達するが、極表面層は内部の最高値に比べて低い値になる。このため、このままでは、ばね表面近傍を起点とする疲労折損を十分に防止することが出来ない。この点を改善するために上記の0.2〜0.9mm径粒子投射後に、速度v=50〜160m/sec、さらに望ましくは、v=60〜140m/secで、粒径10から100μm未満、さらに望ましくは粒径10〜80μm、比重7.0〜9.0、硬さHv350〜1100の硬質金属粒子を投射することが行われる。
【0081】
参考例2のばね
線径3.2mm、JIS、SWOSC−Vよりも高い引張強さ2070MPa、表層部の硬さ約Hv620の高強度弁ばね用オイルテンパー線(化学成分C:0.61%,Si:1.46%,Mn:0.70%,Ni:0.25%,Cr:0.85%,V:0.06%,単位はいずれも質量%)を冷間でコイルばねに成形し、コイリングで生じた残留応力除去のための400℃×20分の低温焼鈍、座面研磨、0.6mm径比重約7.8、硬さHv550の鋼粒子の速度70m/secでの投射に引続き、呼称粒径50μm、実測の新品全粒子平均径37μm、個々の粒子の最大/最小径比1.2以下で角張りがなく、比重約7.5、平均硬さHv865の鉄系粒子で、その各粒子の平均径が10〜75μmに分布する粒子(ただし、n=60個の測定値)を衝突速度107m/secで十分に投射した。さらに220℃で転位固着のための低温焼鈍を実施してから冷間セッチングで仕上げた。このようにして作製した参考例2のばね最表面のX線による鉄地の圧縮残留応力ば1350MPaでばね内部に入るにつれてそれよりも残留応力は小さくなった。同じくそのごく表層の硬さはHv690、表層から0.2mm〜0.5mm深さにおける硬さはばね内径側でHv600〜580であった。このばねの疲労試験を実施した結果、繰返し数5×107回の疲労限度はn=10個の試験ばねで折損がなく、平均応力588MPa、振幅応力±510MPaとなった。このコイルばねにかかる平均応力を最大で690MPaと想定し、平均応力τm=690−xと置くと、繰返し数N=5×107回における疲労限振幅応力τaは、実施形態1で説明したτmとτaの換算の考え方により、τa=489.6+x/5と置ける。この式は、しかし、上記の一試験結果のみを数式化したものであるので、鋼線の引張強さ、鋼種、線径などを考慮して、
平均応力τm=690−xのとき、
疲労限振幅応力τa=±(470+x/5)…(2)
とした。このばねは、ごく表層(最表層)の残留応力として1200MPa〜1600MPaを有する場合が多い。
【0082】
参考例2の比較ばね(3)、(4)
上記の参考例2のばねと同一ロットのオイルテンパー線で、これとほぼ同じ工程であるが、呼称50μm径の鉄系微粒子投射のみを省略した比較ばね(3)を作製した。このときの表層部の最大圧縮残留応力は表面から約40μm内部にはいった場所に発生し、その値はおよそ820MPaであった。また、ごく表面の圧縮残留応力は630MPaである。この疲労試験結果は、5×107回の疲労限が平均応力588MPaで、振幅応力は±440MPaである。また、第二段投射として、呼称100μm、実測全粒子平均径97μm、同最大粒子径130μm、同最小径約35μm、個々の粒子の最大/最小径比が1.2以下の高炭素鋼粒子を速度約85m/secで投射し、その後、さらに参考例2のばねと同じく、220℃で低温焼鈍、冷間セッティングで仕上げた比較ばね(4)を作成した。その繰返し数5×107回における疲労試験結果は、平均応力588MPaで振幅応力±461MPaである。
【0083】
10から100μm径未満の粒子を投射される前のばね表面の硬さと投射粒子の硬さの関係であるが、ばねが窒化されていない場合、窒化した場合よりばね表層は硬さが低く、そのため延性が高く、ばね表面硬さより硬さの高い鋼製の粒子投射でも、投射速度が160m/sec以下であれば、微細亀裂などを生成し難い。他方、逆に投射粒子硬さがばね表面より低くても、表層改質効果は認められる。特に、100ないし140m/secを超える比較的高速の投射で、被加工材ばねの硬さがHv550ないし600以上の高硬度の場合、被加工材と同等以下の硬さの微細粒子で投射しても、表面の凹凸が軽減され、しかも比較的内部まで残留応力が高い値で入る。また、投射粒子の硬さが低いと繰り返しの投射で被加工材ばねよりも、投射粒子自身に加工硬化が顕著に起こるが、粒子の新品硬さがHv350を下回ると被加工材ばねの表層改質効果の効率が下がる。また、炭素鋼や合金鋼製の微細投射粒子は比較的安価に入手でき、経済的であり、その硬さはHv1100以下であり、このような経済性及び耐久性に有害なばねの表面粗さの増大や表層の微細亀裂を避ける意味で新品の微細粒子の上限硬さはHv1100とした。
【0084】
参考例3
微細パーライトを主とする伸線で加工強化した鋼線より製造したばねに、窒化処理をせずに、比較的大きな寸法の通常のショットピーニングを施したのち、呼称径50μm径の微細粒子投射をする方法で製造したばねについて以下に述べる。直径4.0mm、引張強さ、σB=1,735MPa、平均硬さHvで約450のピアノ線を用いて自動車内燃機関用弁ばねを試作した。冷間でピアノ線をばねにコイリング後、350℃で15分間の応力除去焼きなましを施し、コイル内側表面の引張残留応力を除去してから座面研磨を施した。これに直径0.6mm、硬さHv550のカットワイヤを十分に投射した後220℃Cで低温焼鈍を施した。さらに引続いて全粒子平均径37μm、最大粒子径約75μm、比重約7.6、硬さHv865、粒子の最大/最小径比1.2以下で角張らない形状の高炭素鋼粒子を速度107m/secで十分に投射した。引続きこれに220℃の低温焼鈍を施し、さらに冷間セッチングを施した。このばねの最表層圧縮残留応力は590MPaであった(図7)。
【0085】
この時の比較ばね(5)として、上記参考例3のばねの50μm径の微粒子投射のみ省略したばね(それ以外は同じ材料と工程)を作成した。その最表層の圧縮残留応力は430MPa(図7)である。また、もう一つの比較ばね(6)として上記参考例3ばねの第二段投射に代えて、比較例2の第二段投射と同一条件で呼称100μmの粒子を投射した。
このようにして試作した参考例3の弁ばねと比較ばねの疲労試験を実施した。試験は1000回/分の速度で、各応力水準ごとにn=15個のばねを試験した。その結果は下記のように参考例3のばねの比較ばねに対する改善効果が明瞭であった。前者は、繰返し応力τm±τa、繰返し数:5×10 7 として、τm=690−xの時、τa≧422+x/5………(3)
ここで、単位:MPa,x:0〜140
の(3)式を満たすが、比較ばね(5)(6)はそれを満たさない。

