JP2626837B2 - Manufacturing method of asymmetric hollow fiber carbon membrane - Google Patents

Manufacturing method of asymmetric hollow fiber carbon membrane

Info

Publication number
JP2626837B2
JP2626837B2 JP32095890A JP32095890A JP2626837B2 JP 2626837 B2 JP2626837 B2 JP 2626837B2 JP 32095890 A JP32095890 A JP 32095890A JP 32095890 A JP32095890 A JP 32095890A JP 2626837 B2 JP2626837 B2 JP 2626837B2
Authority
JP
Japan
Prior art keywords
hollow fiber
membrane
asymmetric
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32095890A
Other languages
Japanese (ja)
Other versions
JPH04193334A (en
Inventor
芳行 住山
喜博 楠木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP32095890A priority Critical patent/JP2626837B2/en
Priority to EP91303687A priority patent/EP0459623B1/en
Priority to DE69102350T priority patent/DE69102350T2/en
Publication of JPH04193334A publication Critical patent/JPH04193334A/en
Application granted granted Critical
Publication of JP2626837B2 publication Critical patent/JP2626837B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、芳香族ポリイミド製の非対称性中空糸膜
を、該中空糸膜の非対称性構造が維持される250〜495℃
の温度及び酸素含有ガス雰囲気で予備熱処理して熱安定
化し、次いで、500〜900℃の高温及び不活性ガス雰囲気
で部分的に炭化して、部分炭化された材料で形成されて
いる中空糸炭素膜中間体(炭素原子の含有率が70〜93重
量%とかなり高い特殊な材料で形成されている非対称性
中空糸炭素膜中間体)を形成し、さらに、該炭素膜中間
体を、300〜400℃の温度及び酸素含有ガスの雰囲気で、
後熱処理して、高いガス透過性能のガス分離用の非対称
性中空糸膜を製造する方法に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides an asymmetric hollow fiber membrane made of aromatic polyimide at 250 to 495 ° C. where the asymmetric structure of the hollow fiber membrane is maintained.
Pre-heat treatment in a gas atmosphere and an oxygen-containing gas atmosphere for thermal stabilization, and then partially carbonized in a high-temperature and inert gas atmosphere of 500 to 900 ° C. to form a hollow fiber carbon formed of a partially carbonized material. A membrane intermediate (asymmetric hollow fiber carbon membrane intermediate formed of a special material having a considerably high carbon atom content of 70 to 93% by weight) is formed. At a temperature of 400 ° C and an atmosphere of oxygen-containing gas,
The present invention relates to a method for producing an asymmetric hollow fiber membrane for gas separation having high gas permeability by post-heat treatment.

この発明の非対称性中空糸炭素膜は、極めて優れた耐
熱性、耐溶剤性を有していると共に、窒素と炭酸ガスと
の混合ガスから炭酸ガスを分離する場合などのガス分離
性能(特に炭酸ガスの透過速度が優れている)が高いレ
ベルのものである。
The asymmetric hollow fiber carbon membrane of the present invention has extremely excellent heat resistance and solvent resistance, and has a gas separation performance (particularly carbon dioxide) for separating carbon dioxide from a mixed gas of nitrogen and carbon dioxide. The gas permeation rate is excellent).

〔従来技術の説明〕 従来、透過選択性の高い非対称性のガス分離膜は、種
々のポリマーを素材とするものが知られている。それら
の中で、ビフェニルテトラカルボン酸二無水物と芳香族
ジアミンとを重合及びイミド化して得られた可溶性の芳
香族ポリイミドの溶液を使用して、湿式製膜法で製造さ
れた非対称性のガス分離膜(中空糸膜)は、特に、耐熱
性、耐薬品性が良好であるガス分離膜であることが、特
開昭61−133106号公報などにおいて、知られている。
[Description of Prior Art] Conventionally, as asymmetric gas separation membranes having high permeation selectivity, those using various polymers as materials are known. Among them, an asymmetric gas produced by a wet film-forming method using a solution of a soluble aromatic polyimide obtained by polymerizing and imidizing biphenyltetracarboxylic dianhydride and an aromatic diamine. It is known, for example, in JP-A-61-133106, that a separation membrane (hollow fiber membrane) is a gas separation membrane having good heat resistance and chemical resistance.

ところが、公知のガス分離膜は、分離すべき原料混合
ガス中に、ヘキサン、トルエンなどの有機溶剤などの不
純物を多く含む場合には、膜性能に悪影響を与えること
があり、前述の不純物を除去するという前処理を充分に
した後でないと、原料混合ガスの分離操作を行うことが
できなかったのである。
However, when a known gas separation membrane contains a large amount of impurities such as an organic solvent such as hexane and toluene in a raw material mixed gas to be separated, the gas performance may have an adverse effect on membrane performance, and the aforementioned impurities may be removed. Without sufficient pretreatment, the separation operation of the raw material mixed gas could not be performed.

