JP2630601B2 - Manufacturing method of composite member - Google Patents

Manufacturing method of composite member

Info

Publication number
JP2630601B2
JP2630601B2 JP62252828A JP25282887A JP2630601B2 JP 2630601 B2 JP2630601 B2 JP 2630601B2 JP 62252828 A JP62252828 A JP 62252828A JP 25282887 A JP25282887 A JP 25282887A JP 2630601 B2 JP2630601 B2 JP 2630601B2
Authority
JP
Japan
Prior art keywords
molded body
sand core
molten metal
composite member
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62252828A
Other languages
Japanese (ja)
Other versions
JPH0195865A (en
Inventor
幸男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP62252828A priority Critical patent/JP2630601B2/en
Publication of JPH0195865A publication Critical patent/JPH0195865A/en
Application granted granted Critical
Publication of JP2630601B2 publication Critical patent/JP2630601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高圧鋳造により繊維成形体をマトリックス金
属で鋳ぐるんでなる複合部材の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a composite member formed by casting a fiber molded body with a matrix metal by high-pressure casting.

(従来の技術) 従来、上記複合部材において、ボロン、炭素、アルミ
ナ、炭化ケイ素、ステンレス鋼等の繊維を所定形状に形
成した繊維成形体(以下成形体という)をアルミ、アル
ミ合金等のマトリックス金属で鋳ぐるんだものが種々知
られている。そして、上記複合部材の製造方法として、
成形体を鋳造金型(以下金型という)内に設置し、該金
型内に溶融マトリックス金属(以下溶湯という)を導入
し、しかる後、金型に係合するプランジャによって溶湯
を加圧導入し、該加圧した状態で凝固させる高圧鋳造法
が種々提案されている(例、特公昭62−38412号公報、
特開昭60−114540号公報等参照)。
(Prior Art) Conventionally, in the above-mentioned composite member, a fiber formed body (hereinafter referred to as a formed body) in which fibers such as boron, carbon, alumina, silicon carbide, and stainless steel are formed into a predetermined shape is used as a matrix metal such as aluminum or an aluminum alloy. Various types of cast-in are known. And as a method of manufacturing the composite member,
The molded body is placed in a casting mold (hereinafter, referred to as a mold), a molten matrix metal (hereinafter, referred to as a molten metal) is introduced into the mold, and thereafter, the molten metal is introduced under pressure by a plunger engaged with the mold. Various high-pressure casting methods for solidifying in the pressurized state have been proposed (eg, Japanese Patent Publication No. Sho 62-38412,
See JP-A-60-114540.

ところで、上記高圧鋳造法により製造された複合部材
は、組織が微細化され、引け巣の発生が少なく、高い強
度を有するものである。しかしながら、溶湯が成形体に
充填される際、成形体に接触するはしから凝固するた
め、成形体の繊維間に充分に充填されず、ひいては成形
体に充填されたマトリックス金属の組織が比較的粗い状
態になり、必ずしも充分な強度の複合部材ご得られない
という問題点があった。
By the way, the composite member manufactured by the high-pressure casting method has a fine structure, less shrinkage cavities, and high strength. However, when the molten metal is filled into the molded body, the molten metal solidifies from the chopstick in contact with the molded body, so that it is not sufficiently filled between the fibers of the molded body, and the structure of the matrix metal filled in the molded body is relatively small. There is a problem in that the composite member becomes coarse, and a composite member having sufficient strength cannot always be obtained.

そこで、上記特公昭62−38412号公報等に開示されて
いるように、鋳造開始前に成形体を予熱することにより
鋳ぐるむことが行なわれている。ところが、成形体が予
熱されていることにより、溶湯は成形体の繊維間に充分
に充填されることになるが、成形体に充填された溶湯の
凝固速度が他の部分より遅くなるため、複合部材の境界
付近に引け巣が生じ易く、又成形体の部分にプランジャ
の圧力が充分に伝達されず、成形体に充填されたマトリ
ックス金属の組織が必ずしも充分に密な状態とはならな
いという問題点がある。特に、砂中子を用いて製造され
る複合部材については、上記傾向が顕著に現われてい
る。
Therefore, as disclosed in the above-mentioned Japanese Patent Publication No. 62-38412 and the like, casting is performed by preheating a compact before starting casting. However, since the molded body is preheated, the molten metal is sufficiently filled between the fibers of the molded body, but since the solidification speed of the molten metal filled in the molded body is lower than other parts, the composite is The problem is that shrinkage cavities are likely to occur near the boundary of the member, and the pressure of the plunger is not sufficiently transmitted to the molded body, and the structure of the matrix metal filled in the molded body is not always sufficiently dense. There is. In particular, for composite members manufactured using a sand core, the above tendency is remarkably exhibited.

