JP2012017499A - Gear with excellent fatigue resistance and method of manufacturing the same - Google Patents

Gear with excellent fatigue resistance and method of manufacturing the same Download PDF

Info

Publication number
JP2012017499A
JP2012017499A JP2010155457A JP2010155457A JP2012017499A JP 2012017499 A JP2012017499 A JP 2012017499A JP 2010155457 A JP2010155457 A JP 2010155457A JP 2010155457 A JP2010155457 A JP 2010155457A JP 2012017499 A JP2012017499 A JP 2012017499A
Authority
JP
Japan
Prior art keywords
gear
mass
hardness
shot peening
carburizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010155457A
Other languages
Japanese (ja)
Other versions
JP5635316B2 (en
Inventor
Kazuaki Fukuoka
和明 福岡
Kunikazu Tomita
邦和 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Bars and Shapes Corp
Original Assignee
JFE Bars and Shapes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Bars and Shapes Corp filed Critical JFE Bars and Shapes Corp
Priority to JP2010155457A priority Critical patent/JP5635316B2/en
Publication of JP2012017499A publication Critical patent/JP2012017499A/en
Application granted granted Critical
Publication of JP5635316B2 publication Critical patent/JP5635316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gears, Cams (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gear with high surface pressure fatigue resistance which is required for an automobile, a variety of industrial equipment and the like, and a method of manufacturing the same.SOLUTION: The gear is manufactured by shaping steel having a specific component into a gear shape by forging or machining after forging, and carburizing, quenching and tempering the steel followed by shot peening. In the gear, a carburization surface layer: residual γ structure from the surface of the gear to 30 μm depth (vol.%) is 25% or more and 58% or less, and is 7% or less after shot peening with the remainder having martensite structure; the crystal particle size in the carburization surface layer is 8.5 or more; the compression residual stress of the tooth surface and tooth root surface after shot peening is 1,500 MPa or more, the surface hardness thereof is HV850 or more; and a parameter expression having a residual γ quantity, tooth surface Vickers hardness and tooth surface residual stress as factors is satisfied.

Description

本発明は自動車および各種産業機器に用いる高い面圧疲労強度を有する歯車とその製造方法に関し、特にファイナルギヤ用として好適なものに関する。   The present invention relates to a gear having a high surface pressure fatigue strength used for automobiles and various industrial equipment and a method for manufacturing the same, and more particularly to a gear suitable for a final gear.

自動車等に用いられている歯車は、近年、省エネルギーのための車体軽量化に伴って小型化が要求される一方、エンジンの高出力化により負荷が増大していることから、歯元の曲げ疲労破壊ならびに歯面の面圧疲労破壊に対する耐久性の向上が求められている。   In recent years, gears used in automobiles and the like have been required to be reduced in size with the reduction in weight of the vehicle body to save energy. On the other hand, the load has increased due to the higher output of the engine. There is a need for improved durability against fracture and tooth surface fatigue failure.

従来、JISSCM420H、SCM822H等の肌焼鋼を用いて歯車を成形し、浸炭等の表面処理を行い自動車等に使用されてきたが、高応力下での使用には耐えられないため、鋼材の変更、熱処理方法の変更、表面の加工硬化処理により歯元曲げ疲労強度、耐ピッチング性を向上させる研究開発が進められてきた。   Conventionally, gears were formed using case-hardened steel such as JIS SCM420H, SCM822H, etc., and surface treatment such as carburization etc. has been used for automobiles, etc., but since it can not withstand use under high stress, change of steel Research and development to improve tooth root bending fatigue strength and pitting resistance by changing the heat treatment method and work hardening of the surface have been promoted.

たとえば、特許文献1には、鋼中のSiを低減し、Mn、Cr、Mo、Niをコントロールする事により、浸炭熱処理後の表面の粒界酸化層を低減し、亀裂の発生を少なくし、不完全焼入層生成を抑制する事により、表面硬さの低減を抑え、疲労強度を高める事、さらにCa添加により亀裂の発生・伝播を助長するMnSの延伸を制御する方法が記載されている。   For example, in Patent Document 1, by reducing Si in steel and controlling Mn, Cr, Mo, Ni, the grain boundary oxide layer on the surface after carburizing heat treatment is reduced, and the occurrence of cracks is reduced. A method is described in which the generation of incompletely hardened layer is suppressed, the reduction in surface hardness is suppressed, the fatigue strength is increased, and the extension of MnS that promotes the generation and propagation of cracks by addition of Ca is described. .

また、特許文献2では素材としてSiを0.25〜1.50mass%添加した鋼材を用いて焼戻し軟化抵抗を高める事が記載されている。   Patent Document 2 describes that the temper softening resistance is increased by using a steel material to which Si is added in an amount of 0.25 to 1.50 mass%.

特公平07−122118号公報Japanese Patent Publication No. 07-122118 特許第2945714号公報Japanese Patent No. 2945714

しかしながら、特許文献1により、Siを低減した場合、粒界酸化層、不完全焼入れ層を低減し、歯元での曲げ疲労亀裂発生を抑えることは可能であるが、逆に焼戻し軟化抵抗の低下を招き、破壊の起点が歯元から歯面側に移行し、歯面での摩擦熱による焼戻し軟化を抑える事が出来なくなり、表面が軟化してピッチングが発生しやすくなるという問題がある。   However, according to Patent Document 1, when Si is reduced, it is possible to reduce the grain boundary oxide layer and the incomplete quenching layer and suppress the occurrence of bending fatigue cracks at the tooth root, but conversely the reduction in temper softening resistance. The starting point of fracture shifts from the tooth base to the tooth surface side, it becomes impossible to suppress temper softening due to frictional heat on the tooth surface, and the surface becomes soft and pitching tends to occur.

特許文献2では焼戻し軟化抵抗を上げるためにSi等を添加して、粒界酸化進行の抑制のために浸炭工法を真空浸炭あるいはプラズマ浸炭等に限定する方法が採られているが、この方法では製造コストが上がり、量産化するには有効ではない。   In Patent Literature 2, Si or the like is added to increase the temper softening resistance, and the carburizing method is limited to vacuum carburizing or plasma carburizing to suppress the progress of grain boundary oxidation. It is not effective for mass production because of increased manufacturing costs.

本発明は、上述した問題を解決して、疲労特性に優れた歯車および量産可能なその製造方法を提供することを目的とする。   An object of the present invention is to solve the above-described problems and provide a gear having excellent fatigue characteristics and a manufacturing method capable of mass production.