最近、例えば、特開昭60−179102号公報、特開平−1
−221518号公報などにおいて、有機ポリマー製の膜を極
めて高温で熱処理して多孔質有機膜を炭化して、耐薬品
性の優れたガス分離膜用の炭素膜を製造する方法、およ
び、それらの方法で得られた炭素膜(中空糸炭素膜)に
ついて、提案された。
Recently, for example, JP-A-60-179102 and JP-A-1
-221518 and the like, a method of producing a carbon membrane for a gas separation membrane with excellent chemical resistance by heat treating an organic polymer membrane at an extremely high temperature and carbonizing the porous organic membrane, and A carbon membrane (hollow fiber carbon membrane) obtained by the method was proposed.

しかし、特開昭60−179102号公報には、具体的には、
ポリアクリルニトリル製の膜を、1200℃付近の温度で熱
処理して充分な炭素化を行って、膜全体に微細孔を形成
させた分離性炭素膜を製造する方法が記載されており、
前述の製法によって得られたガス分離炭素膜は、実質的
に多孔質ガス分離膜に関するものであるので、その分離
用炭素膜は、透過速度が比較的大きいのであるが、選択
透過性が非常に小さいものであり、実用的なガス分離膜
とはならないものであった。
However, JP-A-60-179102 specifically describes that
A method of producing a separable carbon membrane in which a polyacrylonitrile membrane is heat-treated at a temperature around 1200 ° C. and sufficiently carbonized to form micropores throughout the membrane,
Since the gas separation carbon membrane obtained by the above-described production method is substantially related to a porous gas separation membrane, the separation carbon membrane has a relatively high permeation rate, but has a very low permselectivity. It was small and did not become a practical gas separation membrane.

また、特開平1−221518号公報には、概略、ポリアク
リルニトリル、セルロース、ポリビニルアルコールなど
の有機ポリマーからなる多孔質中空糸膜を、架橋、酸化
を施した後、不活性雰囲気、600〜1000℃の温度で炭素
化し、さらに、水蒸気、炭酸ガス等の酸化性ガスを含む
雰囲気で賦活性化処理をして、細孔径10〜50Åの多孔質
構造を有する中空糸炭素膜を製造し、最後に、前記中空
糸炭素膜を、必要であれば熱分解性炭化水素に浸漬した
後、不活性ガス中で900℃以上の温度で1分間以上熱処
理して細孔を熱収縮させて、特殊な中空糸炭素膜を製造
する方法、並びに、前述のようにして製造された特殊な
中空糸炭素膜が記載されている。
Further, Japanese Patent Application Laid-Open No. Hei 1-222118 discloses that, in general, a porous hollow fiber membrane made of an organic polymer such as polyacrylonitrile, cellulose, and polyvinyl alcohol is crosslinked and oxidized, and then subjected to an inert atmosphere at 600 to 1000 Carbonization at a temperature of ° C., and further, an activation treatment in an atmosphere containing an oxidizing gas such as water vapor or carbon dioxide gas to produce a hollow fiber carbon membrane having a porous structure with a pore diameter of 10 to 50 °, and finally Then, after immersing the hollow fiber carbon membrane in a pyrolytic hydrocarbon, if necessary, heat-treating in an inert gas at a temperature of 900 ° C. or more for 1 minute or more to thermally shrink the pores, A method for producing a hollow fiber carbon membrane and a special hollow fiber carbon membrane produced as described above are described.

前記の公知の製法は、前述のようにして有機ポリマー
製の中空糸膜から製造される細孔径10〜50Åの多孔質構
造を有する中空糸炭素膜を準備して使用することが必要
であり、その製造が極めて複雑であり、その後の細孔の
収縮のための熱処理も簡単ではないと共に、最初の有機
ポリマー製の中空糸膜に対する中空糸炭素膜の収率が30
%以下であり、極めて生産性の悪いものであった。
The above-described known production method requires preparing and using a hollow fiber carbon membrane having a porous structure with a pore diameter of 10 to 50 ° produced from the organic polymer hollow fiber membrane as described above, The production is extremely complicated, the subsequent heat treatment for shrinking the pores is not easy, and the yield of the hollow fiber carbon membrane with respect to the first organic polymer hollow fiber membrane is 30%.
% Or less, which was extremely poor in productivity.