例えば、ロータリーエンジンのロータは、三角形のお
むすび形で、軸受部内に偏心軸が係合され、軸受部の側
壁にリングギャが固定されるため、軸受部に摩擦力及び
衝撃力が大きく作用することから、軸受部が耐摩耗性及
び耐へたり性を有していることが必要とされている。そ
こで、例えば第10図に示すように、軸受部30を複合部材
で構成したローターRが種々試みられている。該ロータ
ーRは軸受部30及び冷却通路31等の空洞部を備えている
ことから、該空洞部を形成するために、上砂中子と下砂
中子とからなる砂中子を用いて高圧鋳造法により製造さ
れている。すなわち、ロータRは予熱された成形体を砂
中子に支持し、該砂中子を金型内に配置し、該金型に溶
湯を導入し、しかる後、プランジャを作動して溶湯を加
圧し、溶湯が凝固するプランジャを加圧保持することに
より製造されている。
For example, the rotor of a rotary engine has a triangular conical shape, an eccentric shaft is engaged in a bearing portion, and a ring gear is fixed to a side wall of the bearing portion. In addition, it is required that the bearing portion has wear resistance and sag resistance. Therefore, as shown in, for example, FIG. 10, various types of rotors R in which the bearing portion 30 is formed of a composite member have been tried. Since the rotor R is provided with a hollow portion such as the bearing portion 30 and the cooling passage 31, the high pressure is applied by using a sand core composed of an upper sand core and a lower sand core to form the hollow portion. It is manufactured by a casting method. That is, the rotor R supports the preheated molded body on the sand core, places the sand core in the mold, introduces the molten metal into the mold, and thereafter operates the plunger to add the molten metal. It is manufactured by pressing and holding a plunger in which the molten metal solidifies.

ところが、金型内の溶湯は、金型に接触する部分から
凝固し、上砂中子と下砂中子とで囲まれた部分、すなわ
ち成形体が配置された部分が後で凝固している。従っ
て、成形体の部分が凝固する際には、既にプランジャ側
の部分すなわち湯口側が凝固を完了しているため、成形
体の部分にはプランジャの加圧力が作用しない状態とな
り、マトリックス金属の密度が充分に密とはなり難い状
況である。また、成形体の部分と他の部分との間におい
て、凝固速度が異なっているため、複合部材として形成
された軸受部30の境界付近に引け巣が生じ易い状況であ
る。
However, the molten metal in the mold solidifies from the part in contact with the mold, and the part surrounded by the upper sand core and the lower sand core, that is, the part where the molded body is disposed is solidified later. . Therefore, when the portion of the compact is solidified, the plunger-side portion, that is, the sprue side, has already completed solidification, so that the pressing force of the plunger does not act on the portion of the compact, and the density of the matrix metal is reduced. It is difficult to be dense enough. In addition, since the solidification rate is different between the portion of the molded body and the other portion, shrinkage cavities are likely to occur near the boundary of the bearing portion 30 formed as a composite member.

以上のように、ローターRは、軸受部30が密度の高い
複合部材として形成されず、しかも軸受部の境界付近に
引け巣が生じ易いため、必ずしも充分な強度に形成され
難い状況である。
As described above, the rotor R is not necessarily formed with sufficient strength because the bearing portion 30 is not formed as a high-density composite member and shrinkage cavities are easily generated near the boundary of the bearing portion.

(発明の目的) 本発明は上記従来の状況に鑑みてなされたもので、そ
の目的は、マトリックス金属を成形体に充分稠密に充填
し、かつ引け巣の発生を抑制し得る複合部材の製造方法
を提供することにある。
(Object of the Invention) The present invention has been made in view of the above conventional situation, and an object of the present invention is to provide a method of manufacturing a composite member capable of sufficiently filling a compact with a matrix metal and suppressing the occurrence of shrinkage cavities. Is to provide.

(発明の構成) 本発明は、予熱された成形体を支持した砂中子を金型
内に配置し、該金型内に溶湯を加圧導入し、溶湯が凝固
するまで加圧状態に保持する高圧鋳造を行い、上記成形
体を鋳ぐるむことにより複合部材を製造する複合部材の
製造方法であって、成形体と砂中子との間に冷却部材を
配置することにより成形体に充填された溶湯の凝固速度
を高め、金型内の溶湯が全体として均一に凝固し得るよ
うに構成されている。
(Constitution of the Invention) According to the present invention, a sand core supporting a preheated molded body is placed in a mold, a molten metal is introduced into the mold by pressure, and the molten metal is kept in a pressurized state until the molten metal solidifies. A method of manufacturing a composite member by performing high-pressure casting to form a composite member by casting the above-mentioned molded body, and filling the molded body by disposing a cooling member between the molded body and a sand core. The solidification speed of the melt is increased so that the melt in the mold can be solidified uniformly as a whole.