Figure 0003847350
【0086】
ここで、このコイルばねにかける最大平均応力を690MPaと想定して、前記(1)式、(2)のところで説明したように、平均応力と振幅応力の互換性を考慮すると、平均応力τm=690−xに対し、上記参考例3のばねの疲労限振幅応力τaは、τa≧440.6+x/5と表現できる。線径、線の引張強さ、鋼種などを勘案して、下記(3)式を満たすばねを参考例3のばねとし、ごく表層の圧縮残留応力を550MPa以上とする。
【0087】
平均応力τm=690−xのとき、繰返し数5×107回における疲労限振幅応力τa≧422+x/5…(3)
ここで、x:0〜140
【0088】
これらのばね(比較例は(5)のみ)の残留応力分布を示す図7より、最表面から深さ50μmまでの表層部の残留応力がSS処理によって大きく改善されたことがわかる。また、これらのばねの表面粗さRmaxは0.6mm粒子投射のままでは13.2μm、0.6mm粒子投射後全粒子平均径37μm投射後の参考例3によるばねでは9.2μmであった。
【0089】
上記の試験で、参考例3のばねの疲労試験応力が高い場合、ばねのへたりがやや大きくなった。このへたり防止のため、ピアノ線に代えてケイ素及び/またはクロムなどの耐へたり性を富ます元素を添加したパーライト組織冷間伸線タイブの鋼線を使用することやホットセッティングの実施が対策として考えられる
【0090】
参考例4
3.2mm径のJIS SWOSC−V、弁ばね用オイルテンパー線を用いて弁ばねを試作した。この弁ばねは、窒化処理せずにSS処理を施して製造した。
【0091】
この弁ばねの製造工程は次のとおりである。すなわち、ばねコイリング、400℃・20分の低温焼鈍、0.6mm径の鉄系ラウンドカットワイヤの速度70m/secでの投射、高炭素鋼微粒子SS処理(速度107m/sec、全粒子平均径40μm、最大粒子平均径75μm)、さらに220℃で20分の低温焼鈍、最後に冷間セッティングを施した。このばねのごく表層の圧縮残留応力は1010MPaであった。このばねの疲労試験を実施したところ、平均応力τm=588MPaN繰返し数N=5×107回での疲労限振幅応力は466MPaとなった。この応力は、平均応力を690−xと置くと、振幅応力τaはτa=445.6+x/5と表現できる。SWOSC−Vオイルテンパー線の引張強さばらつき、線径範囲、などを考慮して、ごく表層の鉄地の圧縮残留応力を900MPa以上とし、次の(4)式のようにばねの疲労強度を定める。
【0092】
平均応力τm=690−x、繰返し応力τaとして、5×107回における疲労限応力が、τa≧440+x/5…(4)[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine hard metal particle projection for a valve spring for an internal combustion engine, a clutch spring for a transmission such as an automobile, a high-strength thin plate spring, and the like. The present invention relates to a surface treatment method that improves the performance by the method and a high-performance spring manufactured by this surface treatment method.
[0002]
[Background]
The following are conventional techniques related to the present invention.
1. Japanese Patent Publication No.2-17607 “Surface processing heat treatment method for metal products”
This technology relates to a surface processing heat treatment method in which a shot of 40 to 200 μm having a hardness equal to or higher than the product hardness is injected at a speed of 100 m / sec or more, and the temperature near the surface is raised to the A3 transformation point or higher. is there.
This method is a method of causing the austenite of the workpiece to be transformed by heat generated by the collision of the workpiece surface layer and the transformation of the metal structure by rapid cooling, and differs from the technical idea and content of this patent.
[0003]
2. Japanese Patent Laid-Open No. 9-279229 “Surface Treatment Method for Steel Workpiece”
In the technique according to this publication, a large number of hard metal particles having a diameter of 20 to 100 μm are collided with a steel workpiece surface at a speed of 80 m / sec or more, and the temperature rise limit on the workpiece surface is 150 ° C. or more, and the recovery / recrystallization temperature is exceeded. The main content is to control to low temperature.
This patent does not mention nitridation. In addition, in this patent, there are almost no restrictions on the material of the metal particles, such as specific gravity and hardness, and there is a limitation that the collision speed is 80 m / sec or more, but it is clear where the optimum speed is. is not. In the embodiment described in this patent, only 180 m / sec is described and it can be seen that there is an effect, but it can be said that it is unclear whether or not it is the best condition.
[0004]
3. JP-A-10-118930 “Spring shot peening method and spring product”
0.64% C-Si-Mn-Cr-Mo-V steel spring is nitrided, and after shot peening with a shot with a diameter of 0.5 to 1.0 mm, the specific gravity of the projection material is 12 to 16, Surface peening with a diameter of 0.05 to 0.2 mm and a hardness of Hv 1200 to 1600, surface residual stress σR = −1950 MPa, repetition rate 5 × 107The fatigue limit is 700 ± 620 MPa. This fatigue limit stress is the claim of this patent.4The fatigue strength of is not reached.
[0005]
The purpose and method of this patent are similar to the present invention, but this patent uses cemented carbide particles with dimensions of 0.05 to 0.2 mm, specific gravity of 12 to 16, high hardness, high cost, and limited manufacturer. On the other hand, in the present invention, metal particles such as iron-based particles having a diameter of 0.01 to 0.08 mm, which are cheaper and easier to obtain, are used. Further, the fatigue strength obtained as a result of the present condyle invention can obtain an excellent effect as compared with this conventional patent.
[0006]
4). Japanese Patent No. 2613601 (Japanese Patent Laid-Open No. 1-83644) "High-strength spring" C0.6-0.7%, Si 1.2-1.6%, Mn 0.5-0.8%, Cr0. 5 to 0.8%, a total of 0.05 to 0.2% of one or more of V, Mo, Nb, and Ta, the balance iron and impurities, and the size of the nonmetallic inclusions is 15 μm or less at maximum, Surface roughness Rmax 15 μm or less, maximum compressive residual stress near the surface is 85 to 110 kgf / mm2A spring that is (833-1079 MPa) is described. In this patent, the maximum compressive residual stress near the surface layer is 110 kgf / mm.2It is described that when it exceeds (= 1079 MPa), the production becomes difficult and the surface roughness is lowered, and the fatigue strength is lowered. A spring manufactured by this inventor and other researchers at the Spring Technology International Conference hosted by ESF (European Spring Federation) in Dusseldorf, Germany, on April 3, 1990 after the filing of this patent. The performance of is described in detail. The title of this paper is A High Strength Spring for Automotive Engine, whose authors are M.Abe, K.Saitoh, N.Takamura and H.Yamamoto. The maximum compressive residual stress on the surface of the spring corresponding to the invention of Japanese Patent No. 2613601 described in this paper is about 950 MPa from the FIG. 9 of the same paper, about 820 MPa on the outermost surface, the surface roughness of this spring from the second table of the same paper Is Rmax 10.6 μm. The fatigue limit is 5 × 10, as shown in FIG.7Τm = 588 MPa and τa = ± (450 to 480) MPaThe
On the other hand, in the present invention, even if the maximum value of the compressive residual stress of the surface layer exceeds 1079 MPa, the surface roughness of the spring is not increased, and the residual stress is maximized at the outermost surface or very close to the surface, and from the surface. Can effectively prevent fatigue failure, so even without nitriding,The following formula (2)A spring satisfying the fatigue limit can be obtained.
Cyclic stress τm ± τa, number of repetitions: 5 × 10 7 When τm = 690−x,
τa ≧ 470 + x / 5 (2)
Here, x: 0 to 183, unit: MPa
[0007]
5). Japanese Patent Laid-Open No. 5-337963 “Method for Manufacturing Coil Spring”
The surface roughness is kept low by shot peening, and after descaling, nitriding, and then shot peening with a 0.8 mm diameter cut wire, the surface roughness Rmax of the spring product is 5 μm or less.760 ± 57 kgf / mm at the number of stress cycles2There is a description that fatigue strength of (588 ± 559 MPa) was obtained. However, in the data described in the examples obtained by this method, the fatigue strength is claimed in the present application.4(1) is not satisfied. Further, this method patent does not disclose fine particle projection as in the present invention.
[0008]
6). Japanese Patent Application Laid-Open No. 7-214216 “Method for Manufacturing High-Strength Spring”
The steel wire spring is subjected to electrolytic polishing, and then subjected to nitriding treatment. Further, particles having a hardness of Hv 600 to 800 and a diameter of 0.6 to 1.0 mm are used as the first stage shot, and subsequently, 0.02 as the second stage shot. Although there is a description that it is preferable to use particles having a diameter of about 05 to 0.2 mm and a hardness in the range of Hv 700 to 900, further analysis and analysis on the particle size of 0.05 mm to 0.2 mm and There is no consideration. In the example, a steel ball having a particle diameter of 0.15 mm and a hardness Hv of 800 is used as the second stage shot, and the number of repetitions is 5 × 10.7As for the fatigue limit of the spring in the rotation, an average stress of 637 MPa and an amplitude stress of ± 560 MPa have been reported.4The expression (1) representing the described spring fatigue limit is not satisfied. Further, the definition of the second stage particle projection condition is different from that of the present invention.
[0009]
7). Japanese Patent Application Laid-Open No. 5-177544 "Method for Manufacturing Coil Spring"
This patent is a method of performing nitriding after spring forming and further performing shot peening. The shot peening is a method in which first-stage shot peening, low-temperature annealing, and second-stage shot peening using shots smaller than the first-stage shot peening are sequentially performed. In the detailed explanation column of the present invention, as the second stage shot peening, one having a size of about 0.05 to 0.20 mm and a hardness of Hv 700 to 900 is used. It is marked as preferred. However, no further detailed analysis or explanation has been made on the difference in the effects between the particle projection of 0.05 mm diameter and the particle projection of 0.1 mm diameter or 0.2 mm diameter. , Hv800, projection pressure 5kgf / cm2Second-stage shot peening is performed under the conditions of The resulting fatigue limit is 5 × 10 repetitions.7The average stress τm = 686 MPa and the amplitude stress τA = ± 567 MPa per revolution, and the compressive residual stress of the very surface layer does not reach 1400 MPa from FIG. 3, and none of the values satisfy the eighth aspect of the present invention.
[0010]
DISCLOSURE OF THE INVENTION
The above-mentioned prior art column has already pointed out problems for each individual technology. In the prior art, as a shot projection method for a surface nitrided spring having a relatively high surface hardness, super hard particle projection with a diameter of 50 μm or more and 200 μm or less (Conventional Technology 3), and 20-20 for improving the fatigue characteristics of a steel workpiece. Although 100 μm particle projection is mentioned and the particle size and the like are roughly limited (same as in prior art 2, 6 and 7), the relationship between the true effective and appropriate projection method and the performance of the projected spring Was quite ambiguous.
[0011]
In addition, in the patent of Prior Art 3, it is estimated that the price of the cemented carbide particles to be used is high, and there is a problem in the economical efficiency of the projected particles. Further, since the spring fatigue strength of the examples is lower than that of the present invention, it cannot be considered that the technical problem has been sufficiently elucidated and solved.
[0012]
Conventionally, there has been a strong demand for reducing the size and weight of valve springs for internal combustion engines and other various springs for automobiles. In light of these demands, the present invention provides a spring processing method and a spring that can increase the fatigue strength of various springs more than before, thereby improving the running performance of an automobile and improving fuel efficiency by reducing the size and weight. It aims to be realized. In order to realize such an excellent performance spring, generation of microcracks from the spring surface layer under repeated high stress, prevention of growth, and microscopic cracks from non-metallic inclusions existing directly under the spring surface layer Preventing the growth of cracks is a technical challenge. Claims 1 and 2 (with nitriding step))A high-performance spring produced by this technology is a technology corresponding to this technical problem.4It is. These claims provide a relatively economical answer to the above two technical challenges..
[0013]
The projection speed referred to in the present invention is the speed immediately before the collision of the projected particles on the spring surface. As the particle projecting method, the present invention employs an impeller method and a honing method using a gas such as air as a carrier. In addition, even if so-called stress peening is applied in which external stress is applied in a static or constant strain state and the particles are projected onto the spring, the effect of projecting fine particles and other particles is not impaired, but rather the surface compressive residual stress is further improved. Since there is an effect of preventing fatigue breakage, a method of projecting particles with a stress load is also included in the method of the present invention. However, the stress peening requires a special dedicated jig or apparatus, resulting in an increase in cost. Claims of the invention4 isThis is not a stress peening, but a spring subjected to particle projection without applying stress or strain, and is a high fatigue strength spring obtained without relying on stress peening.
[0014]
In addition, even if the fine particle projection of the present invention is performed by heating the spring to a temperature of about 100 to 250 ° C. in advance, the effect is not lost and is included in the method of the present invention. Similarly, between the particle projection described in the claims of the present application and the next finer particle projection, and after the final particle projecting step, a strain age hardening treatment or low-temperature annealing at 150 to 250 ° C. is performed or warm after the particle projection. / Cold setting is also included in the content of the present invention.
[0015]
When the stress received by the spring is increased, a large stress is applied to the spring surface layer, and the surface layer portion cannot withstand repeated stress and causes a fine crack. In order to prevent this fine crack, first, it is necessary to make the residual stress of the spring surface layer in a compressed state and to increase its absolute value as much as possible. Although compressive residual stress cannot be applied beyond its elastic limit, the present invention overcomes this problem by simultaneously improving the elastic limit by work hardening of the spring surface layer by fine particle projection, thereby raising the compressive residual stress to a high level. At the same time, by increasing the yield point and hardness as much as possible without impairing the toughness of the spring surface layer, slip deformation due to repeated stress is prevented, and the generation and growth of surface cracks are prevented. In addition, if fine dents or cracks are generated on the spring surface layer due to particle projection, this will cause fatigue cracks, so it is necessary to consider and project conditions that do not create such surface defects on the surface layer due to particle projection. . In order to satisfy such a requirement, in the present invention, fine metal particles having an optimum shape and physical properties of a diameter of 10 μm or more and less than 100 μm, more preferably 10 to 80 μm, are projected under optimum speed conditions. In particular, in the present invention, if the projection speed and the projection density are increased without exceeding the A3 transformation point in the spring surface layer, even if no recovery / recrystallization occurs, the surface of the spring layer is extended by fine cracks or strong processing. It was found that toughness degradation occurred and the fatigue strength was lower than in the case of lower speed projection. Work hardening with work hardening or strain aging on the surface so as not to cause such fine cracks on the spring surface, at a temperature lower than the A3 transformation point, and at a temperature lower than the iron base undergoes recovery recrystallization. A spring having excellent characteristics can be obtained by projecting fine particles under appropriate conditions so as not to cause deterioration of ductility and fine cracks. For springs with a wire diameter of about 2 mm or more or a plate thickness of about 1.5 mm to 2 mm or more, iron-based particles with a diameter of 0.2 to 0.9 mm are projected on a non-nitrided or non-nitrided spring to give a deep residual stress inside. It is necessary to perform the above-described fine particle projection after application. At this time, first, the above-mentioned particle projection of 0.2 to 0.9 mm diameter includes firstly projecting particles of 0.5 to 0.9 mm diameter, and subsequently performing particle projection of 0.2 to 0.4 mm diameter.The
[0016]
Next, there are roughly the following three methods for preventing fatigue breakage due to non-metallic inclusions inside the spring surface layer. One of them is a reduction in the size of non-ductile non-metallic inclusions contained in the spring material. The minimum dimension (critical dimension) of harmful inclusions becomes smaller as the hardness of the spring becomes higher, and when the hardness of the iron ground around the inclusion is about Hv 520 to 580, it is about 20 to 15 μm. However, in Hv580-630, it is about 10 micrometers. Therefore, if the dimension of the nonmetallic inclusion existing inside the spring material is equal to or larger than the critical dimension, it is necessary to regulate the internal hardness of the spring material according to the maximum dimension. The second method keeps the residual stress around the place where harmful non-metallic inclusions are present, thereby preventing the growth of microcracks around the inclusions. For this purpose, a round cut wire having a relatively large diameter of 0.5 to 0.90 mmφ to 1.0 mmφ is projected at a speed of 40 to 90 m / sec, and a depth of 0.2 mm to 0.5 mm from the spring surface. Conventionally, compressive residual stress has been applied. When the wire diameter or plate thickness of the spring is 1.5 to 2.0 mm to 2.5 mm, a round cut wire having a diameter of 0.2 to 0.4 mm is projected at a speed of 40 to 90 m / sec. It is also necessary to prevent the breakage from inclusions by applying compressive residual stress to a depth position of about 06 to 0.13 mm. In these cases, if the projection speed is increased, a locally uneven deformation region is generated in the spring material surface layer, and fine dents and cracks are generated in the surface layer to easily cause fatigue breakage from the spring surface layer. It is necessary to project so that there is no such defect. In order to prevent the occurrence of such fine cracks, it is necessary to determine a specific maximum projection speed for each spring with an upper limit of the projection speed of 90 m / sec. Further, when the projection speed is less than 40 m / sec, the residual stress imparting effect is reduced and cannot be imparted sufficiently deep, so the lower limit speed is set to 40 m / sec.
[0017]