本発明では、上記課題を解決するために、鋭意研究を行い、以下のことを見出した。
1.歯面のピッチングによる破壊を抑制するには表面硬さを高く、表面圧縮残留応力を高くする事が効果的である。さらに歯車駆動時に歯面の表面が低温焼戻しされる事による特性低下を抑制する事でさらなる長寿命化が可能となる。
2.表面硬さは高いほど、面疲労における亀裂の発生が抑制されるが、浸炭後の硬さには限界がある。そこで、浸炭後の表面に残留オーステナイトを適度に析出させた後にショットピーニング処理を行う事で、表面硬さを飛躍的に向上させることが可能となる。
3.表面圧縮残留応力はピッチングが生じた部分からの亀裂進展を抑制し、寿命を延ばすことが可能である。その最大値はより表層に近く、高いほど望ましい。
4.鋼材のSi増量添加は焼戻し軟化抵抗を高めて硬度の低下を少なくするだけではなく、表面の圧縮残留応力の低下を抑え、それによって、歯車駆動時に歯面の亀裂発生・進展の遅延が図れる。
5.Si添加による表面酸化は多くなるが、表面の粒界・粒内の全域で酸化が進行するために深さ方向への進展が遅れる。また、ショットピーニングを行う事で表層の酸化層が剥離するために粒界に沿った酸化だけが進行するような鋼よりも表面の欠陥が少なくなり歯面のピッチング発生防止にも、歯元での亀裂発生防止にも効果がある。
6.歯車駆動時の表面硬度の低下および圧縮残留応力の低下は300℃で1時間の焼戻しをした後の特性と相関が深い。
本発明は以上の知見に基づいてなされたものであり、すなわち
(1)成分組成が、C:0.15〜0.35mass%、Si:0.6〜1.1mass%、Mn:0.3〜1.3mass%、S:0.006mass%以上、Cr:0.7〜1.7mass%、Mo:0.4mass%以下、Al:0.005〜0.050mass%、N:0.0040〜0.0200mass%、残部Feおよび不可避的不純物の鋼材を、鍛造により、または鍛造後、機械加工により歯車形状とした後、浸炭焼入焼戻しまたは浸炭浸窒焼入焼戻しを行い、その後ショットピーニングを行って製造する歯車であって、
浸炭焼入焼戻しまたは浸炭浸窒焼入焼戻し後の、表面から30μm深さ位置までの残留オーステナイト組織が25体積%以上、58体積%以下で、ショットピーニング後には7体積%以下であり、その他はマルテンサイト組織を有し、前記浸炭焼入焼戻しまたは浸炭浸窒焼入焼戻しされた領域の結晶粒度が8.5以上で、且つショットピーニング後の歯面および歯元の表面の圧縮残留応力が1500MPa以上で、前記歯面および歯元の表面の硬さがビッカースで850以上で、さらに下記(1)式を満足する事を特徴とする疲労強度に優れた歯車。
(1.96γRCS−0.4γRSS+HVCS+σRSS)−(HV300℃+σR300℃)≦640
・・・(1)
但し、γRcs:浸炭表層部の残留オーステナイト、γRss:浸炭表層部のショットピーニング後の残留オーステナイト、HVcs:浸炭または浸炭浸窒後の歯面ビッカース硬さ、σRSS:ショットピーニング後の歯面残留応力(MPa)、HV300℃:300℃焼戻し後の歯面ビッカース硬さ、σR300℃:300℃焼戻し後の歯面圧縮残留応力(MPa)
(2)鋼材の成分組成として、更に、Nb:0.010〜0.060mass%、V:0.03〜0.20mass%、Ti:0.005〜0.200mass%の1種以上を含有することを特徴とする(1)記載の疲労強度に優れた歯車。
(3)鋼材の成分組成として、更に、B:0.0005〜0.0050mass%を含有することを特徴とする(1)または(2)に記載の疲労強度に優れた歯車。
(4)(1)乃至(3)のいずれか一つに記載の成分組成の鋼材を冷間鍛造により、または熱間鍛造後の機械加工、冷間鍛造後の機械加工もしくは温間鍛造後の機械加工のいずれかで歯車形状とした後、900〜980℃で、浸炭処理、あるいは、浸炭浸窒および拡散処理を行い、その後、780〜880℃まで炉冷した後、60〜130℃の油へ投入して焼入れ後、150〜220℃に再加熱して焼戻しを行い、さらに歯車の歯面にショットピーニングを行うことを特徴とする疲労強度に優れた歯車の製造方法。
(5)前記ショットピーニングを粒径が0.05〜0.1mmΦの硬さ700HV以上の粒を用いて行うことを特徴とする(4)記載の疲労強度に優れた歯車の製造方法。
(6)前記ショットピーニングを粒径が0.4〜1.2mmΦの硬さ700HV以上の粒を用いて行った後、0.05〜0.1mmΦの硬さ700HV以上の粒を用いて再度行うことを特徴とする(4)記載の疲労強度に優れた歯車の製造方法。
(7)前記ショットピーニングを粒径が0.4〜1.2mmΦの硬さ700HV以上の粒と、0.05〜0.1mmΦの硬さ700HV以上の粒を混合して行う事を特徴とする(4)記載の疲労強度に優れた歯車の製造方法。
In the present invention, in order to solve the above-mentioned problems, intensive research has been conducted and the following has been found.
1. It is effective to increase the surface hardness and the surface compressive residual stress in order to suppress the destruction due to the pitching of the tooth surface. Furthermore, it is possible to further extend the service life by suppressing the characteristic deterioration caused by the low-temperature tempering of the tooth surface when the gear is driven.
2. As the surface hardness is higher, the occurrence of cracks in surface fatigue is suppressed, but the hardness after carburization is limited. Therefore, the surface hardness can be drastically improved by performing the shot peening treatment after appropriately depositing the retained austenite on the carburized surface.
3. The surface compressive residual stress can suppress the crack propagation from the part where the pitting occurs and can extend the life. The maximum value is closer to the surface layer, and the higher the better.
4). The addition of Si in steel increases not only the temper softening resistance and reduces the decrease in hardness, but also suppresses the decrease in compressive residual stress on the surface, thereby delaying the generation and propagation of cracks in the tooth surface when the gear is driven.
5. The surface oxidation due to the addition of Si increases, but the progress in the depth direction is delayed because the oxidation proceeds at the grain boundaries on the surface and in the whole area within the grains. Also, the surface oxide layer is peeled off by shot peening, so there are fewer surface defects than steel where only the oxidation along the grain boundary proceeds, and it is also possible to prevent the occurrence of pitting on the tooth surface. It is also effective in preventing cracking.
6). The reduction in the surface hardness and the reduction in the compressive residual stress when the gear is driven are closely related to the characteristics after tempering at 300 ° C. for 1 hour.
This invention is made | formed based on the above knowledge, ie, (1) component composition is C: 0.15-0.35 mass%, Si: 0.6-1.1 mass%, Mn: 0.3 -1.3 mass%, S: 0.006 mass% or more, Cr: 0.7-1.7 mass%, Mo: 0.4 mass% or less, Al: 0.005-0.050 mass%, N: 0.0040- 0.0200 mass%, balance Fe and inevitable impurities steel material is forged or after forging and machined into a gear shape, then carburized, quenched and carburized, nitrocarburized, quenched and tempered, then shot peened A gear to be manufactured,
The residual austenite structure from the surface to the 30 μm depth position after carburizing and tempering or carburizing and nitriding quenching and tempering is 25% by volume or more and 58% by volume or less, and 7% by volume or less after shot peening. It has a martensitic structure, the grain size of the carburized tempered or carburized nitrocarburized quenched and tempered region is 8.5 or more, and the compressive residual stress on the tooth surface and root surface after shot peening is 1500 MPa. Thus, a gear having excellent fatigue strength, characterized in that the hardness of the tooth surface and the tooth root surface is Vickers of 850 or more and further satisfies the following formula (1).
(1.96γR CS −0.4γR SS + HV CS + σR SS ) − (HV 300 ° C. + σR 300 ° C. ) ≦ 640
... (1)
Where γRcs: residual austenite of the carburized surface layer portion, γRss: residual austenite after shot peening of the carburized surface layer portion, HVcs: tooth surface Vickers hardness after carburizing or carburizing, σR SS : tooth surface residual stress after shot peening (MPa), HV 300 ° C . : tooth surface Vickers hardness after tempering at 300 ° C., σR 300 ° C . : tooth surface compressive residual stress after tempering at 300 ° C. (MPa)
(2) As a component composition of steel materials, Nb: 0.010-0.060mass%, V: 0.03-0.20mass%, Ti: 0.005-0.200mass% of 1 or more types are contained further. A gear having excellent fatigue strength as described in (1).
(3) The gear having excellent fatigue strength according to (1) or (2), further including B: 0.0005 to 0.0050 mass% as a component composition of the steel material.
(4) A steel material having the composition described in any one of (1) to (3) is subjected to cold forging, or machining after hot forging, machining after cold forging, or after warm forging. After making into a gear shape by any of machining, carburizing treatment or carburizing nitriding and diffusion treatment is performed at 900 to 980 ° C, and then furnace cooling to 780 to 880 ° C, followed by oil at 60 to 130 ° C A method for producing a gear excellent in fatigue strength, characterized in that after tempering and quenching, tempering is performed by reheating to 150 to 220 ° C., and shot peening is further performed on the tooth surface of the gear.
(5) The method for producing a gear excellent in fatigue strength according to (4), wherein the shot peening is performed using particles having a particle size of 0.05 to 0.1 mmΦ and a hardness of 700 HV or more.
(6) The shot peening is performed using grains having a particle diameter of 0.4 to 1.2 mmΦ and a hardness of 700 HV or more, and then performed again using grains having a hardness of 0.05 to 0.1 mmΦ and a hardness of 700 HV or more. (4) The manufacturing method of the gear excellent in fatigue strength characterized by the above-mentioned.
(7) The shot peening is performed by mixing grains having a particle diameter of 0.4 to 1.2 mmΦ and a hardness of 700 HV or more and grains having a hardness of 0.05 to 0.1 mmΦ and a hardness of 700 HV or more. (4) The manufacturing method of the gear excellent in the fatigue strength of description.

本発明によれば、自動車、産業機械等に使用して好適な疲労強度に優れた歯車が得られるので、産業上極めて有用である。   According to the present invention, a gear excellent in fatigue strength suitable for use in automobiles, industrial machines and the like can be obtained, which is extremely useful industrially.

実施例に用いた浸炭入焼戻し処理条件を説明する図。The figure explaining the carburizing and tempering process conditions used for the Example.