すなわち、本発明の構成上の特徴は、成形体に充填さ
れた溶湯を成形体の予熱温度よりも低温に冷却する冷却
部材を成形体と砂中子との間に配置してなることにあ
る。
That is, a structural feature of the present invention resides in that a cooling member for cooling the molten metal filled in the molded body to a temperature lower than the preheating temperature of the molded body is disposed between the molded body and the sand core. .

(実施例) 本発明の実施例を図に基いて説明する。(Example) An example of the present invention will be described with reference to the drawings.

第1実施例 第1〜3図は、第1実施例の方法を実施するために用
いられる高圧鋳造装置の説明図である。
First Embodiment FIGS. 1 to 3 are explanatory views of a high-pressure casting apparatus used to carry out the method of the first embodiment.

図に示す高圧鋳造装置1は、第10図に示す従来公知の
ロータリーエンジンのローターRを製造する装置で、横
断面形状がロータRの外形に相当して形成された上型3
及び下型4と溶湯Wを収容する溶湯導入部5とが互いに
固定・分離可能に連結された金型2と、溶湯導入部5に
注入された溶湯Wを上下の型3,4内に加圧導入すると共
に加圧保持するプランジャ6と、ローターの軸受部30、
冷却材通路31等の空洞部を形成する砂中子7とを備えて
いる。
The high-pressure casting apparatus 1 shown in the figure is an apparatus for manufacturing a rotor R of a conventionally known rotary engine shown in FIG. 10, and an upper die 3 having a cross-sectional shape corresponding to the outer shape of the rotor R.
The mold 2 in which the lower mold 4 and the molten metal introduction part 5 for accommodating the molten metal W are fixedly and separably connected to each other, and the molten metal W injected into the molten metal introduction part 5 is added to the upper and lower dies 3 and 4. A plunger 6 for introducing and holding the pressure, and a bearing portion 30 for the rotor;
And a sand core 7 forming a hollow portion such as the coolant passage 31.

砂中子7は、ジルコサンド等のシェル砂により焼成さ
れた上砂中子8及び下砂中子12からなり、下砂中子12に
は冷却部材である冷し金14及び成形体15が装着されてい
る。上砂中子8は内部が円筒状の空洞部9で、外部には
ローターの冷却材通路31を形成する突出部10が形成さ
れ、各突出部10間の間隙11が空洞部9に連通して形成さ
れている。下砂中子12は、中心部にローターの軸受部30
を形成する突出部13が形成され、該突出部13には冷却部
材である円筒状の冷し金14が焼成する際に一体的に埋設
されている。
The sand core 7 is composed of an upper sand core 8 and a lower sand core 12 fired by shell sand such as zircon sand, and a cooling member 14 and a molded body 15 as cooling members are mounted on the lower sand core 12. Have been. The upper sand core 8 has a cylindrical cavity 9 inside, and a protrusion 10 forming a coolant passage 31 of the rotor is formed outside, and a gap 11 between the protrusions 10 communicates with the cavity 9. It is formed. The lower sand core 12 has a rotor bearing 30 in the center.
Is formed, and a cylindrical cooling member 14 as a cooling member is integrally embedded in the projecting portion 13 when firing.

冷し金14は、熱伝導性の良い鋼、銅等の熱良導体で形
成されており、又焼成された下砂中子12に装着して設け
られていてもよい。
The chill 14 is formed of a good heat conductor such as steel or copper having good heat conductivity, and may be provided to be attached to the fired lower sand core 12.

冷し金14に密着して装着される成形体15は、ロータの
軸受部30となる筒状部16と、軸受部30の側壁となる歯車
状突起部17とが一体的に形成された円筒状体で、ボロ
ン、炭素、アルミナ、炭化ケイ素、ステンレス鋼等の高
強度、高弾性を有する繊維からなり、プレス成型等によ
り形成されている。
The molded body 15 mounted in close contact with the cooling metal 14 is a cylindrical body in which a cylindrical portion 16 serving as a bearing portion 30 of the rotor and a gear-shaped projection 17 serving as a side wall of the bearing portion 30 are integrally formed. It is made of a fiber having high strength and high elasticity, such as boron, carbon, alumina, silicon carbide, and stainless steel, and is formed by press molding or the like.