The third method is to reduce the hardness of the spring material including inclusions. However, if the hardness is reduced excessively, the sag, which is one of the important characteristics of the spring, increases and the spring performance is impaired. Therefore, this method cannot be adopted unnecessarily. Therefore, the claims of the present invention4Then, it is made for the hardness in the position of 0.2-0.5 mm depth to become Hv520 or more at least. Normally, fatigue failure of a spring starting from inclusions occurs at a depth of 0.2 to 0.5 mm from the spring surface, and the hardness and fatigue strength of iron in this depth region are closely related. Carbides in inclusion control in steelmaking plants and heat treatment in wire-making plants so that the average dimension of fractured fracture surfaces of inclusions containing harmful carbides, nitrides, borides, etc. is less than 20 μm to about 15 μm or less. If the hardness in this depth region is Hv 520 to 580, fatigue failure due to inclusions can be prevented by controlling the dimensions such as. ThroughIf it can be controlled so that the average dimension of the natural object at the spring fracture surface is 10 μm or less, the hardness at the depth of 0.2 to 0.5 mm from the surface is Hv 630 or less, and fatigue praying due to inclusions can be prevented. Therefore, the present invention claims4Then, the hardness at a 0.2-0.5 mm depth position is limited to Hv630 or less..
[0018]
The inclusion inclusion state also varies depending on the type of spring material. That is, generally, an increase in the amount of alloy such as Si, Cr, Mo, V, Nb, W, and Al may deteriorate the level of non-ductile non-metallic inclusions in the spring steel material. In the case of a piano wire, there are almost no inclusions of 10 μm or more with current technology. In the case of alloy mesh oil temper wire for valve springs, Al as a harmful inclusion2OThree(Alumina), MgO / Al2OThree(Spinel), SiO2(Silica). These hard non-ductile oxide inclusions can be rendered harmless by controlling the form of the ductile inclusions during steelmaking. On the other hand, since carbides or nitrides or carbonitrides such as VC, NbC, TiC, and TiN maintain a spherical or angular shape, this countermeasure is necessary in the case of a spring steel material that contains a relatively large amount of elements such as V, Nb, and Ti. Therefore, it is necessary to detoxify or prevent its formation by measures such as examination of heating conditions for rolling and annealing and prevention of mixing of Ti and the like from raw materials at the steelmaking stage. In order to prevent spring breakage due to the presence of harmful inclusions, it is desirable to reduce the content of V, Nb, Ti, etc. contained in the spring steel as much as possible.4Component steel(1)Then, addition of 0.03 to 0.60% and 0.02 to 0.20%, respectively, of V and / or Nb is effective for refining crystal grains and improves the ductility of the spring and promotes nitriding. Steel component(1)Ni added to the steel has an effect of improving the toughness of the spring steel, and is considered to be effective for preventing fatigue damage and preventing fatigue crack propagation of a spring tempered with high strength. However, if it exceeds 0.5%, retained austenite is likely to be generated in the processing of the wire and the wire, and the ductility of the spring steel in the process of production is reduced, so the upper limit was made 0.5%. Also component steel(1)Co addition to the steel reduces the transformation time when cooling from high temperatures such as pearlite transformation, and brings the effects of making the microstructure during wire production into fine pearlite with good cold workability, making wire production easier To. However, even if added over 3.0%, it is an economically expensive element and its effect is reduced for the cost. Therefore, the upper limit of the amount added is set to 3.0%.
[0019]
Claim4Component steel(1)Or(2)On the other hand, the addition of Mo, Cr and Al all promotes nitrogen penetration during spring nitriding. If any of these elements is added in an excessive amount, a nitrogen compound is deposited on the very surface of the spring, preventing diffusion and penetration in the depth direction inside the spring, and the effect of improving the fatigue durability of the spring is reduced. For this reason, in this invention, the addition upper limit of Mo, Cr, and Al was 0.6%, 1.8%, and 0.5% by mass%, respectively. W increases heat resistance and is effective in preventing decarburization of springs.(1)Or(2)If the amount exceeds 0.5%, the hardenability becomes excessive and the number of annealing increases, and the manufacturing complexity and cost increase become significant. Therefore, the upper limit is made 0.5%. Ingredient class(1)Thus, C increases the strength of the steel and is also necessary for fatigue strength. Since the effect is reduced when the content is less than 0.5%, the lower limit is set to 0.5%.
[0020]
On the other hand, if C exceeds 0.8%, the strength improving effect becomes small and brittleness is exhibited, so the upper limit was made 0.8%. Even if there is a decarburized layer on the surface layer, if the degree is not extreme, the hardness is compensated for by nitriding, and therefore the method of the present invention can be applied to such decarburized material. Si exhibits a good effect on spring strength and sag resistance. In addition, in the spring strengthened by quenching and tempering, the effect is small if the amount is less than 1.2%, and if it exceeds 2.5%, problems are likely to occur in workability due to decarburization promotion and ductility deterioration during production. Lower and upper limits are ingredient classes(1)And 1.2% and 2.5%.
[0021]
In addition, the present invention claims4of(4)Even maraging steel with these components has an effect of improving fatigue strength.(4)As included in the claims.
[0022]
Maraging steel becomes alloyed element solution and austenite (solution) treatment by heating at a high temperature of about 800-900 ° C, and becomes a relatively soft martensite by cooling, and this is subjected to cold drawing and work hardening. Spring molding from. Thereafter, an aging treatment is performed at around 500 ° C. to obtain strength and springiness. After this, nitriding treatment can be applied to increase the fatigue strength by the method according to claim 1 or 2.The
[0023]
Since maraging steel springs have superior sag resistance compared to low alloy steel wire springs, their tensile strength after aging is 1900 MPa or more and their performance is demonstrated.TheIt is particularly suitable for applications that require sag resistance and fatigue resistance. The solution treatment is a heat treatment applied to high-alloy steels such as stainless steel and high-manganese steel, and is rapidly cooled from a state in which carbide or the like is dissolved at a high temperature (dissolved in the steel structure). Thus, the heat treatment brings the precipitate to room temperature without reprecipitation.
[0024]
The present invention(1)Spring for nitriding (including low-temperature carbonitriding, the main purpose of which is nitrogen addition) in the machining process (Claims)4And its manufacturing method (Claim 1,2, 3)It is made up of.
[0025]
In the spring for nitriding of (1), pickling, electropolishing, shot peening and the like are conventionally known as a descaling method performed before nitriding. Pickling has problems such as generation of fine cracks due to hydrogen embrittlement on the spring surface and is not suitable for the present invention. Since electropolishing has problems such as large-scale equipment for mass production, shot peening (particle projection) has been taken up as a descaling prior to nitriding in the present invention. In addition, it is necessary to adjust the projection speed, the projected particle diameter, and the like so as not to generate a local shear deformation band. Such surface layer defects due to particle projection before nitriding remain without disappearing even after nitriding. When performing particle projection for descaling prior to nitriding, to promote nitriding to a relatively deep temperature at a relatively low temperature, the material is a rope system, and relatively large particles of 0.3 to 0.8 mm are spring-loaded. It is good to project so as not to damage the surface layer at any speed of 40 to 90 m / sec. Also, when stress is applied to the spring, adjacent lines near the end of the spring are likely to contact each other, but sufficient descaling occurs at such a line-to-line contact portion to promote nitrogen ingress during nitriding. In order to prevent fatigue failure from the vicinity of the spring end, it has been found that fine particle projection having a diameter of 10 μm or more and less than 100 μm, more desirably 10 to 80 μm, is effective after the above-described 0.3 to 0.8 mm particle projection. . As a projection condition at this time, in order to project fine particles without causing fine cracks and local deformation bands harmful to fatigue on the surface layer, the projection speed is 50 to 160 m / sec, more preferably 60 to 140 m / sec. Furthermore, it was found that controlling the surface temperature of the spring at the time of fine particle projection to a lower temperature than causing recovery and recrystallization is effective in preventing surface layer defects. When the nitriding temperature is 500 ° C. or less and about 450 ° C. or more, the depth of the surface plastic deformation region due to the fine particle projection is relatively shallow, but nitrogen penetrates to a depth comparable to the particle projection of 0.3 to 0.8 mm diameter. Therefore, it is also effective to perform only fine particle projection without projecting particles of 0.3 to 0.8 mm. The second aspect limits the projection conditions for such a purpose and reason.
[0026]
Nitriding treatment or low-temperature carbonitriding treatment is performed at a temperature of about 500 ° C. or less, and is mainly a treatment for adding nitrogen and, in some cases, a portion of carbon and introducing it into the spring surface layer portion. As a result of the small amount) intrusion, a high compressive residual stress is imparted to the surface layer portion. The fine particle projection of the present invention is also effective for a relatively hard spring having a spring surface hardness of about Hv 800 to 1100 after nitriding. The particle projection of 0.2 to 0.9 mm diameter after nitriding brings the depth of compressive residual stress to a deeper position than that of nitriding. For this reason, the effect which prevents the fatigue fracture from the nonmetallic inclusion and fine crack in the 0.5 mm depth position from the surface vicinity is exhibited.
[0027]
After the relatively large 0.2-0.9 mm diameter iron-based particles are projected as described above, the fatigue breakage from the surface layer and from the internal non-metallic inclusions is further achieved by the projection under the optimum conditions of the fine gold bent particles of the present invention. Can be prevented even under repeated loading at high stress.
[0028]
The particle projection after nitriding has a hardness Hv of 500 to 800 and is softer than the outermost layer hardness (micro Vickers hardness at a depth of about 5 μm from the outermost surface) of the treated spring. Whether hard metal particles such as steel having a diameter of 200 to 900 μm are projected at 40 m / sec to 90 m / sec, thereby preventing the formation of harmful microcracks on the surface layer and applying compressive residual stress to the relatively inner part of the spring ( The particle projection of the hardness Hv500-800 having a diameter of 0.5 to 0.9 mm and a hardness of Hv500 to 800 having a diameter of 0.2 to 0.4 mm is performed, and the surface layer is harmful. Applying high internal compressive residual stress, including relatively close to the surface, while preventing microcracking etc.3).
[0029]
Subsequently, the hardness is Hv600 or more and Hv1100 or less, and the hardness of the outermost layer of the spring before nitriding is equal to or less than the hardness of the outermost layer of the spring, the average diameter of all projected particles is 80 μm or less, and the average diameter of individual particles 10 μm or more and less than 100 pm, more desirably, the average diameter of all particles is 65 μm or less, the average particle diameter is 10 to 80 μm, the specific gravity is 7.0 to 9.0, and the shape of the metal particles is spherical or relatively close to a spherical shape at a speed of 50 to 190 m. The projection is performed at a speed of / sec, and more desirably at a speed of 60 m / sec to 140 m / sec (such a fine hard metal particle projection technique of the present invention is hereinafter referred to as an SS process).
[0030]
FIG. 1 shows C: 0.60%,. After nitriding a spring steel containing Si: 1.45%, Mn: 0.68%, Ni: 0.28%, Cr: 0.85%, V: 0.07% (unit: mass%), 0 The impact velocity by the projected fine particles on the surface of the spring of surface hardness Hv930, which is obtained by projecting 6mm diameter high carbon steel particles (hardness Hv550) at a speed of 70m / sec, affects the compressive residual stress near the surface after the projection. It is the experimental result which calculated | required the influence, and both compressive residual stress in the outermost layer and the surface layer of 10 micrometer depth is 1900 (N / mm2) It can be seen that the impact velocity with the above high stress is optimum at around 95 m / sec. Here, the nominal diameter of the projected particles is 50 μm, the average particle diameter is about 63 μm in the initial product (new product) with n = 60 measurements, the average diameter of the maximum particles is 80 μm or less, the minimum particle average diameter is 50 μm, individual Spherical or nearly spherical ellipsoidal particles that have a maximum / minimum diameter ratio of 1.1 or less and a minority of 1.5 or more particles but no angular sharp edges, and have an average hardness Hv860 and specific gravity 8.2. As for temperature control, the instantaneous temperature rise limit of the iron surface (excluding the nitrogen compound layer) of the spring surface nitrided layer due to collision causes effective work hardening under the interaction with nitrogen atoms. The projectile was controlled at a lower temperature than the softening due to the recovery recrystallization of the layer. Confirmation that such temperature control is performed is performed by a technique such as micro Vickers hardness measurement of the sample work surface layer after the shot or high magnification structure observation using an electron microscope.
[0031]
As can be seen from FIG. 1 showing the results of the experiment, the maximum compressive residual stress value in the vicinity of the surface layer (the outermost layer to 10 μm depth) exceeds 1800 MPa with a velocity of v = 90 to 152 m / sec, and has a good distribution. Indicated. In particular, under the condition of v = 90 m / sec, the compressive residual stress on the outermost surface is almost 2000 MPa, the distribution is good, and it can be seen that the effect of improving fatigue strength is great. That is, in high-speed steel particle projection with v ≦ 152 m / sec and total particle average diameter of 63 μm, defects such as local adiabatic shear bands and cracks in the nitride compound layer near the workpiece surface may hinder fatigue life. Hardly occurs.
[0032]
However, when the velocity exceeds 170 to 190 m / sec even with the same particle projection, fine cracks and strong deformation bands appear in the vicinity of the surface, and the residual stress is also lower than when the velocity is lower. For this reason, in the present invention, the upper limit of the fine particle projection speed is set to 190 m / sec. Here, when the fine particle projection speed is higher than 190 m / sec, fine cracks are formed on the nitrided surface, or the fatigue durability improving effect is reduced due to surface embrittlement.
[0033]
Further, the effect of this fine particle size on the spring fatigue strength is that if there are angular and sharp square-shaped particles in the projected particles, the effect of improving the fatigue strength is reduced, and the average diameter is as large as 100 μm or more. When particles are mixed, the effect of improving fatigue strength is impaired. Furthermore, the shot speed at the point where the outermost surface layer and the stress curve of 10 μm depth intersect is 95 m / sec, but the surface layer compressive residual stress is 1800 MPa or more at a shot speed of 20% before and after this intersection (76 to 114 m / sec). Thus, it can be seen that a large compressive residual stress can be formed in a relatively thick surface layer range. The fatigue strength is expected to be improved at a lower speed than the condition for obtaining the maximum value of the compressive residual stress of the surface layer up to a depth of 10 μm, and a good fatigue test result with a residual stress of about 1700 MPa or more at a projection speed of 60 m / sec or more. Is obtained. Further, since particularly good results are expected in the fatigue characteristics even when the projection speed is 130 to 150 m / sec and the average is 140 m / sec or less, the desirable speed is set to 60 to 140 m / sec.
[0034]
FIG. 2 shows the residual stress distribution when the fine particle projection speed of the above average particle diameter of 63 μm is 90 m / sec and 190 m / sec.
[0035]
Next, the hardness of the particles was slightly reduced to Hv700, and the same experiment as described above was performed using steel particles having an average particle size of 50 μm, a substantial particle size of 40 μm, and a maximum particle size of about 75 μm. As a result, when the speed was 190 m / sec, generation of microcracks and partial peeling of the compound layer were observed as in the case of high-speed steel particle projection. In addition, when the velocity v = 60 m / sec to 140 m / sec, the maximum compressive residual stress in the vicinity of the surface layer is slightly smaller than that in the high-speed steel particle projection, but shows a value exceeding 1700 MPa, which has a great effect on durability improvement. I understood that I can expect it. The surface hardness of the test nitriding spring used at this time is about Hv930. Although the surface hardness of the spring after completion of the fine particle projection was only slightly increased to about Hv 950, as described above, large compressive residual stress was formed on the workpiece surface by the particle projection with the convenience equal to or less than the surface hardness of the workpiece. It was confirmed that FIG. 3 shows the same spring as that used in the test of FIG. 1 after nitriding the oil-tempered wire for a high-strength valve spring and then performing high-carbon particle projection of 0.6 mm. It is the figure which took the initial particle diameter (the nominal diameter displayed on a bag new article) on the axis, and arranged the compressive residual stress on the surface on the vertical axis. In both cases, the material of the projecting particles is a high-speed steel with a specific gravity of 8.2. The initial average hardness of the particles is 50 μm in nominal diameter and Hv860 (the initial average average particle diameter is approximately 63 μm), which decreases as the nominal diameter increases. The nominal diameter is 200 μm and Hv770. In addition, the number in a figure is the collision speed (unit: m / sec) of the particle | grains to the spring surface. From this figure, it is clear that the effect of imparting compressive residual stress on the surface is greatly reduced in the case of particle projection with a nominal diameter of 100 μm compared to the case of 50 μm. Of the new particles having a nominal diameter of 100 μm, the average diameter of the maximum particles was 125 μm, and the average average diameter of the new particles having a nominal diameter of 50 μm was 80 μm (all measured results of n = 60). None of the particles had sharp corners, was mainly spherical, and partly an elliptical sphere shape that was relatively close to a sphere.