本発明では素材となる鋼の成分組成、歯車の表層のミクロ組織と硬度、および歯面、歯元の表面の圧縮残留応力の大きさを規定する。以下に各限定理由について述べる。
[成分組成]
C:0.15〜0.35mass%
Cは強度確保のために必要で、浸炭焼戻し後の内部硬さを決定する。0.15mass%未満では内部硬さが低下し、歯元の耐曲げ応力が低下して歯車としての強度を確保できない。一方、0.35mass%より多いと歯車内部の靭性が劣化し、歯元での曲げ応力によって早期に亀裂発生が発生して、短寿命となってしまうため、0.15〜0.35mass%とする。
In the present invention, the composition of steel as a raw material, the microstructure and hardness of the surface layer of the gear, and the magnitude of compressive residual stress on the tooth surface and the surface of the tooth root are defined. Each limitation reason is described below.
[Ingredient composition]
C: 0.15-0.35 mass%
C is necessary for securing the strength, and determines the internal hardness after carburizing and tempering. If it is less than 0.15 mass%, the internal hardness is lowered, the bending stress at the tooth root is lowered, and the strength as a gear cannot be secured. On the other hand, if it exceeds 0.35 mass%, the toughness inside the gear deteriorates, and cracking occurs early due to bending stress at the tooth root, resulting in a short life, so 0.15 to 0.35 mass%. To do.

Si:0.6〜1.1mass%
Siは焼戻し軟化抵抗を高めるのに有効な元素である。軟化抵抗が低いと、歯車駆動時に歯車どうしの摩擦により歯面表層が焼戻され軟化し、面疲労特性は低下する。その効果は0.6mass%以上で有効である。
Si: 0.6-1.1 mass%
Si is an element effective for increasing the temper softening resistance. When the softening resistance is low, the tooth surface layer is tempered and softened by the friction between the gears when the gear is driven, and the surface fatigue characteristics are deteriorated. The effect is effective at 0.6 mass% or more.

また、Siは変態点を上げる作用がある。一部残留オーステナイトを含むマルテンサイト組織を得るには浸炭焼入れ時に一旦変態点以上に加熱してオーステナイト組織にする必要がある。しかし、1.1mass%を超えると浸炭時に変態点以下にしか加熱されず、浸炭されていない内部にフェライトが生成して、歯元での曲げ疲労強度が低下するようになるため、0.6〜1.1mass%とする。   Si also has the effect of raising the transformation point. In order to obtain a martensitic structure partially containing retained austenite, it is necessary to heat it to the transformation point or more once during carburizing and quenching to obtain an austenitic structure. However, if it exceeds 1.1 mass%, it is heated only below the transformation point at the time of carburizing, and ferrite is generated inside the carburized portion, so that the bending fatigue strength at the tooth base is lowered. -1.1 mass%.

Mn:0.3〜1.3mass%
Mnは焼入れ性を高める元素である。焼入れ性を確保するため0.3mass%以上とする。一方、1.3mass%を超えて添加すると焼入れ性が過剰となり、残留オーステナイト量が過多となって浸炭部の硬さが低下して疲労特性を低下させるようになるので、0.3〜1.3mass%とする。
Mn: 0.3 to 1.3 mass%
Mn is an element that enhances hardenability. In order to ensure hardenability, it is 0.3 mass% or more. On the other hand, if added in excess of 1.3 mass%, the hardenability becomes excessive, the amount of retained austenite becomes excessive, the hardness of the carburized portion is lowered, and the fatigue characteristics are lowered. 3 mass%.

S:0.006mass%以上
SはMnと結合してMnSを形成し、切削性を向上させる。0.006mass%未満では生成するMnSが少なくてその効果が十分得られないため、0.006mass%以上とする。
S: 0.006 mass% or more S combines with Mn to form MnS and improves machinability. If the amount is less than 0.006 mass%, the amount of MnS produced is so small that the effect cannot be sufficiently obtained.

Cr:0.7〜1.7mass%
Crは焼入れ性向上元素であるとともに、焼戻し軟化抵抗を高める元素である。両方の性能を発揮させるには0.7mass%以上の添加が必要であるが1.7mass%を超えると軟化抵抗を高める効果は飽和する。また、焼入れ性が高くなりすぎるため歯車内部の靭性が劣化し、疲労亀裂の進展が早くなって曲げ疲労強度が低下するようになるので0.7〜1.7mass%とする。
Cr: 0.7-1.7 mass%
Cr is an element improving the temper softening resistance as well as a hardenability improving element. Addition of 0.7 mass% or more is necessary to exert both performances, but if it exceeds 1.7 mass%, the effect of increasing the softening resistance is saturated. Further, since the hardenability becomes too high, the toughness inside the gear deteriorates, the fatigue crack progresses quickly, and the bending fatigue strength decreases, so 0.7 to 1.7 mass%.

Mo:0.4mass%以下
Moは焼入れ性向上元素であるが、0.4mass%を超えると焼入れ性が高すぎて焼割れが起こりやすくなり、また高価なため経済性も悪くなるので、0.4mass%以下とする。
Mo: 0.4 mass% or less Mo is an element that improves hardenability. However, if it exceeds 0.4 mass%, the hardenability is too high, and cracking is likely to occur. 4 mass% or less.

Al:0.005〜0.050mass%
Alは脱酸に有効な元素であり、その効果は0.005mass%以上の添加で発揮される。また、0.050mass%までの添加でNと結合してAlNを生成し、結晶粒の粗大化を抑える働きがある。0.050mass%を超えると粗大粒が発生して疲労亀裂が進展し易くなって曲げ疲労強度および面疲労強度が低下するので0.005〜0.050mass%とする。
Al: 0.005 to 0.050 mass%
Al is an element effective for deoxidation, and the effect is exhibited by addition of 0.005 mass% or more. Further, when added up to 0.050 mass%, it combines with N to produce AlN, and has a function of suppressing coarsening of crystal grains. If it exceeds 0.050 mass%, coarse grains are generated and fatigue cracks are likely to progress, and the bending fatigue strength and the surface fatigue strength are reduced. Therefore, the content is set to 0.005 to 0.050 mass%.

N:0.0040〜0.0200mass%
NはAlと結合してAlNを生成し、結晶粒の粗大化を抑えて疲労強度を向上させる。その効果を得るには0.0040mass%以上必要であるが、0.0200mass%を超えるとその効果は飽和するだけでなく、内部にブローホール等の欠陥を発生させ、曲げ疲労強度の低下を招くため、0.0040〜0.0200mass%とする。
N: 0.0040-0.0200 mass%
N combines with Al to produce AlN, which suppresses coarsening of crystal grains and improves fatigue strength. In order to obtain the effect, 0.0040 mass% or more is necessary, but if it exceeds 0.0200 mass%, the effect is not only saturated, but also defects such as blowholes are generated inside, leading to a decrease in bending fatigue strength. Therefore, it is set as 0.0040-0.0200 mass%.

以上が本発明の基本成分組成であるが、更に特性を向上させる場合、Nb、V、Ti、Bの一種または二種以上を添加する。   The above is the basic component composition of the present invention, but when further improving the characteristics, one or more of Nb, V, Ti and B are added.

V:0.030〜0.20mass%
Vは焼入性を向上させるとともにSi、Crと同じく焼戻し軟化抵抗を高める。また、炭窒化物を形成して結晶粒の粗大化を抑制する。このような効果を発揮させるためには、0.030mass%以上の添加が必要であるが、0.20mass%を超えて添加しても飽和してしまい、十分な効果は得られず、製造コストが上がるだけとなるので、添加する場合は0.030〜0.20mass%とする。
V: 0.030-0.20 mass%
V improves the hardenability and increases the temper softening resistance like Si and Cr. In addition, carbonitride is formed to suppress coarsening of crystal grains. In order to exert such an effect, addition of 0.030 mass% or more is necessary, but even if added over 0.20 mass%, it is saturated, a sufficient effect cannot be obtained, and the manufacturing cost Therefore, when added, the content is set to 0.030 to 0.20 mass%.

Nb:0.010〜0.060mass%
Nbは炭窒化物形成により結晶粒を微細化し、歯元の曲げ疲労強度を向上させる。結晶粒の微細化効果は0.010mass%以上で増大し、一方、0.060mass%を超えて添加してもその効果は飽和するようになるので0.010〜0.060mass%とする。
Nb: 0.010 to 0.060 mass%
Nb refines crystal grains by forming carbonitride and improves the bending fatigue strength of the tooth root. The effect of refining crystal grains increases at 0.010 mass% or more. On the other hand, even if added over 0.060 mass%, the effect becomes saturated, so it is set to 0.010 to 0.060 mass%.

Ti:0.005〜0.200mass%
Tiは微細Ti化合物を生成して鍛造後の結晶粒を小さくして強度を高める。その効果は0.005mass%以上で増大し、一方、0.200mass%を超えて添加するとTi析出物が粗大化し、疲労破壊の起点となって寿命が低下するようになるので、添加する場合は、0.005〜0.200mass%とする。
Ti: 0.005 to 0.200 mass%
Ti produces a fine Ti compound to reduce crystal grains after forging and increase the strength. The effect increases at 0.005 mass% or more. On the other hand, if added over 0.200 mass%, the Ti precipitate becomes coarse, and the life becomes lower as a starting point of fatigue failure. 0.005 to 0.200 mass%.