なお、砂中子7は、第3図に示すように、予熱された
成形体15を冷し金14が埋設された下砂中子12に装着し、
しかる後、上砂中子8を装着することにより一体的に組
み立てられ、幅木(図示せず)により金型の下型4に固
定配置される。
As shown in FIG. 3, the sand core 7 is mounted on the lower sand core 12 in which the preheated molded body 15 is cooled and the gold 14 is buried, as shown in FIG.
Thereafter, the upper sand core 8 is mounted to be integrally assembled, and fixedly arranged on the lower mold 4 of the mold by a skirting board (not shown).

第1〜3図に示す高圧鋳造装置1は以上のように構成
されており、ローターRの製造は次のようにして行われ
る。
The high-pressure casting apparatus 1 shown in FIGS. 1 to 3 is configured as described above, and the manufacture of the rotor R is performed as follows.

鋳造するに際して、溶湯Wは融点以上の700℃前後に
溶融されたアルミ、アルミ合金等が用いられ、金型2が
100〜150℃に予熱され、成形体15が400〜500℃に予熱さ
れている。そして、成形体15を下砂中子12に装着して第
3図に示すように砂中子7を一体的に組立て、該砂中子
7を金型の上下の型3,4内に配置し、上記溶湯Wを溶湯
導入部5に注入し、しかる後、プランジャ6を上方に作
動して溶湯Wを上下の型3,4内に導入し、所定圧(例、4
00kg/cm2)で加圧保持することにより鋳造される。
At the time of casting, the molten metal W is made of aluminum, aluminum alloy, or the like, which is melted at about 700 ° C. or higher than the melting point.
The molded body 15 is preheated to 100 to 150 ° C, and the molded body 15 is preheated to 400 to 500 ° C. Then, the molded body 15 is mounted on the lower sand core 12, and the sand core 7 is integrally assembled as shown in FIG. 3, and the sand core 7 is disposed in the upper and lower dies 3, 4 of the mold. Then, the molten metal W is injected into the molten metal introducing section 5, and thereafter, the plunger 6 is operated upward to introduce the molten metal W into the upper and lower dies 3, 4, and a predetermined pressure (eg, 4)
It is cast by holding under pressure at 00 kg / cm 2 ).

その際、上下の型3,4内に導入された溶湯Wは、点線
矢印で示すように湯口18を通り上砂中子の間隙11を通過
して成形体15に充填されるが、成形体15が予熱されてい
るため、成形体15に接触したとしても直に凝固すること
がなく、繊維間を通り冷し金14の側まで確実に充填され
る。そして、冷し金14によって速やかに冷却され、冷し
金14の側から順次凝固が進行する。一方、プランジャ6
側すなわち湯口18側においては、金型2に接触している
ことから金型2により冷却され、金型2の側からも順次
凝固が進行する。
At this time, the molten metal W introduced into the upper and lower dies 3, 4 passes through the gate 18 as shown by the dotted arrow, passes through the gap 11 between the upper sand cores, and is filled into the molded body 15. Since the material 15 is preheated, it does not solidify directly even if it comes into contact with the molded body 15, so that it cools through the space between the fibers and is reliably filled to the gold 14 side. Then, it is rapidly cooled by the cooling metal 14, and solidification proceeds sequentially from the side of the cooling metal 14. On the other hand, plunger 6
The side, that is, the gate 18 side, is cooled by the mold 2 because it is in contact with the mold 2, and solidification also proceeds sequentially from the mold 2 side.

ところが、冷し金14による凝固速度の方が大きいこと
から、成形体15の側が湯口18側よりも早く凝固が進行
し、湯口18側が凝固を完了する以前に成形体15の側が凝
固を完了することになり、成形体15の側は所定圧の加圧
状態において凝固することになる。従って、成形体15に
はマトリックス金属が充分密な状態で充填された複合部
材として形成され、又複合部材の境界付近には引け巣の
発生がほとんどなく、強度の高いローターRが製造され
ることになる。
However, since the solidification rate by the chill 14 is higher, the solidification proceeds faster on the side of the molded body 15 than on the gate 18 side, and the side of the molded body 15 completes solidification before the gate 18 side completes solidification. That is, the side of the molded body 15 solidifies in a pressurized state of a predetermined pressure. Therefore, the molded body 15 is formed as a composite member filled with the matrix metal in a sufficiently dense state, and a high-strength rotor R having almost no shrinkage cavity near the boundary of the composite member is produced. become.