[0036]
Fine particles having sharp edges are undesirable because they tend to inhibit fatigue. Further, for example, when the particle size variation of individual fine particles having an average diameter of 44 μm is large and particles having a size of 90 to 105 μm are mixed in several% or more, the fatigue strength improving effect is the average particle size of 44 μm and the maximum particle The diameter is smaller than that when the diameter is about 75 μm. As described above, the effect of improving the fatigue strength of the spring also affects the average diameter of all the projected particles. In addition, the mixture of particles having a large maximum particle diameter inhibits the fatigue strength. Therefore, in this patent, the mixture of particles substantially larger than 80 μm has the effect of improving the fatigue strength, but the degree of the effect is lowered. Therefore, the upper limit dimension is set to less than 100 μm, more preferably 80 μm. In addition, the particle | grains whose average diameter of each projection particle is smaller than the average diameter or nominal diameter of all the particles are not angular, the specific gravity is 7.0-9.0, the hardness is Hv700 or more, 1100 or less spherical shape. Or when it is close to it, a projection effect is not inhibited. Rather, when the average particle size of each particle is smaller than 50 μm, it is effective for increasing the hardness of the spring pole surface layer and the compressive residual stress. However, since the influence thickness of hardness and residual stress decreases as the particle size decreases, the treatment method of the present invention (claim 1 and2)Then, it is preferable that the average particle diameter is 20 μm or more. In addition, even if a relatively small amount of fine particles of 10 μm or less are mixed, the projection and the effect of the shape, specific gravity, and the like are similar to those of the claims.Yes.In addition, as the nominal diameter of the projected particle becomes smaller, it is generally difficult to produce or use the particle without variation in its size. Therefore, even if the nominal diameter is determined, the particle size actually has a distribution, and a good effect cannot be obtained unless the particle is selected in consideration of this distribution.
[0037]
When the hardness of the surface layer is about Hv850 or more due to nitriding, even if the particle has the same or less hardness, a part of the kinetic energy of the particle at the time of collision is spent on the deformation of the spring surface layer. The surface temperature also rises momentarily. As a result, the yield and plastic deformation of the nitrided spring surface layer progress, and it is considered that the promotion of dislocation growth due to the interaction between the dissolved nitrogen atoms and the kinetic dislocations and the hardening due to dislocation fixation proceed.
[0038]
When the hardness of the fine particles is lower than Hv600, the residual stress generation efficiency in the spring surface layer is reduced, so the lower limit is set to Hv600. However, since deformation of the spring surface and formation of compressive residual stress are possible with Hv 500 to 600, the lower limit hardness may be Hv 500 or more depending on the case. If the hardness of the projecting particles is higher than the hardness of the nitrided spring surface, it will tend to generate microcracks from the spring surface and impair the spring fatigue strength.Therefore, the upper limit of particle hardness is set here. Or less.
[0039]
Here, “work hardening under interaction with nitrogen atoms” will be described. An iron-based nitrogen compound such as epsilon iron nitride may be formed on the surface of the nitrided spring steel material. Furthermore, a relatively fine iron nitride is formed inside the steel by a part of the nitrogen atoms diffused and permeated into the steel, which increases the hardness. However, in addition to these, there is solid solution nitrogen in the iron ground, and this solid solution nitrogen itself contributes to the increase in hardness and the same compressive residual stress. This solute nitrogen provides resistance to mold deformation during SS treatment, but when the workpiece surface layer begins plastic deformation, the dislocations move and are affected by heat generation, increasing the diffusion rate of nitrogen atoms in iron. In the process, at least a part of the dislocation is fixed, and the dislocation cell (subgrain) is refined by promoting dislocation growth. This is considered to prevent the occurrence of a slip deformation band due to the repeated stress of the surface layer when the spring is used, and as a result, prevent the formation of microcracks due to fatigue failure. Nitrogen has a much higher solid solubility than carbon, and due to the coexistence with manganese, silicon, etc. in the steel, the solid solubility is much higher than that of the iron-nitrogen binary system. It is considered to be. From this point, it can be said that the nitriding of the spring steel and the subsequent SS treatment are very effective for improving the spring characteristics.
[0040]
Based on the influence of the above projecting particle size, in the present invention, the initial total particle average diameter is 80 μm or less, and each particle is 10 μm or more and less than 100 μm. The specific gravity is 7.0 to 9.0 mainly considering readily available steel materials, the hardness is Hv 600 to 1100, and the hardness is equal to or less than the hardness of the spring surface layer before particle projection. More preferably, the initial total particle average diameter is 65 to 50 to 20 μm, and the average diameter of each individual particle is 80 μm or less.
[0041]
next,(2)The means of the method of the present invention concerning the improvement of the fatigue strength of a spring not subjected to nitriding (and low-temperature carbonitriding) will be described.
[0042]
In order to increase the compressive residual stress on the spring surface without using conventional nitriding or low temperature carbonitriding, (i) Is it possible to improve or devise shot peening using a material with higher strength than before? ii) Shot peening may be improved or devised using the same material as before. The improvement of the shot peening method of (i) and (ii) includes a method in which stress is applied to the spring in advance to perform particle projection (stress peening), or particle projection is performed in two or three stages, and the projected particle diameter is sequentially increased. There are known a method of reducing the size of the particles, a method of performing particle projection while the spring is heated warmly, and the like. As the spring becomes stronger, its elastic limit is improved, so that a higher residual stress can be applied.
[0043]
However, for example, as described in the above-mentioned prior art 4 and Japanese Patent Application Laid-Open No. 64-83644 "High Strength Spring", a silicon chrome steel oil temper for a valve spring defined in JIS standard G3561 (1994). For high-strength oil tempered wires that have a tensile strength higher than the tensile strength of the wire and whose chemical composition is different from the JIS standard, the compressive residual stress near the surface layer is 1079 MPa (110 kgf / mm2) If it is given above, the reliability of the spring characteristics also decreases because it is related to the formation of microcracks on the surface in addition to the residual stress.The
[0044]
(A) Hard metal particles having a hardness Hv of 350 to 900 and a particle diameter of 200 to 900 μm are applied to the surface of the spring that has been molded and tempered and has a hardness of the surface layer of Hv 400 to 750, and a velocity of 40 m / sec to 90 m. projecting at / sec, thereby preventing the occurrence of harmful fine cracks in the surface layer, and applying a compressive residual stress to the relatively inner part of the spring; (B) the spring surface after the step (A) above The surface treatment method according to claim 3, wherein the surface layer has a hardness and compression residue of 30 to 50 μm or less from the surface without generating harmful microcracks that inhibit fatigue strength. Surface treatment method for improving the durability of a spring that particularly increases stressIn step (B), the material of the projecting fine particles is high carbon steel or high speed steel, which is a material similar to the spring, and therefore has an elastic coefficient equivalent to that of the spring, so that the elastic deformation is simultaneously distributed to the spring surface layer and the projecting particles. It is thought that the fact that the particle shape and the particle shape are not square and fine is one cause of suppressing the generation of fine cracks that inhibit fatigue strength and excessive surface layer processing. In this way, the compressive residual stress on the surface is greatly increased by fine particle projection because the introduction of dislocations due to large plastic deformation in the surface layer and the fixation of many introduced dislocations by carbon atoms repeatedly proceeds with each particle projection. To be related. In other words, the supply of carbon atoms, which originally existed in the spring material in the form of soot carbide, became thermodynamically unstable due to the high pressure and temperature rise for a very short time due to the fine particle projection, and a part of it was short. The carbon atoms, which decompose in time and become free as a result, diffuse around the dislocations, relax the elastic stress field of the dislocations, and provide resistance to dislocation movement, thereby promoting dislocation growth. For this reason, the dislocation cell structure is refined, and surface hardening and high compressive residual stress are imparted without impairing toughness. However, claims4of(4)In maraging steels that contain almost no carbon, the increase in compressive residual stress and hardness near the surface due to fine particle projection is mainly attributed to the increase in dislocation density rather than the decomposition of iron carbide mentioned above (nitriding In this case, it is considered that the dislocation mobility decreases due to the decomposition of the nitrogen compound and the dislocation fixing, and the dislocation density increases and the dislocation fixing proceeds.
[0045]
FIG. 4 shows a fine pearlite structure composed of C: 0.57%, Si: 1.5%, Mn: 0.7%, Cr: 0.68% (the unit is mass%), the remaining impurities and iron. Name of 50 μm diameter (n = 60 actual measurements, initial effect of high carbon steel particles on the bending fatigue strength of cold drawn wire, then cold rolled finish thickness 0.97 mm, average surface hardness Hv 537-589 Average hardness Hv 865, specific gravity 7.5, total particle average diameter 37 μm, individual particles are distributed in an average diameter of 10 to 75 μm, all of which are spherical or close to each other and have no sharp edges. The initial average hardness Hv860, specific gravity 8.2, total particle average diameter 63μm, maximum particle average diameter 80μm, minimum particle average diameter 50μm) and the effect of iron-based fine particle projection speed on the fatigue strength after projection. is there. In this case, it can be seen that there is an optimum projection speed around a collision speed of 100 m / sec. In the high carbon steel particle projection with the impact velocity by the particle projection of 107 m / sec and 183 m / sec, the compressive residual stress on the outermost surface was 950 MPa. Nevertheless, the fact that the former fatigue strength is higher than the latter indicates that the occurrence of fine cracks in the surface layer or the toughness of the spring surface is involved in addition to the residual stress. That is, when the projection speed is 183 m / sec, it is considered that the generation of fine cracks on the spring surface layer and deterioration of ductility were caused. Thus, when the speed is 183 m / sec, the fatigue strength improvement effect is recognized, but the effect is smaller than the case where the projection speed is 160 m / sec or less.TheWhen the projection speed is less than 50 m / sec, the fatigue strength improvement effect becomes small, so this was made the lower limit. More desirably, the lower limit speed was set to 60 m / sec. In addition, the average particle diameter of the projected particles was changed, and the same material projection as that described above was performed on the same spring as the spring to be processed in FIG. As a result, the fatigue strength of the spring after the particle projection decreased significantly as the nominal diameter of the new projection particle increased to 100 μm, 200 μm, and 300 μm (FIG. 5). It is considered that the fatigue strength improvement effect decreases as the particle size increases due to a decrease in the compressive residual stress imparting effect on the surface layer and a decrease in the hardness increase. For this reason, in this invention, the total average diameter of a projection particle shall be 80 micrometers or less, and the average diameter of each particle shall be less than 100 micrometers. Beyond this, although effective, the effectiveness decreases.
[0046]
NitroThe minimum average particle diameter of the projected metal particles on the spring surface that does not become 10 μm is below that, the depth of compressive residual stress due to projection is several μm or less, and the depth at which sufficient compressive residual stress is obtained is shallow By becoming. However, even if particles having a diameter of 10 μm or less are mixed, there is no problem in quality as long as the amount is small. The reason why the maximum average particle size is less than 100 μm is that the residual stress and hardness improvement effect of the surface layer become smaller at a particle size larger than that.
[0047]
The reason why the maximum average size of all the projected particles is set to 80 μm is that the effect of improving the durability is greater than that in the case of the total average particle size of 100 μm. The specific gravity of 7.0 to 9.0 is intended to utilize particles made of steel materials that are relatively inexpensive and easily available. About 196 GN / m of elastic modulus of steel spring2Compared to 450 to 650GN / m for cemented carbide2The elastic deformation and the mold deformation are concentrated on the surface layer of the projected spring rather than the projected particles. For this reason, in the cemented carbide, surface irregularities are relatively large, and non-uniform deformation such as adiabatic shear deformation band is relatively likely to occur.. ExcessiveThe purpose is to avoid concentration of deformation on the spring, which is the workpiece, and the density is set to 7.0 to 9.0 with the intention of using iron-based particles.
[0048]
Moreover, although the hardness lower limit of the projection particle | grain with respect to the spring which is not nitrided was set to Hv350, as the hardness of the workpiece spring surface, there are many springs of Hv400-600, but it is a particle projection a little softer than workpiece | work material hardness.Also effectiveThis is because the fruit is exhibited.
[0049]
Moreover, the upper limit of the projected particle hardness is set to Hv1100 because the Hv1100 can be set as the upper limit of the hardness of steel particles that can be obtained relatively inexpensively, and when the hardness is Hv1100 or less, the fatigue resistance improvement effect is sufficient. It is because it is accepted.
[0050]
The reason why the lower limit of the projection speed of hard metal particles having a particle diameter of 10 to less than 100 μm, a specific gravity of 7.0 to 9.0, and a hardness of Hv 350 to 1100 is 50 m / sec. This is because sufficient durability cannot be improved. In addition, the upper limit of the particle projection speed is set to 160 m / sec. The projection energy / particle projection area becomes excessive at a speed exceeding the upper limit, and the compressive residual stress of the spring surface layer is lower than the lower speed. This is because the generation of microcracks on the surface layer is promoted, and the effect of improving the durability of the spring is reduced for the consumed energy.
[0051]
A non-nitrided thin leaf spring sample corresponding to FIGS. 4 and 5 described above, high-carbon steel particles having an average particle diameter of 37 μm and a hardness of Hv865 are projected at a speed of 90 m / sec. A sag test was carried out at 160 ° C. on the springs that had been subjected to the same low-temperature annealing and the springs that had been subjected to the final low-temperature annealing in the same processing step. As a result, the spring sag without the final low-temperature annealing at 230 ° C. was equivalent to the spring in which it was performed, and had excellent sag resistance. On the other hand, in the spring sample in which a steel shot having a diameter of 0.3 mm was projected at a speed of 100 m / sec, the final low temperature annealing had better sag resistance than the non-executed sample.
The cause of this is that in the former, carbide deformation in the steel occurs more severely than in the latter, and there are relatively many free carbon atoms decomposed with the help of this, and this free carbon is effective in preventing dislocation migration during the creep test at 160 ° C. This is thought to be due to the effective use of. However, if two types of springs with or without low temperature annealing at 230 ° C are subjected to short-time setting at room temperature under the same stress condition, the springs that are not subjected to low-temperature annealing are larger than the springs that have been subjected to that setting. It was.