B:0.0005〜0.0050mass%
Bは焼入れ性を上げるのに有効である。その効果は0.0005mass%以上で得られ、0.0050mass%を超えると飽和するようになるので、添加する場合は0.0005〜0.0050mass%とする。
[ミクロ組織と硬度]
歯車の浸炭表層部のミクロ組織としての結晶粒度を8.5以上に規定する。歯元および歯面の亀裂の発生及び発生した亀裂の進展を抑制するために、強度を高める事が好ましい。結晶粒が小さいほど強度は高くなるので、結晶粒度で8.5以上とする。浸炭表層部は、浸炭焼入焼戻しまたは浸炭浸窒焼入焼戻しされた領域で歯車の表面から30μmの深さの位置までとする。
B: 0.0005 to 0.0050 mass%
B is effective in increasing the hardenability. The effect is obtained at 0.0005 mass% or more, and when it exceeds 0.0050 mass%, saturation occurs. Therefore, when added, the content is set to 0.0005 to 0.0050 mass%.
[Microstructure and hardness]
The crystal grain size as the microstructure of the carburized surface layer of the gear is specified to be 8.5 or more. It is preferable to increase the strength in order to suppress the occurrence of cracks in the tooth root and tooth surface and the progress of the cracks that have occurred. The smaller the crystal grain, the higher the strength. Therefore, the crystal grain size is set to 8.5 or more. The carburized surface layer portion is a carburized quenching tempered or carburized nitrocarburized quenched and tempered region up to a depth of 30 μm from the gear surface.

また、浸炭後の浸炭表層部における残留γ(オーステナイトともいう)量:25〜58体積%とする。残留オーステナイトはそれ自体では軟質だが、ショットピーニングの加工誘起変態により硬さを高める事が可能である。ショットピーニング後に初期亀裂が発生しにくい表面硬度HV850以上を得るため、浸炭後の浸炭表層部における残留オーステナイト量を25〜58体積%とする。尚、本発明で硬度(HV)は全て荷重10kgで求めた値として規定する。   Further, the amount of residual γ (also referred to as austenite) in the carburized surface layer after carburizing is set to 25 to 58% by volume. Residual austenite is soft by itself, but its hardness can be increased by the process-induced transformation of shot peening. In order to obtain a surface hardness of HV850 or more that prevents initial cracks from occurring after shot peening, the amount of retained austenite in the carburized surface layer after carburizing is set to 25 to 58% by volume. In the present invention, the hardness (HV) is defined as a value obtained with a load of 10 kg.

25体積%より少ない場合はショットピーニングを種々の条件で行なっても硬度の上昇が少なくなり、表面硬度の向上が得がたくなる。また、58体積%より高い場合は残留オーステナイトがショットピーニング後も多く存在するために硬さが向上しない。   If it is less than 25% by volume, the increase in hardness is small even if shot peening is performed under various conditions, and it is difficult to obtain an improvement in surface hardness. On the other hand, if it is higher than 58% by volume, the retained austenite is present after the shot peening, and the hardness is not improved.

更に、ショットピーニング後の浸炭表層部における残留オーステナイト量を7体積%以下とする。ショットピーニング後に残留オーステナイトが多く存在すると、駆動後の歯面の凸凹が激しくなり、早期に微細なピッチングが発生し、最終破壊に至る時間が短くなってしまうので、7体積%以下にする。   Furthermore, the amount of retained austenite in the carburized surface layer after shot peening is set to 7% by volume or less. If a large amount of retained austenite is present after shot peening, the unevenness of the tooth surface after driving becomes intense, fine pitching occurs early, and the time to final breakage is shortened.

ショットピーニング後の歯面および歯元の表面の硬さは850HV以上とする。ピッチング発生に繋がる歯面および歯元の初期亀裂は硬さが高いほど発生しにくい。初期亀裂を抑えるためショットピーニング後の歯面および歯元の硬さは850HV以上とする。   The hardness of the tooth surface and the root surface after shot peening is 850 HV or more. The initial cracks at the tooth surface and the root that lead to the occurrence of pitching are less likely to occur as the hardness increases. In order to suppress initial cracks, the hardness of the tooth surface and root after shot peening is 850 HV or more.

[歯面、歯元の表面の圧縮残留応力]
ショットピーニング後の歯面および歯元の圧縮残留応力は1500MPa以上とする。ピッチングに繋がる初期亀裂の発生を上記硬さの規定で抑制し、更に亀裂進展を抑制することで寿命を一層向上させることができる。亀裂の進展抑制には圧縮残留応力の付与が望ましく、長寿命を得るため、ショットピーニング後の歯面の圧縮残留応力を1500MPa以上に限定した。
[Compressive residual stress on tooth surface and root surface]
The compressive residual stress of the tooth surface and root after shot peening is 1500 MPa or more. It is possible to further improve the life by suppressing the occurrence of initial cracks that lead to pitching with the above-mentioned definition of hardness and further suppressing the crack propagation. In order to suppress the progress of cracks, it is desirable to apply compressive residual stress. In order to obtain a long life, the compressive residual stress of the tooth surface after shot peening is limited to 1500 MPa or more.

(1.96γRCS−0.4γRSS+HVCS+σRSS)−(HV300℃+σR300℃)≦640・・・(1)
但し、γRcs:浸炭表層部の残留オーステナイト、γRss:浸炭表層部のショットピーニング後の残留オーステナイト、HVcs:浸炭または浸炭浸窒後の歯面ビッカース硬さ、σRSS:ショットピーニング後の歯面残留応力(MPa)、HV300℃:300℃焼戻し後の歯面ビッカース硬さ、σR300℃:300℃焼戻し後の歯面圧縮残留応力(MPa)とする。
(1.96γR CS −0.4γR SS + HV CS + σR SS ) − (HV 300 ° C. + σR 300 ° C. ) ≦ 640 (1)
Where γRcs: residual austenite of the carburized surface layer portion, γRss: residual austenite after shot peening of the carburized surface layer portion, HVcs: tooth surface Vickers hardness after carburizing or carburizing, σR SS : tooth surface residual stress after shot peening (MPa), HV 300 ° C . : tooth surface Vickers hardness after tempering at 300 ° C., σR 300 ° C . : tooth surface compressive residual stress (MPa) after tempering at 300 ° C.

本パラメータ式は、歯面の面疲労強度を向上するために規定するもので、ショットピーニング後の歯面硬さ、歯面圧縮残留応力、残留オーステナイト量、および歯面の焼戻し後の特性として300℃で1時間の焼戻しを行った後の歯面のビッカース硬さ(歯面ビッカース硬さともいう)で構成する。前述のように、歯車駆動時の表面硬度の低下および圧縮残留応力の低下は300℃で1時間の焼戻しをした後の特性と相関が深い。本パラメータ式を満足すると、面疲労強度が向上する。   This parameter formula is defined in order to improve the surface fatigue strength of the tooth surface. The tooth surface hardness after shot peening, the tooth surface compressive residual stress, the residual austenite amount, and the characteristics after tempering of the tooth surface are 300. It consists of the Vickers hardness (also referred to as tooth surface Vickers hardness) of the tooth surface after tempering at 1 ° C. for 1 hour. As described above, the decrease in the surface hardness and the decrease in the compressive residual stress when the gear is driven are closely correlated with the characteristics after tempering at 300 ° C. for 1 hour. When this parameter formula is satisfied, the surface fatigue strength is improved.

本発明に係る歯車は以下のように製造する。上記成分組成の鋼材を冷間鍛造により所望の歯車形状とする。または熱間鍛造、冷間鍛造または温間鍛造のいずれか後に機械加工で所望の歯車形状とする。熱間鍛造は1000〜1300℃で行い、温間鍛造は400〜950℃で行う。   The gear according to the present invention is manufactured as follows. A steel material having the above composition is formed into a desired gear shape by cold forging. Alternatively, a desired gear shape is formed by machining after hot forging, cold forging, or warm forging. Hot forging is performed at 1000 to 1300 ° C, and warm forging is performed at 400 to 950 ° C.

歯車形状に加工された部材を、その後、900〜980℃で、浸炭処理あるいは浸炭浸窒および拡散処理を行い、その後、780〜880℃まで炉冷した後、60〜130℃の油へ投入して焼入れ後、150〜220℃に再加熱して焼戻しを行う。   The member processed into a gear shape is then subjected to carburizing treatment or carburizing / nitrogenizing and diffusion treatment at 900 to 980 ° C., and then furnace-cooled to 780 to 880 ° C. and then poured into oil at 60 to 130 ° C. After tempering, tempering is performed by reheating to 150 to 220 ° C.