例えば、次の実施例において説明する。 For example, the following embodiment will be described.

実験例 砂中子7として平均粒度#80のジルコサンドを焼成し
たもの、冷し金14として鋼製(S45C)からなるもの、成
形体15として平均繊維径3μm、平均繊維長さ500μm
のアルミナ短繊維によりみかけ密度が0.33g/ccに形成さ
れたもの、マトリックス金属としてアルミ合金(JISAC8
A)等を用い、成形体15を500℃に予熱し、金型2を150
℃に予熱し、アルミ合金を720℃に溶融し、プランジャ
6の加圧力を400kg/cm2に設定して第10図に示すロータ
ーを鋳造した結果、冷し金を用いず上記と同一条件で製
造する従来法によるローターRに比べて、成形体15にア
ルミ合金が充填された複合部材は稠密度の高い組織とし
て形成され、又複合部材の境界付近は勿論のこと他の部
分においても従来法によるローターRのように引け巣の
発生がみられなかった。
Experimental Example A zircon sand having an average particle size of # 80 was baked as the sand core 7, a steel (S45C) was used as the chill 14, and an average fiber diameter 3 μm and an average fiber length 500 μm were used as the molded body 15.
Formed with an apparent density of 0.33 g / cc by short alumina alumina fibers, an aluminum alloy (JISAC8
A) and the like, preheat the molded body 15 to 500 ° C.
° C. preheated to melt the aluminum alloy 720 ° C., a pressure of the plunger 6 400 kg / cm 2 As a result of casting the rotor shown in FIG. 10 is set to, at the same conditions without the cooling block Compared with the conventional rotor R to be manufactured, the composite member in which the compact 15 is filled with the aluminum alloy is formed as a structure having a high density, and the conventional method is used not only near the boundary of the composite member but also in other parts. No shrinkage cavities were observed as in the case of rotor R.

第2実施例 第2実施例は、第1実施例における冷し金14にかえ
て、第4図に示すように表面に熱伝導性の悪い塗型層20
が極く薄く設けられた冷し金14を用い、第10図に示すロ
ーターRを製造する方法である。
Second Embodiment In the second embodiment, instead of the chill 14 in the first embodiment, as shown in FIG.
This is a method of manufacturing a rotor R shown in FIG. 10 using a chill 14 provided extremely thinly.

成形体15は、第4図に示すように冷し金14に装着され
るが、冷し金14との間には熱伝導性の悪い塗型層20が介
在しているため、冷し金14と直接接触することがない。
従って、成形体15は、装着後から鋳造開始時までの間に
おいて冷し金14により過度に冷却されないため、塗型層
20が設けられていない第1実施例の場合に比べて、予熱
温度を低く設定し得る。また、塗型層20は極く薄い層と
して形成されているため、成形体15に充填された溶湯の
凝固速度に大きな影響を与えることがなく、例えば、成
形体15を第1実施例の実験例におけるよりも低い400℃
に予熱して行なった結果、第1実施例と同様に稠密な組
織の複合部材を形成すると共に引け巣の発生がほとんど
みられなかった。
The molded body 15 is mounted on the cooling metal 14 as shown in FIG. 4, but since the mold layer 20 having poor heat conductivity is interposed between the cooling metal 14 and the cooling metal 14, No direct contact with 14.
Therefore, the molded body 15 is not excessively cooled by the cooling metal 14 from the time of mounting to the start of casting, so that the coating layer
The preheating temperature can be set lower than in the case of the first embodiment in which 20 is not provided. Further, since the coating layer 20 is formed as an extremely thin layer, it does not significantly affect the solidification speed of the molten metal filled in the molded body 15. 400 ℃ lower than in the example
As a result, a composite member having a dense structure was formed as in the first embodiment, and almost no shrinkage cavities were observed.

なお、塗型層20は、例えば重量比でSiO2を55.5%,Al2
O3を2.0%,Fe2O3を4.0%,CaOを0.5%,MgOを25.0%,ZrO2
を0.5%,Cを6.0%及びその他を6.5%とする成分をアル
コール溶液中に溶かしてコート液とし、浸漬法によって
冷し金14の表面に約200μmの厚さに形成されたもので
あってもよい。
The coating layer 20 is made of, for example, 55.5% SiO 2 and Al 2
O 3 2.0%, Fe 2 O 3 4.0%, CaO 0.5%, MgO 25.0%, ZrO 2
0.5%, C 6.0% and other 6.5% are dissolved in an alcohol solution to form a coating solution, cooled by a dipping method and formed on the surface of the gold 14 to a thickness of about 200 μm. Is also good.