From this, it is understood that the dislocations generated on the spring surface layer by the projection are not sufficiently fixed only by the projection of the fine hard metal particles. In addition, the 160 ° C. sag test does not depend on whether or not the 230 ° C. low-temperature annealing is performed in advance, because the fine hard metal particle projection is more than the 0.3 mm diameter metal particle projection. This means that deformation and annihilation of the iron carbide and cementite are promoted, and strain aging by carbon atoms decomposed when heated to 160 ° C. proceeds in a short time. However, it is estimated that the temperature rise due to instantaneous heat generation of the spring surface layer due to particle projection is almost inversely proportional to the diameter of the projected particle at the same projection speed. This is because if the same particle hardness and the same spring material are used, the time required for deformation of the spring surface layer by collision is proportional to the particle diameter, but as the particle diameter becomes smaller, the time required for deformation becomes shorter and deformation during deformation This is thought to be because the time for heat to escape out of the deformation region is shortened, resulting in an increase in the temperature of the deformation region (Bowden Taber, translated by Noriyoshi Hamada, Solid Friction and Lubrication, 4th edition, Maruzen, Showa Issued 50 years, see description on page 256 and equation (8) Here, there is an explanation that the contact time of the collision object is proportional to the square root of (mass M / particle radius r), √ (M / r). According to √ (M / r) ∝r, the contact time is proportional to r after all.)
[0052]
In the spring surface layer by the fine particle projection of the present invention, it is considered that heat generation due to collision and deformation and strain age hardening by carbon and nitrogen atoms proceed better than particles having a diameter of 0.3 mm. Also, the deformation of cementite is considered to be due to the fact that cementite has a characteristic that its deformation resistance decreases as the temperature rises. When the fine particle projection speed is about 180 m / sec, the cementite is deformed and partially disappears, and the fragmentation is promoted. Cementite fragmentation reduces the effect of preventing dislocation movement in iron that is generated and moved by deformation, and is considered to contribute to a decrease in surface residual stress along with the projection speed. It should be noted that when the variation in the size of the average particle size of the projection fine particles used in the present invention increases and the ratio of particles having a larger size increases, the effect of improving the durability decreases. For this reason, the maximum average particle diameter needs to be substantially less than 100 μm, and desirably 80 μm or less.
[0053]
As another operational effect of the fine particle projection of the present invention, it is possible to realize a reduction in spring deformation due to the fine particle projection, and as a result, it has been found that the occurrence of dimensional variation of the spring can be reduced in mass production. This is because the influence layer of the fine particle projection of the present invention is relatively thin, which suppresses the large deformation of the spring, and because the present invention is based on a relatively low-speed particle collision at the time of the fine particle projection, the higher speed projection is achieved. It can be estimated that the variation in the projection speed can be made smaller than that (FIG. 6).
[0054]
When the surface layer of the high carbon steel spring treated in this way is observed with a transmission electron microscope, a very fine and curved microstructure (subgrain) develops in the deformation zone due to surface deformation, and cementite precipitates. Although some fragmentation of particles and refinement of the interval and increase of dislocations in iron are observed, when fine particles are projected at the optimum projection speed of the present invention, cementite fragmentation hardly occurs. In addition, a clear microstructure (polygonalized structure) due to recovery recrystallization was not observed at all. Also, no supercooled structures such as martensite and paynite were found.
[0055]
A spring having a relatively large wire diameter or plate thickness, specifically, a wire spring having a wire diameter of 1.5 to 2.0 mm or more, can apply compressive residual stress to the inside of the surface layer by multistage shot peening. It is effective and widely used in applications such as valve springs for internal combustion engines such as automobiles.[0044] lines 1-7As shown in (A) above, projecting particles having a diameter of 0.2 to 0.9 mm at a speed of 40 to 90 m / sec imparts compressive residual stress to the inside relatively and causes fatigue fracture from non-metallic inclusions. It is for preventing. However, in the case of a spring having a wire diameter larger than 2.0 to 2.5 mm, the particle projection of 0.2 to 0.4 mm diameter is performed after the particle projection of 0.5 to 0.9 mm diameter.so,The residual stress of the calendar can be relatively increased to prevent cracking from the inside and the vicinity of the surface to some extent. After such 0.2-0.9 mm diameter particle projection, the compressive residual stress on the surface is still insufficient, and this causes defects such as microcracks harmful to fatigue failure due to the fine particle projection of the present invention. Enhance.
[0056]
To overcome the disadvantages of relatively large particle projectionsOnA hard metal having a specific gravity of 7.0 to 9.0 having a diameter of less than 10 to 100 μm, an average particle diameter of 20 to 80 μm, a spherical shape or the like, and a hardness of Hv 350 to 1100 By sufficiently projecting the fine particles at a speed of 50 to 160 m / sec, a highly worked layer is uniformly formed and high compressive residual stress is imparted to the surface layer without causing micro cracks and large concaves that are harmful to fatigue strength.
[0057]
The coverage of the particle projection of less than 10 to 100 μm or preferably 10 to 80 μm in the present invention is desirably 100% or more with respect to a site where the durability improvement of the target spring is required, and the above-mentioned sufficient projection The meaning of this corresponds to this.
[0058]
The initial hardness lower limit of particles having a diameter of 0.2 to 0.9 mm was set to Hv350 because the particles whose hardness is lower than that of the spring surface are repeatedly deformed and repeatedly work-hardened due to repeated particle collisions. Rises. Further, even if the hardness is low, if it is equal to or higher than Hv 350, a part of the energy of collision is used for deformation of the spring surface layer.
[0059]
Thus, it has been found that even in the case of a non-nitrided spring having a surface hardness lower than that of the nitrided spring, good results can be obtained under conditions similar to those of the nitrided spring.
[0060]
The initial hardness of the projected particle of the present invention is a new value, and the claims hardness and other values are those of a new product. In the present invention, since the projected particles are gradually worn and worn by repeated use, particles that are smaller than the new dimensions are actually used, and particles that have sharp angular edges due to fracture during use. It is necessary not to change. Also, low temperature annealing for removing residual stress at a temperature of about 250 to 500 ° C. of the cold-formed spring in the manufacturing process of the spring of the present invention, after coil spring molding or after residual stress removal annealing after coil spring molding Or heated to a temperature of about 200 to 250 ° C. for improving sag resistance after polishing of the bearing surface such as after nitriding, after fine particle projection or after 0.2 to 0.9 mm diameter particle projection in the previous process. Steps such as low-temperature annealing and warm or cold setting for the same purpose are included in the spring production of the present invention.
The effect of the hard metal particle projection of the patent of this application is that fatigue stress is imparted to the spring surface layer by imparting high compressive residual stress without causing microcrack formation harmful to fatigue fracture or excessive ductility of the spring surface layer due to excessive plastic working. It is to prevent fatigue cracks from propagating from the defects on the surface of the spring and the vicinity of the surface layer, which cause destruction, and improve fatigue durability. The hard fine particle projection of the present invention realizes work hardening by work deformation of the metal structure of the spring surface layer without damaging damage to the spring surface layer, and as a result, imparts extremely high compressive residual stress. Due to the instantaneous heat generation and high pressure caused by this fine particle projection, Fe in spring steelThreeDislocation fixation and dislocation growth by solid solution C atoms generated by strong deformation of C and disappearance by partial decomposition are promoted. In the nitrided spring surface layer, solid solution nitrogen causes dislocation fixation and proliferation due to instantaneous deformation and heat generation during the projection of fine particles, like the above-mentioned C atoms. By these, refinement | miniaturization and work hardening of the cell structure of a spring surface layer are accelerated | stimulated especially. These aspects were clarified by transmission electron micrographs tens of thousands of times. It is considered that the large work hardening of the surface layer improves the elastic limit of the surface layer and, as a result, contributes to the improvement of residual stress remaining within the elastic limit. The highest effect can be exhibited when the impact speed to the spring by fine particle projection is 60 to 140 m / sec. Although it is effective at a higher speed than this, especially the nitrided spring has a residual due to processing gradually along with the impact speed. As the stress decreases, microcracks and embrittlement of the material due to processing appear, and as a result, the effect of improving fatigue strength also decreases. For nitriding springs, the speed is 190 m / sec, and more strictly speaking, those damages are particularly noticeable when the speed exceeds 170 m / sec. For non-nitrided springs, the effect exceeds 160 m / sec. This is far from the optimal condition. Moreover, if the impact speed | velocity | rate by projection falls from 60 m / sec or 50 m / sec, the depth processed by the impact will become small and a residual stress will also become low. For this reason, although there is an effect of improving fatigue strength, it is clearly inferior from the optimum condition.
[0061]
[Brief description of the drawings]
FIG. 1 is a relational curve diagram of a compression residual stress on a surface of a high tension spring in which steel particles having a diameter of 0.6 mm are projected after nitriding, and fine steel particles (new average diameter of 63 μm) are further projected, and a projection speed.
2 is the same as FIG. 1 and shows a compressive residual stress curve when the average particle diameter of 63 μm high-speed steel fine particles is projected to 90 m / sec and 190 m / sec onto a nitride spring after 0.6 mm particle projection.
FIG. 3 is a relationship curve diagram of a compressive residual stress and a projected particle diameter by second-stage particle projection onto a high-strength spring subjected to the same nitriding and 0.6 mm particle projection as in FIG.
FIG. 4 is a diagram showing the effect of the impact speed on a spring by two types of copper particle projection having a nominal diameter of 50 μm on the fatigue limit amplitude stress of the spring after projection. In this figure, a part of the data in FIG. 5 is extracted and rearranged.
FIG. 5 is a result of investigating the influence of hard metal particle projection on a spring thin plate spring, and shows the average diameter of the projected particles whose materials are high carbon steel and high speed steel and the fatigue limit amplitude stress after the particle projection (average Stress, 786 N / mm2(Constant). The numbers in the figure are the collision speed of the particles.
FIG. 6 shows a result of measuring a reduction in height of a thin leaf spring by hard metal particle projection.
This figure is taken from measurements in the same test as the data of FIGS. The numbers attached to the plot points indicate the nominal particle diameter.
FIG. 7 is an iron ground residual stress distribution curve by X-rays of a surface layer portion of a valve spring manufactured with a 4.0 mm diameter piano wire.
[0062]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below.
[0063]
(Embodiment 1)
In order to improve durability of valve springs, clutch springs, etc., particularly fatigue resistance, by nitriding, the following processes have been conventionally employed.
[0064]
Alloy steel oil tempered wire (hereinafter referred to as OT wire) → Spring molding (cold coiling) → Residual stress removal annealing → Seat surface polishing → Surface scale removal → Nitriding treatment → Shot peening → Low temperature annealing Here, shot after nitriding As peening, in the case of a one-step shot, a large number of hard metal particles such as Hv500 to 800 steel balls having a particle diameter of about 0.5 to 0.9 mm or cut wires are usually projected. In the case of a two-stage shot, a large number of metal particles having a particle size of about 0.2 to 0.4 mm are projected after a shot of a large number of steel balls having a particle size of about 0.5 to 0.9 mm.
[0065]
In the present invention, a method of shot peening after nitriding is provided, and after the first stage or the second stage following the first stage, the total average particle diameter is 80 μm or less and 20 μm or more, and the individual particle average diameter is 10 μm or more and less than 100 μm, Metal particles having a specific gravity of 7.0 to 9.0, a hardness of Hv 600 or more and Hv 1100 or less, and a hardness equal to or less than the spring surface hardness after nitriding or carbonitriding, without a spherical shape or an angular portion close to it as a shape. Projection is carried out at 50 to 190 m / sec, effectively effecting work hardening of the spring surface layer and prevention of formation of fine cracks, and imparting high residual stress and hardness to the outermost surface layer.
[0066]
Furthermore, after these steps, by ensuring dislocation fixing in the shot influence layer (surface layer 150-200 μm) by low-temperature annealing, fatigue resistance and stickiness can be obtained only by conventional methods. A spring having very good durability that could not be obtained could be obtained.
[0067]
Further, examples of the descaling method before nitriding include pickling, electropolishing, and metal particle projection. In the present invention, a descaling method before nitriding is provided in claim 2. This method is intended to obtain high fatigue durability after nitriding by fine iron-based particle projection.
[0068]
The manufacture and performance of the spring of Embodiment 1 will be described below.
[0069]
According to the method of claim 2, descaling prior to nitriding, followed by nitriding treatment and subsequent particle projection,4High performance springs can be manufactured.
High-strength valve spring oil with a diameter of 3.2 mm containing C: 0.59%, Si: 1.90%, Mn: 0.84%, Ni: 0.27%, Cr: 0.96%, V: 0.09% (units are weight%) Temper wire (Claims)4of(2)Material), cold coiling, 420 ° C. stress relief annealing, bearing surface polishing, and as a descaling process, the average particle diameter is 37 μm, the average particle diameter is 75 to 10 μm, and the maximum / minimum diameter ratio of each particle Particles having a specific gravity of 7.5 and a hardness of Hv865 were projected at a speed of 107 m / sec and then nitrided to obtain a hardness Hv910 of the surface layer (depth 3 to 5 μm position). Further, a round cut wire having a diameter of 0.6 mm and a hardness of Hv550 was sufficiently projected at a speed of 70 m / sec to apply a compressive residual stress to a relatively inside. The surface hardness at this time was Hv930. Following this, the average diameter of all particles is 37 μm, and among the individual particles, the average diameter of the largest particles is 75 μm or less, the individual particle minimum diameter is approximately 10 μm, the major axis is 1.2 mm or less, and the non-angular abbreviated specific gravity. 7.6 High carbon steel particles having an average hardness of Hv865 were sufficiently projected at an average speed of 107 m / sec. Then, low temperature annealing was implemented at 220 degreeC. The surface hardness at this time was Hv975.
[0070]
The compressive residual stress of the outermost spring layer at this time was 2010 MPa. Moreover, the hardness of the spring at the 0.2 mm depth position and 0.5 mm depth position from the surface at this time was Hv570 and Hv545, respectively. Moreover, the nonmetallic inclusion in steel was 15 micrometers or less, and the carbonitride was smaller than 10 micrometers. The hardness of the outermost surface of this spring as it is nitrided is Hv910, the hardness of the projected 0.6 mm diameter carbon steel particles is Hv550, the average initial hardness of the high carbon steel fine particles is Hv865, The average hardness of the particles was Hv960. The spring was subjected to an average stress of 686 MPa and the amplitude stress was changed to 1000 times / min. The fatigue test was performed at a speed of. As a result, 5 × 107The fatigue limit was ± 677 MPa or more in terms of amplitude stress, and n = 6 springs were not broken. This spring is claimed4In addition, the manufacturing method corresponds to claims 1 and 2.
[0071]
Next, as a descaling process, after projecting a cut wire having a diameter of 0.6 mm and a hardness of Hv550 onto a spring at a speed of 70 m / sec, high carbon steel particles having an average particle diameter of 37 μm are projected at a speed of 107 m / sec. Fatigue durability similar to the above could be ensured with a spring in which the steps after nitriding were the same as those of the first embodiment. At this time, when only the 0.6 mm cut wire having a hardness of Hv550 is projected as a descaling method, N = 5 × 10 5 even if the two-stage projection of the present invention is applied after nitriding.7The fatigue limit at the time was 686 MPa ± 647 MPa. The fatigue strength of the coil spring for valve spring can be expressed by average stress τm and amplitude stress ± τa when the stress repetition number N is determined to be a certain value. Here, N = 5 × 107Decide on times. In the prior art, when τm = 686 MPa, a value of about 610 to 620 MPa was achieved as τa. However, as in the present invention, high fatigue strength such as τm = 686 MPa and τa ≧ 677 MPa has not been achieved conventionally. In the case of springs of the same quality and shape, it has been known that the fatigue limit stress amplitude τa decreases as the average stress τm increases. It has been found that the fatigue limit τa is approximately reduced by x / 5 as τm increases by xMPa. Therefore, the fatigue limit τm ± τa can be expressed as (constant 1−x) ± (constant 2 + x / 5). Now, if 800 MPa is taken as the constant 1, the fatigue limit can be expressed as (800−x) ± (constant 2 + x / 5). When the above fatigue limit of 686 MPa ± 647 MPa is applied to this equation, the constant 2 is 624.2 MPa. Therefore, in the present invention, the fatigue limit stress is claimed as4In the claims, a spring satisfying the following expression (1) is included.