〔解決しようとする問題点〕[Problem to be solved]

この発明は、公知の芳香族ポリイミドからなるガス分
離膜と比較して、実質的に同程度のガス透過速度及び高
い選択透過性(高い分離度)を有していると共に、極め
て優れた耐溶剤性及び耐熱性を有している非対称性中空
糸炭素膜を、工業的に容易に製造する方法を提供するこ
とを目的とするものである。
The present invention has substantially the same gas permeation rate and high permselectivity (high separation degree) as compared with a known gas separation membrane made of an aromatic polyimide, and has extremely excellent solvent resistance. It is an object of the present invention to provide a method for industrially easily producing an asymmetric hollow fiber carbon membrane having heat resistance and heat resistance.

〔問題点を解決するための手段〕[Means for solving the problem]

この発明は、芳香族ポリイミドからなる非対称性中空
糸膜を、250〜495℃の範囲内の温度であってしかも該中
空糸膜の非対称性構造が維持される温度、および、酸素
含有ガスの雰囲気で、予備熱処理して熱安定化し、次い
で、その予備熱処理された中空糸膜を、500〜900℃でお
よび不活性ガスの雰囲気下で部分的に炭素化処理して、
中空糸炭素膜中間体を形成し、さらに、該炭素膜中間体
を、250〜450℃の温度であって酸素含有ガスの雰囲気
で、後熱処理することを特徴とする非対称性中空糸炭素
膜の製法に関する。
The present invention provides an asymmetric hollow fiber membrane made of an aromatic polyimide at a temperature in the range of 250 to 495 ° C. and at which the asymmetric structure of the hollow fiber membrane is maintained, and an atmosphere of an oxygen-containing gas. And heat-stabilize by pre-heat treatment, and then partially carbonize the pre-heat-treated hollow fiber membrane at 500 to 900 ° C and under an atmosphere of inert gas.
Forming a hollow fiber carbon membrane intermediate, and further comprising post-heating the carbon membrane intermediate in an atmosphere of oxygen-containing gas at a temperature of 250 to 450 ° C. Regarding the manufacturing method.

以下、この発明の製法の各要件についてさらに詳しく
説明する。
Hereinafter, each requirement of the production method of the present invention will be described in more detail.

この発明の非対称性中空糸炭素膜の製法では、例え
ば、 (a) 芳香族テトラカルボン酸成分と芳香族ジアミン
成分とを重合及びイミド化して得られる芳香族ポリイミ
ド溶液から湿式製膜法などで製造された非対称性中空糸
膜を、 250〜495℃(特に260〜450℃)の範囲内の温度であっ
てしかも該中空糸膜の非対称性構造が維持される温度、 酸素含有ガス(例えば空気等)の雰囲気、 0.1〜100時間(特に0.3〜50時間)、予備熱処理して
熱安定化し、次いで、 (b) その予備熱処理された芳香族ポリイミド製の非
対称性中空糸膜を、 500〜900℃(特に550〜800℃)の温度、 不活性ガスの雰囲気下、 0.5秒間〜100分間(特に1秒間〜50分間)、 部分的に炭素化処理して、部分的に炭素化されてい
て、緻密層と多孔質層とを一体に有する中空糸炭素膜中
間体を形成し、さらに、 (c) 該炭素膜中間体を、 250〜450℃(特に300〜400℃)の温度であって、 酸素含有ガスの雰囲気、 0.2〜50時間、特に0.5〜10時間、後熱処理して、 非対称性中空糸炭素膜を製造する方法を好適に挙げる
ことができる。
In the method for producing an asymmetric hollow fiber carbon membrane of the present invention, for example, (a) a method of producing a film from an aromatic polyimide solution obtained by polymerizing and imidizing an aromatic tetracarboxylic acid component and an aromatic diamine component by a wet film forming method or the like; The obtained asymmetric hollow fiber membrane is heated at a temperature within the range of 250 to 495 ° C. (particularly 260 to 450 ° C.) and at a temperature at which the asymmetric structure of the hollow fiber membrane is maintained. ) Atmosphere, 0.1-100 hours (especially 0.3-50 hours), pre-heat treatment and heat stabilization, then (b) the pre-heat-treated aromatic polyimide asymmetric hollow fiber membrane at 500-900 ° C (Especially 550-800 ° C), in an atmosphere of inert gas for 0.5 seconds to 100 minutes (especially 1 second to 50 minutes), partially carbonized, partially carbonized, dense Hollow fiber carbon membrane intermediate having a layer and a porous layer integrally (C) reacting the carbon film intermediate at a temperature of 250 to 450 ° C. (particularly 300 to 400 ° C.) in an oxygen-containing gas atmosphere for 0.2 to 50 hours, especially 0.5 to 10 hours; A method for producing an asymmetric hollow fiber carbon membrane by heat treatment can be suitably used.