第3実施例 第3実施例は、第1実施例の成形体15にかえて第5図
に示す成形体25を用い、該成形体25を第6図に示すよう
に下砂中子12に装着し、リングギャを取付ける軸受部の
側壁にのみ複合部材が形成されたロータ(図示せず)を
製造する方法である。
Third Embodiment In a third embodiment, a compact 25 shown in FIG. 5 is used in place of the compact 15 of the first embodiment, and the compact 25 is attached to the lower sand core 12 as shown in FIG. This is a method for manufacturing a rotor (not shown) in which the composite member is formed only on the side wall of the bearing portion to which the ring gear is mounted.

成形体25は、第1実施例におけると同様の材料からな
り、外周部が歯車状に形成された環状体で、鋳造時予熱
して第6図に示すように第1実施例におけると同様の冷
し金14に装着される。従って、成形体25に充填された溶
湯及び上砂中子の間隙11を通過して下砂中子の突出部13
側に導入された溶湯は、共に冷し金14に接触して冷却さ
れ、湯口18側の溶湯よりも早く凝固し、成形体25の部分
には稠密度の高い複合部材が形成され、又該複合部材の
境界付近に引け巣の発生がほとんどなく、強度の高いロ
ーターRが製造される。
The molded body 25 is made of the same material as that of the first embodiment, and is an annular body having an outer peripheral portion formed in a gear shape, which is preheated at the time of casting and is the same as that of the first embodiment as shown in FIG. Attached to the chill 14. Therefore, it passes through the gap 11 between the molten metal filled in the molded body 25 and the upper sand core, and passes through the protrusion 13 of the lower sand core.
The molten metal introduced to the side is cooled by contact with the cooling metal 14 and solidified earlier than the molten metal on the gate 18 side, and a composite member having a high density is formed in the portion of the molded body 25. A rotor R having high strength is produced with almost no shrinkage cavities near the boundary of the composite member.

第4実施例 第4実施例は、第3実施例の冷し金14にかえて第7図
に示すように成形体25が接触する部分に塗型層20が極く
薄く設けられた冷し金14を用い、第3実施例におけると
同様のローターを製造する方法である。
Fourth Embodiment A fourth embodiment is a cooling system in which the coating layer 20 is provided extremely thinly at the portion where the molded body 25 contacts as shown in FIG. 7 instead of the cooling system 14 of the third embodiment. This is a method for manufacturing a rotor similar to that in the third embodiment using gold 14.

成形体25と冷し金14との間には熱伝導性の悪い塗型層
20が介在しているため、成形体25の予熱温度を第3実施
例におけるよりも低く設定することができ、かつ塗型層
20が極く薄い層として形成されているため、成形体25に
充填された溶湯の凝固速度に大きな影響を与えることが
ないこと等は、第2実施例におけると同様である。
A coating layer having poor heat conductivity between the molded body 25 and the chill 14
Because of the interposition of 20, the preheating temperature of the molded body 25 can be set lower than in the third embodiment, and
Since 20 is formed as an extremely thin layer, the solidification speed of the molten metal filled in the compact 25 is not significantly affected, as in the second embodiment.

なお、冷し金14の表面に第2実施例と同様の浸漬法で
塗型層20を設ける場合には、成形体25が接触する表面の
みを粗くすることにより、該表面にのみ塗型層20が所定
の厚さに設けられる。
When the coating layer 20 is provided on the surface of the chill 14 by the same dipping method as in the second embodiment, only the surface in contact with the molded body 25 is roughened, so that the coating layer is formed only on the surface. 20 is provided at a predetermined thickness.

第5実施例 第5実施例は、第3実施例の冷し金14にかえて第8図
に示す冷し金14を用い、第3実施例におけると同様のロ
ーターを製造する方法である。
Fifth Embodiment The fifth embodiment is a method of manufacturing a rotor similar to that of the third embodiment by using the chill 14 shown in FIG. 8 instead of the chill 14 of the third embodiment.

第8図に示す冷し金14の一端外周面には、成形体25の
内周面と接触し、かつ成形体25の側面と係合するように
切欠21が形成されている。従って、成形体25は上記切欠
21に拘束されるため、鋳造時に溶湯Wにより上方に移動
されることがなく、複合部材を適切な位置に形成し得
る。
A notch 21 is formed on the outer peripheral surface of one end of the chill 14 shown in FIG. 8 so as to be in contact with the inner peripheral surface of the molded body 25 and engage with the side surface of the molded body 25. Therefore, the molded body 25 is notched
The composite member can be formed at an appropriate position without being moved upward by the molten metal W at the time of casting because it is restrained by the molten metal W.