[0072]
That is, when τm = 800−x, τa ≧ 620 + x / 5 (1)
Here, unit; both MPa, x: Variable, 0 or more and 150 or less
The above-mentioned spring descaled by 0.6 mm diameter iron-based particle projection before nitriding barely satisfied the formula (1), but with a high stress repetition of an average stress of 686 MPa and an amplitude stress of ± 677 MPa, It was sporadic to cause contact failure between the lines. However, if the SS treatment of the present invention is sufficiently performed following the 0.6 mm diameter particle projection as a descaling method, the fatigue fracture of such a line contact portion can be improved. Descaling by step shots is also included in the present invention.
[0073]
-Comparative spring of Embodiment 1(1)When(2)
In addition, with the above-mentioned spring, the comparison spring which omitted the fine grain projection of the second stage(1)Has an average stress of 686 MPa and an amplitude stress at the fatigue limit of ± 510 MPa.4The fatigue strength of is not satisfied. Further, only the second stage is changed, and steel particles having a total particle average diameter of about 72 μm, a maximum particle average diameter of about 200 μm, and a minimum particle diameter of about 7 μm are projected at an air pressure of 0.5 MPa (the collision speed of particles having an average diameter of 72 μm is about 130 m). / Sec) comparative spring(2)Prototyped. The fatigue limit stress of this spring has the same average stress as that of the spring of the first embodiment, the amplitude stress becomes ± 530 MPa, and a little effect is recognized.4Not satisfied.
[0074]
In the experiment, SS treatment was performed after projecting steel particles having a diameter of 0.6 mm and a hardness of Hv550 after nitriding, but especially for workpieces having a wire diameter and a thickness of 1.5 to 2 mm or less. There are few advantages even if it is projected. Rather, it is more advantageous to perform SS treatment immediately after nitriding in terms of performance and cost including fatigue resistance.The
[0075]
(Reference example 1)
Non-nitriding springNiheiA large number of hard metal particles having an average diameter of 10 μm or more and less than 100 μm, a specific gravity of 7.0 to 9.0, and a hardness of Hv 350 to 1100 are projected to keep the surface roughness of the spring as low as possible, and local excessive deformation (local The surface of the spring without nitriding by generating a highly uniform hard working layer on the surface of the spring pole and applying a high residual stress as much as possible. This is a spring processing method aimed at preventing fatigue breakage from the layer.
[0076]
Hard metal particles having a hardness Hv of 350 to 1100, a specific gravity of 7.0 to 9.0, an average particle size of 10 μm or more and less than 100 μm, preferably 10 to 80 μm on the surface of the spring are preferably 50 m / sec or more and 160 m / sec or less, preferably By projecting at 60 m / sec to 140 m / sec, the compressive residual stress of the extreme surface layer is increased without generating microcracks or non-uniform shear deformation bands that are detrimental to durability near the surface layer, and the spring from the surface layer Prevent fatigue breakage. This improves the fatigue strength and durability of small springs and various thin leaf springs manufactured from thin piano wires and thin oil temper wires.
[0077]
ThrowExceeding the A3 transformation point as in Japanese Examined Patent Publication No. 2-17607, “Surface processing heat treatment method for metal products”, where the impact of the spray velocity has been investigated and studied in detail, and the fine particle projection velocity v has been defined as 100 m / sec or higher. In addition, the projection is performed at a velocity V> 160 m / sec and the surface layer is not excessively deformed, and the projection is performed at a velocity V ≦ 160 m / sec, preferably 60 m / sec ≦ V ≦ 140 m / sec. It is characterized in that higher durability is obtained by controlling the temperature rise to a temperature lower than causing recovery recrystallization and avoiding excessive deformation of the surface layer.
[0078]
As described above, the test spring has a cross-sectional shape of 0.97 mm, a width of 5.1 mm, a hardness of Hv 537 to 589, and chemical components of 0.55% C, 1.47% Si and others. With spring steel that has been patented, drawn, and cold-rolled, the spring machining process is in the order of spring forming → stress relief annealing → fine particle projection → low temperature annealing (230 ° C.).(1)Carbon steel fine particles having a total particle average diameter of 37 μm (new), hardness Hv865, specific gravity 7.6, and(2)High-speed steel fine particles having a total particle average diameter of 63 μm (new), hardness Hv860, and specific gravity of 8.2 were used. The fine particles were sufficiently projected onto the spring at various speeds. Thereafter, a spring fatigue test was performed to determine the relationship between the fine particle projection speed and the fatigue strength. The result is shown in FIG. The fatigue limit stress at this time is an average stress of 785 MPa and a repetition rate of 107Amplitude stress that does not break at a time is taken. As a result, both the carbon steel particles and the high-speed steel particles were found to have the best fatigue strength improvement effect at a collision speed of 60 to 140 m / sec.(2)In the high-speed steel particle projection, the collision velocity v is considered to be 50 m / sec to 140 m / sec and the fatigue limit amplitude stress exceeds 700 MPa. Also,(1)In the high carbon steel particle projection, the fatigue limit amplitude stress is considered to exceed 700 MPa when the collision velocity V is about 60 m / sec to about 160 m / sec, and a very good improvement effect is recognized.
[0079]
aboveReference example 1As a comparative example, a spring without a shot has a fatigue limit amplitude stress of 440 MPa and a low fatigue limit. In addition, the fatigue limit amplitude stress is ± 300 MPa for a spring that has sufficiently projected a 0.3 mm diameter steel shot at a velocity V = 100 m / sec (this sample is replaced with a 0.3 mm diameter steel shot, The process isReference example 1The effect of particle projection cannot be found.
[0080]
(Reference example 2)
For high-strength springs with relatively large cross-sectional dimensions, such as non-nitriding springs with a wire diameter of 2 mm, FineAs a pretreatment of the particle projection treatment, steel-based particles having a diameter of 0.2 to 0.9 mm are projected at v = 40 to 90 m / sec to give a compressive residual stress to a relatively inside. As a result, the compressive residual stress reaches the highest value at a location several + μm or more from the surface, but the extreme surface layer has a lower value than the internal maximum value. For this reason, in this state, fatigue breakage starting from the vicinity of the spring surface cannot be sufficiently prevented. In order to improve this point, after the above-mentioned 0.2-0.9 mm diameter particle projection, the velocity v = 50-160 m / sec, more preferably, v = 60-140 m / sec, the particle size is 10 to less than 100 μm, More desirably, hard metal particles having a particle size of 10 to 80 μm, a specific gravity of 7.0 to 9.0, and a hardness of Hv 350 to 1100 are projected.
[0081]
Reference example 2Spring
Oil tempered wire for high-strength valve springs (Chemical component C: 0.61%, Si: 1.46) with a wire diameter of 3.2 mm, a tensile strength of 2070 MPa higher than JIS, SWOSC-V, and a surface layer hardness of about Hv620 %, Mn: 0.70%, Ni: 0.25%, Cr: 0.85%, V: 0.06%, all in mass%)Is formed into a coil spring with cold, low temperature annealing at 400 ° C. for 20 minutes to remove residual stress generated by coiling, bearing surface polishing, 0.6 mm diameter specific gravity about 7.8, hardness Hv550 of steel particles Following projection at a speed of 70 m / sec, the nominal particle size is 50 μm, the measured average particle size of all new particles is 37 μm, the maximum / minimum diameter ratio of individual particles is 1.2 or less, there is no angularity, the specific gravity is about 7.5, and the average Particles having a hardness of Hv865 and having an average diameter of 10 to 75 μm (however, n = 60 measured values) were sufficiently projected at a collision speed of 107 m / sec. Further, after low-temperature annealing for fixing dislocation at 220 ° C., it was finished by cold setting. Made in this wayReference example 2The compressive residual stress of the iron ground due to X-rays on the outermost surface of the spring was 1350 MPa, and the residual stress became smaller as it entered the spring. Similarly, the hardness of the very surface layer was Hv 690, and the hardness at a depth of 0.2 mm to 0.5 mm from the surface layer was Hv 600 to 580 on the spring inner diameter side. As a result of the fatigue test of this spring, the number of repetitions was 5 × 107The fatigue limit of the rotation was n = 10 test springs without breakage, and the average stress was 588 MPa and the amplitude stress was ± 510 MPa. Assuming that the average stress applied to the coil spring is 690 MPa at the maximum, and the average stress τm = 690−x, the number of repetitions N = 5 × 107The fatigue limit amplitude stress τa in the rotation can be set to τa = 489.6 + x / 5 based on the concept of conversion of τm and τa described in the first embodiment. However, since this formula is only a formula of the above one test result, considering the tensile strength, steel type, wire diameter, etc. of the steel wire,
When the average stress τm = 690−x,
Fatigue limit amplitude stress τa = ± (470 + x / 5) (2)
Was. This springMay have 1200 to 1600 MPa as the residual stress of the very surface layer (outermost layer)Many.
[0082]
Reference example 2Comparison spring(3), (4)
aboveReference example 2This is an oil tempered wire of the same lot as the spring of, and it is almost the same process as this, but only a 50μm diameter iron-based fine particle projection is omitted.(3)Was made. At this time, the maximum compressive residual stress of the surface layer portion was generated in a place about 40 μm from the surface, and the value was about 820 MPa. The compressive residual stress on the very surface is 630 MPa.is there.This fatigue test result is 5 × 107The fatigue limit of the rotation is an average stress of 588 MPa, and the amplitude stress is ± 440 MPa.TheIn addition, as the second stage projection, high carbon steel particles having a name of 100 μm, an actual average particle diameter of 97 μm, a maximum particle diameter of 130 μm, a minimum particle diameter of about 35 μm, and a maximum / minimum diameter ratio of individual particles of 1.2 or less. Project at a speed of about 85m / sec, then furtherReference example 2Comparison spring finished at 220 ° C with low temperature annealing and cold setting(4)created. SoNumber of repetitions of 5 × 107The fatigue test results at the time are the average stress of 588 MPa and the amplitude stress of ± 461 MPa.The
[0083]
The relationship between the hardness of the spring surface and the hardness of the projected particles before the particles having a diameter of less than 10 to 100 μm are projected. However, if the spring is not nitrided, the spring surface layer has a lower hardness than the case of nitriding. Even in the case of steel particle projection having a high ductility and a hardness higher than the spring surface hardness, it is difficult to generate fine cracks or the like if the projection speed is 160 m / sec or less. On the other hand, even if the projected particle hardness is lower than the spring surface, the surface layer reforming effect is recognized. In particular, when the workpiece spring has a high hardness of Hv550 to 600 or higher with a relatively high-speed projection exceeding 100 to 140 m / sec, the projection is performed with fine particles having a hardness equal to or lower than that of the workpiece. However, the unevenness of the surface is reduced, and the residual stress is relatively high inside. In addition, when the hardness of the projected particle is low, work hardening occurs more remarkably in the projected particle itself than in the workpiece spring due to repeated projection, but when the new hardness of the particle falls below Hv350, the surface layer of the workpiece spring is modified. The efficiency of the quality effectTheFurther, the finely projected particles made of carbon steel or alloy steel can be obtained relatively inexpensively and are economical, and their hardness is Hv 1100 or less, and the surface roughness of the spring is harmful to such economy and durability. The upper limit hardness of new fine particles was set to Hv1100 in order to avoid the increase in the thickness and the fine cracks on the surface layer.
[0084]
(Reference example 3)
A spring manufactured from a steel wire that is processed and strengthened by wire drawing mainly made of fine pearlite is subjected to normal shot peening of a relatively large size without nitriding treatment, and then fine particle projection with a nominal diameter of 50 μm is performed. Manufactured by the methodTavernIs described below. A valve spring for an automobile internal combustion engine was prototyped using a piano wire having a diameter of 4.0 mm, a tensile strength, σB = 1,735 MPa, and an average hardness Hv of about 450. After coiling the piano wire in the cold, it was annealed for 15 minutes at 350 ° C. to remove the residual stress on the inner surface of the coil, and then the seat surface was polished. This was sufficiently projected with a cut wire having a diameter of 0.6 mm and a hardness of Hv550, followed by low-temperature annealing at 220 ° C. Subsequently, high-carbon steel particles having an average particle diameter of 37 μm, a maximum particle diameter of about 75 μm, a specific gravity of about 7.6, a hardness of Hv865, a maximum / minimum diameter ratio of 1.2 or less, and a non-angular shape are added at a speed of 107 m / sec. Projected enough. Subsequently, this was subjected to low-temperature annealing at 220 ° C., and further cold setting was performed. The outermost layer compressive residual stress of this spring was 590 MPa (FIG. 7).
[0085]
Comparison spring at this time(5)As aboveReference example 3A spring (other than that, the same material and process) was prepared by omitting only the 50 μm diameter fine particle projection of the spring. The compressive residual stress of the outermost layer is 430 MPa (FIG. 7)Is. Another comparison spring(6)As aboveReference example 3Instead of the second-stage projection of the spring, particles having a name of 100 μm were projected under the same conditions as the second-stage projection of Comparative Example 2.
Prototype in this wayReference example 3Fatigue tests of the valve spring and comparative spring were conducted. The test was performed at a rate of 1000 times / minute, and n = 15 springs were tested for each stress level. The result is as followsReference example 3The improvement effect of this spring over the comparative spring was clear. The former is, Cyclic stress τm ± τa, number of cycles: 5 × 10 7 When τm = 690−x, τa ≧ 422 + x / 5 (3)
Here, unit: MPa, x: 0 to 140
(3) is satisfied, but the comparison spring(5)When(6)Does not meet it.
Figure 0003847350
[0086]
Here, assuming that the maximum average stress applied to the coil spring is 690 MPa, and considering the compatibility between the average stress and the amplitude stress as described in the above equations (1) and (2), the average stress τm = For 690-x,Reference example 3The fatigue limit amplitude stress τa of this spring can be expressed as τa ≧ 440.6 + x / 5. Considering wire diameter, wire tensile strength, steel grade, etc.,underA spring that satisfies the formula (3)Reference example 3The compression residual stress of the very surface layer is 550 MPa or more.The
[0087]
When the average stress τm = 690−x, the number of repetitions is 5 × 107Fatigue limit amplitude stress τa ≧ 422 + x / 5 (3)
Where x: 0 to 140
[0088]
These springs (comparative examples are(5)FIG. 7 showing the residual stress distribution of (only) shows that the residual stress of the surface layer portion from the outermost surface to the depth of 50 μm is greatly improved by the SS treatment. In addition, the surface roughness Rmax of these springs is 13.2 μm with 0.6 mm particle projection, and the average particle size after projection of 0.6 mm particle is 37 μm after average particle diameter.Reference example 3It was 9.2 μm in the spring by.
[0089]
In the above test,Reference example 3When the spring fatigue test stress was high, the spring sag increased slightly. In order to prevent this sagging, it is possible to use a steel wire with a cold-drawn pearlite structure with an element with high sag resistance, such as silicon and / or chromium, instead of a piano wire, and hot setting. As a countermeasureBe.
[0090]
(Reference example 4)
A valve spring was prototyped using a 3.2 mm diameter JIS SWOSC-V and an oil temper wire for the valve spring. This valve spring was manufactured by performing SS treatment without nitriding treatment.
[0091]
The manufacturing process of this valve spring is as follows. Spring coiling, low temperature annealing at 400 ° C. for 20 minutes, projection of iron-based round cut wire with a diameter of 0.6 mm at a speed of 70 m / sec, high carbon steel fine particle SS treatment (speed 107 m / sec, total particle average diameter 40 μm) , Maximum particle average diameter 75 μm), further low temperature annealing at 220 ° C. for 20 minutes, and finally cold setting. The compressive residual stress of the very surface layer of this spring was 1010 MPa. When the fatigue test of this spring was carried out, the average stress τm = 588 MPaN the number of repetitions N = 5 × 107The fatigue limit amplitude stress at the time was 466 MPa. This stress can be expressed as τa = 445.6 + x / 5 when the average stress is set to 690−x. Considering the tensile strength variation, wire diameter range, etc. of SWOSC-V oil temper wireAndThe compression residual stress of the iron surface of the very surface layer is set to 900 MPa or more, and the fatigue strength of the spring is determined as in the following equation (4).The
[0092]
Average stress τm = 690−x, cyclic stress τa is 5 × 107Fatigue limit stress in rotation is τa ≧ 440 + x / 5 (4)