最後に歯車の歯面にショットピーニングを行うが、(1)粒径が0.05〜0.1mmΦの硬さ700HV以上の粒を用いたショットピーニング、(2)粒径が0.4〜1.2mmΦの硬さ700HV以上の粒を用いて行った後、粒径が0.05〜0.1mmΦの硬さ700HV以上の粒を用いて再度行うショットピーニング、(3)粒径が0.4〜1.2mmΦの硬さ700HV以上の粒と、0.05〜0.1mmΦの硬さ700HV以上の粒を混合して行うショットピーニングのいずれかを行う。ショットピーニングとして(1)〜(3)の順で疲労特性は良好となるが、製造コストを考慮して適宜選定する。以下、本発明の作用効果を実施例で具体的に示す。   Finally, shot peening is performed on the tooth surface of the gear. (1) Shot peening using particles having a particle size of 0.05 to 0.1 mmΦ and a hardness of 700 HV or more, and (2) particle size of 0.4 to 1 Shot peening performed using particles having a hardness of 700 HV or more having a hardness of 2 mmΦ, and then again using particles having a hardness of 700 to HV having a particle size of 0.05 to 0.1 mmΦ, and (3) a particle size of 0.4 Any one of shot peening is performed by mixing grains having a hardness of 700 HV or higher with a diameter of ˜1.2 mmΦ and grains having a hardness of 700 HV or higher with a hardness of 0.05 to 0.1 mmΦ. As the shot peening, the fatigue characteristics are improved in the order of (1) to (3), but the proper selection is made in consideration of the manufacturing cost. Hereafter, the effect of this invention is shown concretely by an Example.

表1に示す化学成分を有する鋼を溶解した。表中に示すNo.1〜25は開発鋼であり、本発明の組成の範囲内であり、No.26〜44は本発明の成分範囲外になるもので、比較例である。No.45、46は従来鋼で、No.45はJIS SCM420H、No.46はSCM822H規格材である。   Steels having chemical components shown in Table 1 were melted. No. shown in the table. Nos. 1 to 25 are developed steels, which are within the range of the composition of the present invention. Nos. 26 to 44 are out of the component range of the present invention and are comparative examples. No. Nos. 45 and 46 are conventional steels. 45 is JIS SCM420H, No. 45. 46 is an SCM822H standard material.

溶製された上記、本発明鋼、比較鋼、従来鋼のインゴットを熱間圧延により直径70mmの丸棒鋼に調製し、得られた丸棒鋼に対し焼準処理を実施した。   The ingots of the present invention steel, comparative steel, and conventional steel that were melted were prepared into a round bar steel having a diameter of 70 mm by hot rolling, and the obtained round bar steel was subjected to a normalization treatment.

焼準処理後の丸棒を熱間鍛造後機械加工にて、モジュール2.5、ピッチ直径80mmのハスバ歯車を複数個作成した。ハスバ歯車に対して図1に示す浸炭焼入焼戻し処理を施した。   A plurality of helical gears having a module 2.5 and a pitch diameter of 80 mm were formed by hot-forging and machining the round bar after the normalizing treatment. The carburizing and tempering treatment shown in FIG. 1 was performed on the helical gear.

複数個のうちの1個を歯面の残留オーステナイト量測定に使用した。また、残りの歯車の表面には粒径0.05〜1.0mmの鋼球を使用してアークハイト0.4mmA以上のショットピーニングを施し、そのうちの1個を使用して歯面の残留オーステナイト量、粒界酸化層深さ、表面硬さ、有効硬化層深さ調査、浸炭部旧オーステナイト粒度、歯面残留応力を調査した。他の1個を使用し、300℃で1時間の焼戻しを行なった後に、表面硬さ(300℃焼戻し後の歯面ビッカース硬さ)および歯面の残留応力を調査した。さらに残りの歯車を用いて歯車疲労試験を実施した。   One of the plurality was used for measuring the amount of retained austenite on the tooth surface. Further, the surface of the remaining gear is subjected to shot peening with an arc height of 0.4 mmA or more using a steel ball having a particle diameter of 0.05 to 1.0 mm, and one of them is used to retain residual austenite on the tooth surface. The amount, grain boundary oxide layer depth, surface hardness, effective hardened layer depth investigation, carburized former austenite grain size, and tooth surface residual stress were investigated. The other one was used, and after tempering at 300 ° C. for 1 hour, the surface hardness (tooth surface Vickers hardness after tempering at 300 ° C.) and the residual stress on the tooth surface were investigated. Further, a gear fatigue test was performed using the remaining gears.

No.25の歯車については、上記の他に同様に製作した歯車を別に用意して、浸炭時の浸炭時間、拡散時間の割合とそれらの時間を変化させた処理を、上記の他に4種類実施したものを3個づつ用意し、同様の調査を実施した。以下にそれぞれの調査方法の詳細について説明する。   No. For the 25 gears, in addition to the above, separately prepared gears were prepared, and the carburizing time at the time of carburizing, the ratio of the diffusion time, and the process of changing those times were implemented in addition to the above four types. Three things were prepared and the same investigation was conducted. Details of each investigation method will be described below.

[有効硬化層深さ、組織観察、表面硬度]
ショットピーニングされた歯断面の硬度分布を測定し、歯表面からビッカース硬さで550HVの得られる深さを求めて有効硬化層深さとした。また、旧オーステナイト粒度および組織観察により粒界酸化層深さを調査した。表面硬度は、歯表面のビッカース硬さ(荷重10kg)の10点平均値とした。
[Effective hardened layer depth, structure observation, surface hardness]
The hardness distribution of the shot peened tooth cross section was measured, and the depth at which 550 HV was obtained from the tooth surface in terms of Vickers hardness was determined as the effective hardened layer depth. Moreover, the grain boundary oxide layer depth was investigated by the prior austenite grain size and structure observation. The surface hardness was an average value of 10 points of the Vickers hardness (load 10 kg) on the tooth surface.

[残留γ(オーステナイト)量]
表面下30μm位置までの残留γ量を測定した。尚、測定面の研磨には電解研磨を使用し、測定にはX線回折装置を使用した。
[Residual γ (austenite) amount]
The amount of residual γ up to a position 30 μm below the surface was measured. Electrolytic polishing was used for polishing the measurement surface, and an X-ray diffractometer was used for measurement.

[残留応力]
測定には残留オーステナイト量測定と同じX線回折装置を使用した。
[Residual stress]
For the measurement, the same X-ray diffractometer as that for measuring the amount of retained austenite was used.

[歯車疲労試験]
動力循環式歯車疲労試験機を使用して、80℃のトランスアクスルオイルを潤滑に用い、所定のトルクをかけて回転数3000r.p.mにて試験を行った。その際、繰り返し数1000万回まで到達するトルクを疲労強度として求めた。
[Gear fatigue test]
Using a power circulation type gear fatigue tester, transaxle oil at 80 ° C. is used for lubrication, a predetermined torque is applied, and the rotational speed is 3000 r. p. The test was conducted at m. At that time, the torque reaching up to 10 million repetitions was determined as fatigue strength.

表2に上記試験結果を示す。表中のNo.は表1のNo.と同じものを指す。表2から下記事項が明らかである。   Table 2 shows the test results. No. in the table. No. in Table 1. Refers to the same thing. From Table 2, the following matters are clear.

発明鋼であるNo.1〜25については、高い歯車疲労強度が得られた。それに対して、No.26はC%が発明範囲より低い。そのため浸炭焼入れ焼戻し後の内部硬度が低く、残留オーステナイト量も本発明範囲より少なく、さらにショットピーニング後の表層硬さも本発明範囲より低くなった。その結果300℃焼戻し後の表面硬度も低くなり、歯元の折損および歯面でのピッチングが起こりやすくなり、歯車疲労強度が低下した。   Invented steel No. For 1 to 25, high gear fatigue strength was obtained. In contrast, no. No. 26 has a C% lower than the scope of the invention. Therefore, the internal hardness after carburizing, quenching and tempering was low, the amount of retained austenite was less than the range of the present invention, and the surface layer hardness after shot peening was also lower than the range of the present invention. As a result, the surface hardness after tempering at 300 ° C. also decreased, the tooth root was easily broken and the tooth surface was pitched, and the gear fatigue strength was reduced.