第6実施例 第6実施例は、第3実施例の冷し金14にかえて第9図
に示す冷し金14を用い、第3実施例におけると同様のロ
ーターを製造する方法である。
Sixth Embodiment The sixth embodiment is a method of manufacturing a rotor similar to that of the third embodiment by using the chill 14 shown in FIG. 9 instead of the chill 14 of the third embodiment.

第9図に示す冷し金14の一端外周面には、成形体25の
内周面と接触せず、成形体25の側面と係合するように切
欠22が形成されている。従って、成形体25は上記切欠22
に拘束され、鋳造時に溶湯Wにより上方に移動させるこ
とがなく、又冷し金14の外周面との間隙23が断熱層とな
るため、予熱温度を第5実施例におけるよりも低く設定
し得る。
A notch 22 is formed on the outer peripheral surface of one end of the chill 14 shown in FIG. 9 so as not to contact the inner peripheral surface of the molded body 25 but to engage with the side surface of the molded body 25. Therefore, the molded body 25 is
The preheating temperature can be set lower than in the fifth embodiment because the gap is not moved upward by the molten metal W during casting and the gap 23 with the outer peripheral surface of the chill 14 becomes a heat insulating layer. .

なお、上記各実施例において、下砂中子12は、突出部
13に冷し金14が装着されていることにより、従来に比べ
て強度が高く、又シェル砂の使用量が減少し、かつ冷し
金14により熱伝達されるため、中子崩壊性が優れてい
る。
In each of the above embodiments, the lower sand core 12 is
13 is equipped with a chill 14 so that the strength is higher than before, the amount of shell sand used is reduced, and the heat is transferred by the chill 14, so the core disintegration is excellent. ing.

(発明の効果) 本発明によれば、砂中子と成形体との間に成形体に充
填された溶湯を成形体の予熱温度よりも低温に冷却する
冷却部材が設けられていることにより、成形体に充填さ
れた溶湯を湯口側におけるよりも早く凝固させ、溶湯全
体としての凝固速度の均一化することが可能になつた。
(Effects of the Invention) According to the present invention, by providing a cooling member for cooling the molten metal filled in the compact to a temperature lower than the preheating temperature of the compact, between the sand core and the compact. The molten metal filled in the compact is solidified earlier than on the gate side, and the solidification speed of the molten metal as a whole can be made uniform.