Claims (4)

(A)ばねの表層を窒化処理する工程と、
(B)窒化処理されたばねの表面へ、窒化された最表層硬さ(最表面から5μmの深さ位置でのマイクロビッカース硬さ)よりも軟らかく、かつ、硬さHv500〜800、粒径200〜900μmの硬質金属粒子を40m/sec〜90m/secで投射し、投射(ショットピーニング)による表層の徴細亀裂発生を防止し、圧縮残留応力をばねの内部にまで付与する工程と、
(C)前記(B)工程の後のばね表面へ、全粒子の平均径が80μm以下、かつ、個々の粒子がそれぞれ平均径10μm以上100μm未満、形状として球形又は球に近い角張った個所のない、比重7.0〜9.0、硬さHv600以上Hv1100以下、かつ、窒化後又は低温浸炭窒化後のばねの最表層硬さ(最表面から5μmの深さ位置でのマイクロピッカース硬さ)以下の硬さを有する多数の徴細金属粒子を速度50〜190m/secで投射し、かつ、衝突によるばね表面窒化層の鉄地(窒素化合物層を除外)の瞬間的昇温限界を、ばね表面層の加工硬化を起こさせるが、回復再結晶による軟化が起こるよりは低温に制御しつつ投射することによって、表面層の加工硬化と微細亀裂発生防止を有効に行い高い圧縮残留応力と硬さを付与する工程とを有することを特徴とするばねの表面処理方法。
(A) nitriding the surface layer of the spring;
(B) Softer than the surface hardness of the nitrided spring (micro Vickers hardness at a depth of 5 μm from the outermost surface), hardness Hv 500 to 800, particle size 200 a step of the hard metal particles of ~900μm projected at 40m / sec~90m / sec, projection to prevent the surface layer of ChoHoso crack by (shot peening) is applied to the inside of it compressive residual stress Woba,
(C) On the spring surface after the step (B), the average diameter of all particles is 80 μm or less, and each particle has an average diameter of 10 μm or more and less than 100 μm, and there is no sphere or a sphere-like square shape as a shape. , Specific gravity 7.0 to 9.0, hardness Hv600 or more and Hv1100 or less, and the outermost layer hardness of the spring after nitriding or low temperature carbonitriding (micropickers hardness at a depth of 5 μm from the outermost surface) ) A large number of fine metal particles having the following hardness are projected at a speed of 50 to 190 m / sec, and the instantaneous temperature rise limit of the iron surface of the spring surface nitrided layer (excluding the nitrogen compound layer) due to the collision is determined. It causes work hardening of the spring surface layer, but by projecting it while controlling it at a lower temperature than softening due to recovery recrystallization, it effectively works to prevent the work hardening of the surface layer and prevent the occurrence of microcracks, resulting in high compressive residual stress and hardness. Give The surface treatment method of the spring and having a that step.
(A)窒化前のばね表面へ、直径10μm以上100μm未満かつ全粒子平均径80μm以下、個々の粒子平均径10〜80μmの多数の球状又はそれに近い角張る個所のない比重7.0〜9.0、硬さHv350〜900の鉄系などの金属粒子を50m/sec以上160m/sec以下の衝突速度であって、かつ、衝突によるばね表面の昇温限界をばねの鉄地の加工硬化を起こさせるが回復再結晶を起こさせるよりも低温に制御し、かつ、微細亀裂などを生じないように投射する工程と、
(B)前記(A)工程後のばねの表層を窒化処理する工程と、
(C)窒化処理されたばねの表面へ、窒化された最表層硬さ(最表面から5μmの深さ位置でのマイクロビッカース硬さ)よりも軟らかく、かつ、硬さHv500〜800、粒径200〜900μmの硬質金属粒子を40m/sec〜90m/secで投射し、投射(ショットピーニング)による表層の微細亀裂発生を防止し、圧縮残留応力をばねの内部にまで付与する工程と、
(D)前記(C)工程の後のばね表面へ、主粒子の平均径が80μm以下、かつ、個々の粒子がそれぞれ平均径10μm以上100μm未満、形状として球形又は球に近い角張った個所のない、比重7.0〜9.0、硬さHv600以上Hv1100以下、かつ、窒化後又は低温浸炭窒化後のばねの最表層硬さ(最表面から5μmの深さ位置でのマイクロピッカース硬さ)以下の硬さを有する多数の微細金属粒子を速度50〜190m/secで投射し、かつ、衝突によるばね表面窒化層の鉄地(窒素化合物層を除外)の瞬間的界温限界を、ばね表面層の加工硬化を起こさせるが、回復再結晶による軟化が起こるよりは低温に制御しつつ投射することによって、表面層の加工硬化と微細亀裂発生防止を有効に行い高い圧縮残留応力と硬さを付与する工程とを有することを特徴とするばねの表面処理方法。
(A) A specific gravity of 7.0-9. Which is a large number of spheres having a diameter of 10 μm or more and less than 100 μm , an average particle diameter of 80 μm or less, and an individual particle average diameter of 10 to 80 μm, or an angular portion close thereto. 0, hardness Hv 350-900 of metal particles such as iron-based metal at a collision speed of 50 m / sec or more and 160 m / sec or less, and the temperature rise limit of the spring surface due to the collision causes work hardening of the spring iron ground Projecting so as to control the temperature to be lower than causing recovery recrystallization and not causing fine cracks, and the like,
(B) nitriding the surface layer of the spring after the step (A);
(C) The surface of the nitrided spring is softer than the nitrided outermost layer hardness (micro Vickers hardness at a depth of 5 μm from the outermost surface), and has a hardness Hv of 500 to 800 and a particle size of 200 a step of the hard metal particles of ~900μm projected at 40m / sec~90m / sec, projection prevents fine cracks in the surface layer by (shot peening) is applied to the inside of it compressive residual stress Woba,
(D) On the spring surface after the step (C), the average diameter of the main particles is 80 μm or less, and each individual particle has an average diameter of 10 μm or more and less than 100 μm, and there are no spheres or horns near the sphere as the shape. , Specific gravity 7.0-9.0, hardness Hv600 or more and Hv1100 or less, and the outermost layer hardness of the spring after nitriding or low temperature carbonitriding (micropickers hardness at a depth of 5 μm from the outermost surface) ) A large number of fine metal particles having the following hardness are projected at a speed of 50 to 190 m / sec, and the instantaneous boundary temperature limit of the iron surface of the spring surface nitrided layer (excluding the nitrogen compound layer) due to the collision is determined by the spring. Although it causes work hardening of the surface layer, high compression residual stress and hardness are achieved by effectively preventing the work hardening of the surface layer and preventing the occurrence of microcracks by projecting while controlling to a lower temperature than softening due to recovery recrystallization. Grant The surface treatment method of the spring and having a that step.
上記請求項1の(B)の工程において、0.2から0.9mm径の硬質金属粒子の投射を寸法の大きな0.5〜0.9mm径の粒子の第一段投射と寸法の小さい0.2〜0.4mm径の第二段投射に分けて実施することを特徴とするばねの表面処理方法。Oite to as engineering of (B) the claim 1, the first stage of the large 0.5~0.9mm diameter of the particles projection of dimension projection of hard metal particles 0.9mm diameter from 0.2 the surface treatment method of the spring which comprises carrying out separately the second stage projection of small 0.2~0.4mm diameters dimensions. 円形断面線又は異形断面線から製造したばねで、請求項1の工程を必須工程とし、製造した下記(1)の化学成分鋼のコイルばねで、そのごく表層のX線による鉄の圧縮残留応力が1700MPaより大、かつ、ばねの疲労折損の原因となる硬質の非金属介在物、炭化物、炭窒化物及び窒化物の寸法と母地の硬さが、下記本請求項のX又はYを満足し、繰返し数5×107における疲労強度が下記(1)式を満足する高耐疲労強度ばね。
すなわち、繰返し応力がτm±τaであって、τm=800−xの時、
τa≧(620+x/5)………(1)
ここで、τm:平均応力、τa:振幅応力、
x:変数で0以上かつ150以下
単位:いずれもMPa
X:ばね中に存在する、ばねの疲労折損の原因となる硬質の非金属介在物、炭化物、炭窒化物及び窒化物の寸法が20μm未満ないし15μm以下の時、ばね表面から0.2mm以上0.5mmまでの深さ位置での母地の硬さをHv520以上580以下に制御する。
Y:ばね中に存在する、ばねの疲労折損の原因となる硬質の非金属介在物、炭化物、炭窒化物及び窒化物の寸法を10pm以下に制御できた時、ばね表面から0.2mm以上0.5mmまでの深さ位置での母地の硬さをHv520以上630以下に制御する。
ここで、成分鋼(1)は次のとおりである。
(1)C:0.50〜0.80%,Si:1.20〜2.5%,Mn:≦1.20,Ni:≦0.5%,Cr:≦1.80を必須成分とし残部鉄及び不純物からなるばねにV:0.03〜0.60%を添加したばね。
(化学組成の単位:いずれも質量%)
A spring manufactured from a circular cross-section line or a modified cross-section line, the process of claim 1 as an essential process, and the manufactured chemical composition steel coil spring of the following (1), the compressive residual stress of iron due to the X-ray of the very surface layer Is larger than 1700 MPa, and the dimensions of the hard non-metallic inclusions, carbides, carbonitrides and nitrides that cause fatigue breakage of the spring and the hardness of the matrix satisfy X or Y of the following claims. A high fatigue strength spring having a fatigue strength at a repetition rate of 5 × 10 7 that satisfies the following formula (1).
That is, when the cyclic stress is τm ± τa and τm = 800−x,
τa ≧ (620 + x / 5) (1)
Where τm: average stress, τa: amplitude stress,
x: Variable, 0 or more and 150 or less Unit: Both MPa
X: 0.2 mm or more from the spring surface when the dimension of hard non-metallic inclusions, carbides, carbonitrides and nitrides which are present in the spring and cause fatigue breakage of the spring is less than 20 μm to 15 μm or less The hardness of the base metal at a depth position up to 5 mm is controlled to Hv520 or more and 580 or less.
Y: 0.2 mm or more from the spring surface when the dimensions of hard non-metallic inclusions, carbides, carbonitrides and nitrides present in the spring that cause fatigue breakage of the spring can be controlled to 10 pm or less. The hardness of the base metal at the depth position up to 5 mm is controlled to Hv520 or more and 630 or less.
Here, the component steel (1) is as follows.
(1) C: 0.50 to 0.80%, Si: 1.20 to 2.5%, Mn: ≤ 1.20, Ni: ≤ 0.5%, Cr: ≤ 1.80 V to root if the balance being iron and impurities: spring with the addition of 0.03 to 0.60 percent.
(Chemical composition unit: Both mass%)
JP55152299A 1999-08-23 1999-08-23 Spring with excellent fatigue resistance and surface treatment method for producing the spring Expired - Lifetime JP3847350B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/004539 WO2000049186A1 (en) 1999-02-19 1999-08-23 Spring of excellent fatigue resisting characteristics and surface treatment method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP3847350B2 true JP3847350B2 (en) 2006-11-22