No.27はC量が発明範囲より高い。そのため、浸炭後の残留γ量が多くなりすぎており、ショットピーニング後にも残留オーステナイトが多く存在するため、高い表面硬度が得られていない、そのために(1)式も満足していないためピッチングが起こりやすくなった。また、内部の靭性が足りず歯元部での破壊も起こりやすくなった。よって歯車疲労強度が低下した。   No. 27 has a higher C content than the scope of the invention. Therefore, the amount of residual γ after carburizing is too large, and since there is a lot of retained austenite even after shot peening, high surface hardness is not obtained. Therefore, equation (1) is not satisfied and pitching is not achieved. It became easy to happen. In addition, the internal toughness was insufficient, and the destruction at the root portion was likely to occur. Therefore, the gear fatigue strength decreased.

No.28はSi量が本発明範囲よりも少なく、そのために粒界酸化層が深めになっている。300℃の焼戻し硬さと残留応力が低く、その結果(1)式も満足する事が出来ていない。これらの影響によりピッチングが起こりやすくなり、歯車疲労強度が低下した。   No. In No. 28, the Si amount is less than the range of the present invention, so that the grain boundary oxide layer is deepened. The tempering hardness at 300 ° C. and the residual stress are low, and as a result, the formula (1) is not satisfied. Due to these effects, pitching is likely to occur, and the gear fatigue strength is reduced.

No.29はSi量が本発明範囲よりも多い。その結果、内部にフェライトが発生し、歯元での曲げ疲労破壊が起こりやすくなり、歯車疲労強度が低下した。   No. 29 has a larger Si content than the range of the present invention. As a result, ferrite was generated inside, bending fatigue failure at the tooth root was likely to occur, and the gear fatigue strength was reduced.

No.30はMn量が本発明範囲よりも低い。そのため、焼入れ性が低下しすぎており、有効硬化層深さが浅すぎるために、歯元での曲げ疲労破壊が起こりやすくなり歯車疲労強度が低下した。   No. No. 30 has a Mn content lower than the range of the present invention. For this reason, the hardenability is too low, and the effective hardened layer depth is too shallow, so that bending fatigue failure at the root tends to occur, and the gear fatigue strength is reduced.

No.31はMn量が本発明範囲より高い。そのために浸炭後の残留オーステナイト量が多くなりすぎたために、表面硬度が低くなり、(1)式も満足できず、ピッチングが起こりやすくなり歯車疲労強度が低下した。   No. No. 31 has a Mn amount higher than the range of the present invention. For this reason, the amount of retained austenite after carburizing was too large, so that the surface hardness was low, the equation (1) was not satisfied, pitching was likely to occur, and the gear fatigue strength was reduced.

No.32はS量が少ない。そのため試験片加工において加工精度が悪く、振動が大きすぎて疲労試験が出来なかった。   No. 32 has a small amount of S. Therefore, the processing accuracy was poor in the specimen processing, and the fatigue test was not possible due to the excessive vibration.

No.33はCr量が少なく、焼入れ性が低下しすぎている。そのため、硬化層深さが浅くなりすぎて歯元での折損が起こりやすくなり、またピッチングも起こりやすくなって、歯車疲労強度が低下した。   No. No. 33 has a small amount of Cr, and the hardenability is too low. For this reason, the hardened layer depth becomes too shallow and breakage at the tooth base is likely to occur, and pitching is also likely to occur, resulting in a reduction in gear fatigue strength.

No.34はCr量が高すぎるために、内部硬度が高くなりすぎている。そのため、歯元の靭性が劣化して曲げ折損しやすくなり、疲労強度が低下した。   No. Since the amount of Cr is too high, the internal hardness is too high. As a result, the toughness of the tooth root deteriorates and the bending breakage easily occurs, and the fatigue strength decreases.

No.35はMo量が高い。そのため焼入れ性が高すぎて、浸炭焼入れ時に割れを生じてしまい、疲労試験が出来なかった。   No. 35 has a high Mo content. Therefore, the hardenability was too high, and cracking occurred during carburizing and quenching, so that a fatigue test could not be performed.

No.36はAl量が低くすぎるために介在物起点による歯元および歯面での破壊が起こりやすくなり、歯車疲労強度が低下した。   No. In No. 36, since the Al amount was too low, destruction at the root and tooth surface due to inclusion starting points was likely to occur, and the gear fatigue strength was reduced.

No.37はAl量が高すぎるため、浸炭部のオーステナイト粒が粗大化してしまい、歯元および歯面での破壊が起こりやすくなり、歯車疲労強度が低下した。   No. In No. 37, since the amount of Al was too high, the austenite grains in the carburized portion were coarsened, and breakage at the tooth root and tooth surface was likely to occur, resulting in a reduction in gear fatigue strength.

No.38はV量が発明範囲より低く添加されており、そのため焼入れ性が向上せず、結晶粒も粗大化した。そのため歯元での曲げ折損および歯面でのピッチングが起こりやすくなり、歯車疲労強度が低下した。   No. No. 38 was added with a V amount lower than the range of the invention, so that the hardenability was not improved and the crystal grains were coarsened. Therefore, bending breakage at the tooth root and pitching at the tooth surface are likely to occur, and the gear fatigue strength is reduced.

No.39はNb量が本発明範囲よりも少ない。そのために結晶粒が粗大化し、歯元での曲げ折損が起こりやすくなり、歯車疲労強度が低下した。   No. No. 39 has a Nb content less than the range of the present invention. As a result, the crystal grains became coarse, bending breakage at the tooth roots easily occurred, and the gear fatigue strength decreased.

No.40はTi量が本発明範囲より少ない。そのために結晶粒が大きく、歯元での曲げ折損が起こりやすくなり、歯車疲労強度が低下した。   No. No. 40 has a Ti amount less than the range of the present invention. For this reason, the crystal grains are large, bending breakage at the tooth root is likely to occur, and the gear fatigue strength is reduced.

No.41はTi量が多すぎる。そのためTi系介在物起点での破壊が多発した。そのために歯元での曲げ折損および歯面でのピッチングが起こりやすくなり、歯車疲労強度が低下した。   No. 41 has too much Ti amount. Therefore, destruction at the Ti-based inclusion starting point occurred frequently. For this reason, bending breakage at the tooth root and pitching at the tooth surface are likely to occur, and the gear fatigue strength is reduced.

No.42はN量が低すぎる。そのために結晶粒の粗大化が起こり、歯元での曲げ折損が起こりやすくなり、歯車疲労強度が低下した。   No. 42 is too low in N content. As a result, coarsening of the crystal grains occurred, bending breakage at the tooth roots easily occurred, and the gear fatigue strength decreased.

No.43はN量が高すぎる。そのため、内部割れ起点での破壊が多く発生し、歯車疲労強度が低下した。   No. 43 is too high in N content. Therefore, many fractures occurred at the starting point of internal cracks, and the gear fatigue strength decreased.

No.44はB量が低すぎる。そのため焼入れ性が不足して有効硬化層深さが浅すぎる。そのため歯元曲げ応力による破壊が発生しやすくなり歯車疲労強度が低下した。   No. No. 44 has too low B amount. Therefore, hardenability is insufficient and the effective hardened layer depth is too shallow. As a result, fracture due to tooth root bending stress easily occurred and the gear fatigue strength decreased.

No.45、46はSi量が本発明範囲よりも低いために300℃焼戻し硬さと残留応力が低くなっている。そのため、(1)式を満足しておらず、ピッチングが発生しやすくなった。また、表面酸化が粒界に沿って深く進行したため、歯元曲げ応力による折損がしやすくなり、歯車疲労強度が低下した。   No. In Nos. 45 and 46, since the Si amount is lower than the range of the present invention, the tempering hardness at 300 ° C. and the residual stress are low. Therefore, the formula (1) is not satisfied, and pitching is likely to occur. Further, since the surface oxidation proceeded deeply along the grain boundary, it was easy to break due to the root bending stress, and the gear fatigue strength decreased.

No.25−2は本発明成分範囲内であるが、浸炭後の残留オーステナイト量が高くなりすぎており、そのためにショットピーニングをしても残留オーステナイト量が多すぎて表面硬さが低く、ピッチングが発生しやすくなり歯車疲労強度が低下した。   No. 25-2 is within the component range of the present invention, but the amount of retained austenite after carburizing is too high. Therefore, even after shot peening, the amount of retained austenite is too large, the surface hardness is low, and pitching occurs. The gear fatigue strength decreased.

No.25−3も同様に本発明成分範囲内であるが、ショットピーニングによる残留オーステナイトの加工誘起変態が不十分でショットピーニング後の残留オーステナイトが多く存在するために表面硬さが低く、ピッチングが発生しやすくなり歯車疲労強度が低下した。   No. 25-3 is also within the range of the composition of the present invention. However, since the processing-induced transformation of residual austenite by shot peening is insufficient and there is a lot of residual austenite after shot peening, surface hardness is low and pitching occurs. It became easier and the gear fatigue strength decreased.