すなわち、成形体に充填された溶湯を実質的に加圧状
態で凝固させることができ、従来よりも成形体の部分に
おけるマトリツクス金属の密度を高めるとともに、成形
体の部分と他の部分との間における引け巣の発生を抑制
することができる。これにより、稠密度が高く、引け巣
がなく、強度の高い複合部材を製造することが可能にな
つた。
That is, the molten metal filled in the compact can be solidified substantially in a pressurized state, thereby increasing the density of the matrix metal in the portion of the compact as compared with the related art, and increasing the distance between the portion of the compact and other portions. Can suppress the occurrence of shrinkage cavities. Thereby, it became possible to manufacture a composite member having high density, no shrinkage cavities, and high strength.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例の方法に使用される高圧鋳
造装置の断面正面図、第2図は第1図のII−II線に沿っ
た断面図、第3図は本発明の第1実施例における砂中子
の組立図、第4図は本発明の第2実施例における砂中子
の要部断面図、第5図は本発明の第3〜6の実施例の方
法に使用される繊維成形体の斜視図、第6図は本発明の
第3実施例における砂中子の要部断面図、第7図は本発
明の第4実施例における砂中子の要部断面図、第8図は
本発明の第5実施例における砂中子の要部断面図、第9
図は本発明の第6実施例における砂中子の要部断面図、
第10図は従来のロータリーエンジンのローターを一部破
断して示す正面図である。 1……高圧鋳造装置、2……鋳造金型、6……プランジ
ャ、7……砂中子、8……上砂中子、12……下砂中子、
14……冷し金、15,25……繊維成形体、18……湯口、20
……塗型層、21,22……切欠、23……繊維成形体と冷し
金との間隙,R……ローター、W……溶融マトリックス金
属。
FIG. 1 is a sectional front view of a high-pressure casting apparatus used in the method of the first embodiment of the present invention, FIG. 2 is a sectional view taken along the line II-II of FIG. 1, and FIG. FIG. 4 is an assembled view of the sand core according to the first embodiment, FIG. 4 is a sectional view of a main part of the sand core according to the second embodiment of the present invention, and FIG. 5 is a method according to the third to sixth embodiments of the present invention. FIG. 6 is a perspective view of a fiber molded body to be used, FIG. 6 is a sectional view of a main part of a sand core according to a third embodiment of the present invention, and FIG. FIG. 8 is a sectional view of a main part of a sand core according to a fifth embodiment of the present invention.
The figure is a sectional view of a main part of a sand core according to a sixth embodiment of the present invention,
FIG. 10 is a front view showing a rotor of a conventional rotary engine, partially cut away. 1 high-pressure casting device, 2 casting mold, 6 plunger, 7 sand core, 8 upper sand core, 12 lower sand core,
14 …… Cold, 15,25 …… Fiber molded body, 18 …… Gate, 20
... coating layer, 21,22 ... notch, 23 ... gap between fiber molded body and chill, R ... rotor, W ... molten matrix metal.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】予熱された繊維成形体を支持した砂中子を
鋳造金型内に配置し、該鋳造金型内に溶融マトリツクス
金属を加圧導入し、該溶融マトリツクス金属が凝固する
まで加圧状態に保持する高圧鋳造を行い、上記繊維成形
体を鋳ぐるむことにより複合部材を製造する複合部材の
鋳造方法において、上記繊維成形体に充填された溶融マ
トリツクス金属を上記繊維成形体の予熱温度よりも低温
に冷却する冷却部材を上記繊維成形体と砂中子との間に
配置してなることを特徴とする複合部材の製造方法。
1. A sand core supporting a preheated fiber molded body is placed in a casting mold, a molten matrix metal is introduced under pressure into the casting mold, and the molten matrix metal is heated until the molten matrix metal solidifies. In a casting method of a composite member for producing a composite member by performing high-pressure casting while maintaining a pressure state and casting the fiber molded body, the molten matrix metal filled in the fiber molded body is preheated to the fiber molded body. A method for producing a composite member, wherein a cooling member for cooling to a temperature lower than the temperature is disposed between the fiber molded body and the sand core.
JP62252828A 1987-10-06 1987-10-06 Manufacturing method of composite member Expired - Lifetime JP2630601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62252828A JP2630601B2 (en) 1987-10-06 1987-10-06 Manufacturing method of composite member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62252828A JP2630601B2 (en) 1987-10-06 1987-10-06 Manufacturing method of composite member

Publications (2)

Publication Number Publication Date
JPH0195865A JPH0195865A (en) 1989-04-13
JP2630601B2 true JP2630601B2 (en) 1997-07-16

Family

ID=17242772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62252828A Expired - Lifetime JP2630601B2 (en) 1987-10-06 1987-10-06 Manufacturing method of composite member

Country Status (1)

Country Link
JP (1) JP2630601B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118237553B (en) * 2024-05-29 2024-09-17 阜新力达钢铁铸造有限公司 Positioning system and method for round sand core

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635042B2 (en) * 1986-02-20 1994-05-11 本田技研工業株式会社 Casting method for fiber-reinforced metal body

Also Published As

Publication number Publication date
JPH0195865A (en) 1989-04-13

Similar Documents

Publication Publication Date Title
JP3212245B2 (en) Casting method, casting apparatus and casting
JP3016364B2 (en) Method for manufacturing cylinder block of internal combustion engine
JP3392509B2 (en) Manufacturing method of amorphous alloy coated member
JP2630601B2 (en) Manufacturing method of composite member
AU633154B2 (en) Method of controlling the rate of heat extraction in mould casting
JP4136208B2 (en) Casting core and method for producing casting core
JP3126704B2 (en) Casting method for castings with composite materials cast
JPS6354466B2 (en)
JPH09155523A (en) Sleeve of die casting machine and production thereof
JPH0222128Y2 (en)
JP2697851B2 (en) Method of manufacturing fiber reinforced metal member
JPH05277699A (en) Method for casting thin casting
JPS6411384B2 (en)
JP3214657B2 (en) Piston for internal combustion engine and method of manufacturing the same
JPH06106327A (en) Casting method of thin casting
JPS6055211B2 (en) Horizontal continuous casting method
JP2734074B2 (en) Leachable core for resin molding
JP2001018037A (en) Method and apparatus for continuously casting complex layer cast slab
RU2015829C1 (en) Method for casting by forcing-out metal into mold with crystallization under pressure
JPH09314281A (en) Casting method and mold
SU450637A1 (en) Metal rod melted
JPH0622532Y2 (en) Mold for piston molding
JPH09248653A (en) Casting method using resin core
JP2653817B2 (en) Method for producing fiber composite member
JPS5935853A (en) Casting method of thin walled casting