Family

ID=37544675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55152299A Expired - Lifetime JP3847350B2 (en) 1999-08-23 1999-08-23 Spring with excellent fatigue resistance and surface treatment method for producing the spring

Country Status (2)

Country Link
JP (1) JP3847350B2 (en)
KR (1) KR100500597B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101134422B1 (en) * 2009-10-29 2012-04-09 현대 파워텍 주식회사 Moving part for automatic transmission and method for surface treatment thereof
CN115135451A (en) * 2020-03-24 2022-09-30 日立安斯泰莫株式会社 Method for determining shot projection condition and method for manufacturing coil spring

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5378512B2 (en) 2009-05-27 2013-12-25 新日鐵住金株式会社 Carburized parts and manufacturing method thereof
KR101219837B1 (en) 2010-10-19 2013-01-08 기아자동차주식회사 Method for manufacturing of high strength valve spring for vehicle engine and high strength valve spring using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279229A (en) * 1996-04-15 1997-10-28 Suncall Corp Surface treatment of steel work

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101134422B1 (en) * 2009-10-29 2012-04-09 현대 파워텍 주식회사 Moving part for automatic transmission and method for surface treatment thereof
CN115135451A (en) * 2020-03-24 2022-09-30 日立安斯泰莫株式会社 Method for determining shot projection condition and method for manufacturing coil spring
CN115135451B (en) * 2020-03-24 2024-01-30 日立安斯泰莫株式会社 Method for determining projection condition of projectile and method for manufacturing coil spring

Also Published As

Publication number Publication date
KR100500597B1 (en) 2005-07-12
KR20010013891A (en) 2001-02-26

Similar Documents

Publication Publication Date Title
US6790294B1 (en) Spring with excellent fatigue endurance property and surface treatment method for producing the spring
JP5624503B2 (en) Spring and manufacturing method thereof
JP5639064B2 (en) Method for producing carbonitrided member
Farrahi et al. An investigation into the effect of various surface treatments on fatigue life of a tool steel
JP4872846B2 (en) Rough shape for nitriding gear and nitriding gear
JP5299140B2 (en) MATERIAL OF SHOT PEENING PROJECTION MATERIAL AND METHOD FOR PRODUCING SHOT PEENING PROJECTION MATERIAL
Asi et al. The effect of high temperature gas carburizing on bending fatigue strength of SAE 8620 steel
US20120291927A1 (en) Drawn heat treated steel wire for high strength spring use and pre-drawn steel wire for high strength spring use
JPH09279229A (en) Surface treatment of steel work
US4222793A (en) High stress nodular iron gears and method of making same
WO2012018144A1 (en) Spring and manufacture method thereof
JP5299118B2 (en) Vacuum carburizing steel and vacuum carburized parts
WO2012133885A1 (en) Spring and method for producing same
JP2009052144A (en) High strength spring
JP3847350B2 (en) Spring with excellent fatigue resistance and surface treatment method for producing the spring
JP2000042922A (en) Surface treatment method for spring
JP2001140041A (en) Chromium stainless steel with double layer structure for spring and producing method therefor
CN113631746A (en) Carburized component and method for manufacturing same
JP2741222B2 (en) Method for manufacturing a nitrided steel member
JP2002121645A (en) Steel for gear having excellent dedendum bending fatigue characteristic and facial pressure fatigue characteristic and gear
JPH0987805A (en) High carbon steel sheet and its production
JP7165522B2 (en) Compression coil spring and its manufacturing method
JP2005120479A (en) High strength spring and production method therefor
JP5523241B2 (en) Spring and manufacturing method thereof
JPH05140726A (en) Manufacture of driving system machine parts having high fatigue strength

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060823

R150 Certificate of patent or registration of utility model

Ref document number: 3847350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

EXPY Cancellation because of completion of term