No.25−4も本発明成分範囲内であるが、浸炭条件により表面硬さが低下している。そのためピッチングが発生しやすくなり歯車疲労強度が低下した。   No. 25-4 is also within the range of the present invention component, but the surface hardness is reduced by carburizing conditions. Therefore, pitching is likely to occur, and the gear fatigue strength is reduced.

No.25−5も本発明成分範囲内であるが、ショットピーニングによる残留応力付与が小さい。そのためピッチングが発生しやすくなり歯車疲労強度が低下した。   No. Although 25-5 is also within the range of the present invention, the application of residual stress by shot peening is small. Therefore, pitching is likely to occur, and the gear fatigue strength is reduced.

Figure 2012017499
Figure 2012017499

Figure 2012017499
Figure 2012017499

Claims (7)

成分組成が、C:0.15〜0.35mass%、Si:0.6〜1.1mass%、Mn:0.3〜1.3mass%、S:0.006mass%以上、Cr:0.7〜1.7mass%、Mo:0.4mass%以下、Al:0.005〜0.050mass%、N:0.0040〜0.0200mass%、残部Feおよび不可避的不純物の鋼材を、鍛造により、または鍛造後、機械加工により歯車形状とした後、浸炭焼入焼戻しまたは浸炭浸窒焼入焼戻しを行い、その後ショットピーニングを行って製造する歯車であって、
浸炭焼入焼戻しまたは浸炭浸窒焼入焼戻し後の、表面から30μm深さ位置までの残留オーステナイト組織が25体積%以上、58体積%以下で、ショットピーニング後には7体積%以下であり、その他はマルテンサイト組織を有し、前記浸炭焼入焼戻しまたは浸炭浸窒焼入焼戻しされた領域の結晶粒度が8.5以上で、且つショットピーニング後の歯面および歯元の表面の圧縮残留応力が1500MPa以上で、前記歯面および歯元の表面の硬さがビッカースで850以上で、さらに下記(1)式を満足する事を特徴とする疲労強度に優れた歯車。
(1.96γRCS−0.4γRSS+HVCS+σRSS)−(HV300℃+σR300℃)≦640
・・・(1)
但し、γRcs:浸炭表層部の残留オーステナイト、γRss:浸炭表層部のショットピーニング後の残留オーステナイト、HVcs:浸炭または浸炭浸窒後の歯面ビッカース硬さ、σRSS:ショットピーニング後の歯面残留応力(MPa)、HV300℃:300℃焼戻し後の歯面ビッカース硬さ、σR300℃:300℃焼戻し後の歯面圧縮残留応力(MPa)。
Component composition is C: 0.15-0.35 mass%, Si: 0.6-1.1 mass%, Mn: 0.3-1.3 mass%, S: 0.006 mass% or more, Cr: 0.7 ~ 1.7 mass%, Mo: 0.4 mass% or less, Al: 0.005-0.050 mass%, N: 0.0040-0.0200 mass%, balance Fe and inevitable impurities steel material by forging, or After forging, after making into a gear shape by machining, carburizing quenching tempering or carburizing nitrocarburizing quenching and tempering, then shot peening to produce the gear,
The residual austenite structure from the surface to the 30 μm depth position after carburizing and tempering or carburizing and nitriding quenching and tempering is 25% by volume or more and 58% by volume or less, and 7% by volume or less after shot peening. It has a martensitic structure, the grain size of the carburized tempered or carburized nitrocarburized quenched and tempered region is 8.5 or more, and the compressive residual stress on the tooth surface and root surface after shot peening is 1500 MPa. Thus, a gear having excellent fatigue strength, characterized in that the hardness of the tooth surface and the tooth root surface is Vickers of 850 or more and further satisfies the following formula (1).
(1.96γR CS −0.4γR SS + HV CS + σR SS ) − (HV 300 ° C. + σR 300 ° C. ) ≦ 640
... (1)
Where γRcs: residual austenite of the carburized surface layer portion, γRss: residual austenite after shot peening of the carburized surface layer portion, HVcs: tooth surface Vickers hardness after carburizing or carburizing, σR SS : tooth surface residual stress after shot peening (MPa), HV 300 ° C . : tooth surface Vickers hardness after tempering at 300 ° C., σR 300 ° C . : tooth surface compressive residual stress (MPa) after tempering at 300 ° C.
鋼材の成分組成として、更に、Nb:0.010〜0.060mass%、V:0.03〜0.20mass%、Ti:0.005〜0.200mass%の1種以上を含有することを特徴とする、請求項1記載の疲労強度に優れた歯車。   As a component composition of the steel material, Nb: 0.010 to 0.060 mass%, V: 0.03 to 0.20 mass%, and Ti: 0.005 to 0.200 mass% are further contained. The gear having excellent fatigue strength according to claim 1. 鋼材の成分組成として、更に、B:0.0005〜0.0050mass%を含有することを特徴とする、請求項1または2に記載の疲労強度に優れた歯車。   The gear having excellent fatigue strength according to claim 1 or 2, further comprising B: 0.0005 to 0.0050 mass% as a component composition of the steel material. 請求項1乃至3のいずれか一つに記載の成分組成の鋼材を冷間鍛造により、または熱間鍛造後の機械加工、冷間鍛造後の機械加工もしくは温間鍛造後の機械加工のいずれかで歯車形状とした後、900〜980℃で、浸炭処理、あるいは、浸炭浸窒および拡散処理を行い、その後、780〜880℃まで炉冷した後、60〜130℃の油へ投入して焼入れ後、150〜220℃に再加熱して焼戻しを行い、さらに歯車の歯面にショットピーニングを行うことを特徴とする疲労強度に優れた歯車の製造方法。   The steel material having the composition according to claim 1 is any one of cold forging, machining after hot forging, machining after cold forging, or machining after warm forging. After making into a gear shape, perform carburizing treatment, or carburizing and nitriding and diffusion treatment at 900 to 980 ° C., then cool to 780 to 880 ° C., then put into oil at 60 to 130 ° C. and quenching Thereafter, the method for producing a gear excellent in fatigue strength, characterized by re-heating to 150 to 220 ° C. and tempering, and further performing shot peening on the tooth surface of the gear. 前記ショットピーニングを粒径が0.05〜0.1mmΦの硬さ700HV以上の粒を用いて行うことを特徴とする請求項4記載の疲労強度に優れた歯車の製造方法。   5. The method for producing a gear with excellent fatigue strength according to claim 4, wherein the shot peening is performed using particles having a particle size of 0.05 to 0.1 mmΦ and a hardness of 700 HV or more. 前記ショットピーニングを粒径が0.4〜1.2mmΦの硬さ700HV以上の粒を用いて行った後、0.05〜0.1mmΦの硬さ700HV以上の粒を用いて再度行うことを特徴とする請求項4記載の疲労強度に優れた歯車の製造方法。   The shot peening is performed using particles having a particle diameter of 0.4 to 1.2 mmΦ and a hardness of 700 HV or more, and then performed again using particles having a hardness of 0.05 to 0.1 mmΦ and a hardness of 700 HV or more. The manufacturing method of the gear excellent in the fatigue strength of Claim 4. 前記ショットピーニングを粒径が0.4〜1.2mmΦの硬さ700HV以上の粒と、0.05〜0.1mmΦの硬さ700HV以上の粒を混合して行う事を特徴とする請求項4記載の疲労強度に優れた歯車の製造方法。   5. The shot peening is performed by mixing grains having a particle diameter of 0.4 to 1.2 mmΦ and a hardness of 700 HV or more and grains having a hardness of 0.05 to 0.1 mmΦ and a hardness of 700 HV or more. The manufacturing method of the gear excellent in the fatigue strength of description.
JP2010155457A 2010-07-08 2010-07-08 Gear having excellent fatigue strength and method for manufacturing the same Active JP5635316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010155457A JP5635316B2 (en) 2010-07-08 2010-07-08 Gear having excellent fatigue strength and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010155457A JP5635316B2 (en) 2010-07-08 2010-07-08 Gear having excellent fatigue strength and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2012017499A true JP2012017499A (en) 2012-01-26
JP5635316B2 JP5635316B2 (en) 2014-12-03

Family

ID=45602955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010155457A Active JP5635316B2 (en) 2010-07-08 2010-07-08 Gear having excellent fatigue strength and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5635316B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102978516A (en) * 2012-11-09 2013-03-20 宁波嘉达精密铸造有限公司 Excavator toothholder and preparation method thereof
CN102979884A (en) * 2012-11-23 2013-03-20 无锡威孚中意齿轮有限责任公司 Mine vehicle axle wheel reductor planetary gear and manufacture method thereof
CN103817498A (en) * 2014-03-18 2014-05-28 苏州市东吴滚针轴承有限公司 Machining method for bearing retainer window hole stamping die top
JP2014101565A (en) * 2012-11-22 2014-06-05 Jfe Bars & Shapes Corp Method of manufacturing case hardened steel and parts omissible of normalizing after hot-forging and excellent in high temperature carburizability
JP2014101566A (en) * 2012-11-22 2014-06-05 Jfe Bars & Shapes Corp Method of manufacturing case hardened steel and parts omissible of normalizing after hot-forging and excellent in high temperature carburizability
JP2015134947A (en) * 2014-01-17 2015-07-27 Jfe条鋼株式会社 Steel for gear excellent in fatigue resistance and gear
JP2015134949A (en) * 2014-01-17 2015-07-27 Jfe条鋼株式会社 Case hardened steel and machine structural component
WO2017170540A1 (en) * 2016-03-30 2017-10-05 株式会社神戸製鋼所 Carbonitrided component having excellent surface fatigue strength and bending fatigue strength, and method for manufacturing same
JP2018053337A (en) * 2016-09-30 2018-04-05 Jfeスチール株式会社 Carburized component excellent in wear resistance and fatigue characteristic, and process for producing the same
CN109271711A (en) * 2018-09-25 2019-01-25 重庆大学 A kind of comentation hardening gear finite element modeling method considering uneven characteristic
JP2020094231A (en) * 2018-12-11 2020-06-18 愛知製鋼株式会社 Manufacturing method of carburized steel part
JP2020164900A (en) * 2019-03-28 2020-10-08 Jfeスチール株式会社 Carburized member
CN113862445A (en) * 2021-09-02 2021-12-31 江麓机电集团有限公司 Hot working method of high-performance small-distortion carburized outer ring
CN115074631A (en) * 2022-06-30 2022-09-20 马鞍山钢铁股份有限公司 Nb-B microalloyed high-surface-hardness high-torque output gear steel, manufacturing method thereof, carburization method for producing gears and application
CN116103604A (en) * 2023-04-12 2023-05-12 常熟天地煤机装备有限公司 Carburized gear and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673523A (en) * 1992-06-24 1994-03-15 Kobe Steel Ltd High strength steel parts excellent in fatigue strength and production thereof
JPH11347944A (en) * 1998-06-02 1999-12-21 Fuji Kihan:Kk Surface treatment method for metal product
JP2002030344A (en) * 2000-07-19 2002-01-31 Isuzu Motors Ltd Method for modifying surface of alloy steel for machine structure, and surface modified material
JP2009249700A (en) * 2008-04-08 2009-10-29 Kobe Steel Ltd Steel component having excellent bending fatigue strength, and method for producing the same
JP2010053429A (en) * 2008-08-29 2010-03-11 Kobe Steel Ltd Gear excellent in high surface-pressure resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673523A (en) * 1992-06-24 1994-03-15 Kobe Steel Ltd High strength steel parts excellent in fatigue strength and production thereof
JPH11347944A (en) * 1998-06-02 1999-12-21 Fuji Kihan:Kk Surface treatment method for metal product
JP2002030344A (en) * 2000-07-19 2002-01-31 Isuzu Motors Ltd Method for modifying surface of alloy steel for machine structure, and surface modified material
JP2009249700A (en) * 2008-04-08 2009-10-29 Kobe Steel Ltd Steel component having excellent bending fatigue strength, and method for producing the same
JP2010053429A (en) * 2008-08-29 2010-03-11 Kobe Steel Ltd Gear excellent in high surface-pressure resistance

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102978516A (en) * 2012-11-09 2013-03-20 宁波嘉达精密铸造有限公司 Excavator toothholder and preparation method thereof
JP2014101565A (en) * 2012-11-22 2014-06-05 Jfe Bars & Shapes Corp Method of manufacturing case hardened steel and parts omissible of normalizing after hot-forging and excellent in high temperature carburizability
JP2014101566A (en) * 2012-11-22 2014-06-05 Jfe Bars & Shapes Corp Method of manufacturing case hardened steel and parts omissible of normalizing after hot-forging and excellent in high temperature carburizability
CN102979884A (en) * 2012-11-23 2013-03-20 无锡威孚中意齿轮有限责任公司 Mine vehicle axle wheel reductor planetary gear and manufacture method thereof
CN102979884B (en) * 2012-11-23 2015-04-29 无锡威孚中意齿轮有限责任公司 Manufacturing method for mine vehicle axle wheel reductor planetary gear
JP2015134947A (en) * 2014-01-17 2015-07-27 Jfe条鋼株式会社 Steel for gear excellent in fatigue resistance and gear
JP2015134949A (en) * 2014-01-17 2015-07-27 Jfe条鋼株式会社 Case hardened steel and machine structural component
CN103817498A (en) * 2014-03-18 2014-05-28 苏州市东吴滚针轴承有限公司 Machining method for bearing retainer window hole stamping die top
WO2017170540A1 (en) * 2016-03-30 2017-10-05 株式会社神戸製鋼所 Carbonitrided component having excellent surface fatigue strength and bending fatigue strength, and method for manufacturing same
JP2018053337A (en) * 2016-09-30 2018-04-05 Jfeスチール株式会社 Carburized component excellent in wear resistance and fatigue characteristic, and process for producing the same
CN109271711A (en) * 2018-09-25 2019-01-25 重庆大学 A kind of comentation hardening gear finite element modeling method considering uneven characteristic
CN109271711B (en) * 2018-09-25 2023-03-28 重庆大学 Finite element modeling method for carburizing and hardening gear considering uneven characteristics
JP2020094231A (en) * 2018-12-11 2020-06-18 愛知製鋼株式会社 Manufacturing method of carburized steel part
JP7230475B2 (en) 2018-12-11 2023-03-01 愛知製鋼株式会社 Manufacturing method for carburized steel parts
JP2020164900A (en) * 2019-03-28 2020-10-08 Jfeスチール株式会社 Carburized member
CN113862445A (en) * 2021-09-02 2021-12-31 江麓机电集团有限公司 Hot working method of high-performance small-distortion carburized outer ring
CN115074631A (en) * 2022-06-30 2022-09-20 马鞍山钢铁股份有限公司 Nb-B microalloyed high-surface-hardness high-torque output gear steel, manufacturing method thereof, carburization method for producing gears and application
CN115074631B (en) * 2022-06-30 2023-07-25 马鞍山钢铁股份有限公司 Nb-B microalloyed high surface hardness high torque output gear steel and manufacturing method thereof, carburization method for producing gear and application thereof
CN116103604A (en) * 2023-04-12 2023-05-12 常熟天地煤机装备有限公司 Carburized gear and preparation method thereof

Also Published As

Publication number Publication date
JP5635316B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5635316B2 (en) Gear having excellent fatigue strength and method for manufacturing the same
JP5530763B2 (en) Carburized steel parts with excellent low cycle bending fatigue strength
JP5129564B2 (en) Carburized induction hardening parts
WO2015098106A1 (en) Carburized-steel-component production method, and carburized steel component
JP5927868B2 (en) Carburizing steel excellent in cold forgeability and method for producing the same
WO2010137607A1 (en) Carburized component and manufacturing method therefor
JP3995904B2 (en) Method for producing inner ring for constant velocity joint excellent in workability and strength
US9890446B2 (en) Steel for induction hardening roughly shaped material for induction hardening
JP5872863B2 (en) Gear having excellent pitting resistance and method for producing the same
JP7152832B2 (en) machine parts
JP2009127095A (en) Case-hardening steel for power transmission component
JP5258458B2 (en) Gears with excellent surface pressure resistance
JP4938475B2 (en) Gear steel excellent in impact fatigue resistance and gears using the same
JP3606024B2 (en) Induction-hardened parts and manufacturing method thereof
JP3915710B2 (en) Carburized differential gear with excellent low cycle impact fatigue resistance
JP6601358B2 (en) Carburized parts and manufacturing method thereof
JP4798963B2 (en) High strength gear and manufacturing method thereof
WO2017170540A1 (en) Carbonitrided component having excellent surface fatigue strength and bending fatigue strength, and method for manufacturing same
JP2002121645A (en) Steel for gear having excellent dedendum bending fatigue characteristic and facial pressure fatigue characteristic and gear
JP4136656B2 (en) Carburizing steel and carburizing gear
JP5335523B2 (en) Gear shaft steel and gear shaft excellent in bending fatigue resistance and peeling resistance
JP5131770B2 (en) Non-tempered steel for soft nitriding
JP2007231411A (en) Method of manufacturing machine structure component
JP2016102253A (en) Steel component
JP2015127435A (en) Steel material having excellent flexural fatigue properties after carburization, production method thereof and carburization component

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120322

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141016

R150 Certificate of patent or registration of utility model

Ref document number: 5635316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250