前記の芳香族ポリイミドからなる非対称性中空糸膜
は、特開昭60−150806号公報、特開昭61−133106号公報
に示されているような方法などで製造された単一構造
(表面に緻密層と内部に多孔質層とからなる単一非対称
性構造)の非対称性中空糸膜、あるいは、特開平2−16
9019号公報、特願平1−70446号明細書などに記載され
ている方法などで製造された二層押出構造(外層が表面
の緻密層と内部の多孔質層とからなり、内層が多孔質層
からなる二層押出構造を有する中空糸膜である)の非対
称性中空糸膜を好適に挙げることができる。
The above-mentioned asymmetric hollow fiber membrane made of an aromatic polyimide has a single structure (the surface of which is manufactured by the method shown in JP-A-60-150806 and JP-A-61-133106). An asymmetric hollow fiber membrane having a single asymmetric structure comprising a dense layer and a porous layer therein, or JP-A No. 2-16
No. 9019, Japanese Patent Application No. 1-70446, etc., a two-layer extruded structure (the outer layer is composed of a dense layer on the surface and the inner porous layer, and the inner layer is porous (A hollow fiber membrane having a two-layer extrusion structure composed of two layers).

前記の単一膜構造の非対称性中空糸膜は、例えば、ビ
フェニルテトラカルボン酸二無水物などの芳香族テトラ
カルボン酸成分と、ジアミノジメチルジフェニレンスル
ホン、ジアミノジフェニルメタン、4,4′−ジアミノジ
フェニルエーテルなどの芳香族ジアミン成分とを、略等
モル、パラクロルフェノールなどのフェノール系溶媒中
で、重合およびイミド化して、可溶性の芳香族ポリイミ
ドの溶液を調製し、その溶液を製膜用ドープ液として使
用して、チューブ・イン・オリフィスタイプの紡糸用ノ
ズルから、窒素雰囲気中に中空糸状に押し出し、次い
で、エタノール水溶液からなる凝固液中で凝固させて、
非対称性構造の中空糸膜となし、最後に、その中空糸膜
をエタノール洗浄してフェノール系溶媒を抽出して除去
し、イソオクタン溶剤によって前記エタノールの置換を
行った後、乾燥し、さらに熱処理して、好適なガス透過
速度及び選択透過性を有する非対称性中空糸膜(単一構
造)を製造することができる。
The asymmetric hollow fiber membrane having the single membrane structure includes, for example, an aromatic tetracarboxylic acid component such as biphenyltetracarboxylic dianhydride, diaminodimethyldiphenylene sulfone, diaminodiphenylmethane, and 4,4′-diaminodiphenyl ether. The aromatic diamine component is polymerized and imidized in a substantially equimolar phenolic solvent such as parachlorophenol to prepare a solution of a soluble aromatic polyimide, and the solution is used as a dope for film formation. Then, from a tube-in-orifice type spinning nozzle, extruded into a hollow fiber shape into a nitrogen atmosphere, and then coagulated in a coagulating liquid composed of an aqueous ethanol solution,
A hollow fiber membrane having an asymmetric structure was formed, and finally, the hollow fiber membrane was washed with ethanol to extract and remove the phenolic solvent, and the ethanol was replaced with an isooctane solvent, followed by drying and further heat treatment. Thus, an asymmetric hollow fiber membrane (single structure) having a suitable gas permeation rate and permselectivity can be produced.

また、二層押出構造の非対称性中空糸膜は、前述の同
様にして2種の可溶性芳香族ポリイミド溶液を調製し
て、それらの溶液を使用して、二層押し出しの可能な二
層押出紡糸用ノズルを使用するほかは、前述の単一構造
の中空糸膜の製法と実質的に同様にして、非対称性の二
層押出中空糸膜を製造することができる。
The asymmetric hollow fiber membrane having a two-layer extruded structure is prepared by preparing two types of soluble aromatic polyimide solutions in the same manner as described above, and using these solutions to form a two-layer extrudable spinning spun. An asymmetric two-layer extruded hollow fiber membrane can be produced in substantially the same manner as the above-described method for producing a hollow fiber membrane having a single structure except that a nozzle for use is used.

この発明の製法に使用される芳香族ポリイミド製の非
対称性中空糸膜は、水素ガスの透過速度(P H2、50℃)
が1×10-5〜100×10-5cm3/cm2・sec・cmHg程度であっ
て、水素ガスの透過速度(P H2)とメタンガスの透過速
度(P CH4、50℃)との比(P H2/P CH4)で示される選
択透過性(分離度)が30〜250程度であり、さらに、厚
さ0.001〜5μm程度の緻密層(表面層)と厚さ10〜200
0μm程度の多孔質層(内部層)とが連続して一体とな
っている非対称性構造が形成されている中空糸膜である
ことが、この発明の製法において最終的に得られる非対
称性中空糸炭素膜が充分な非対称性構造を有するように
するため、また、そのガス分離性能を高いレベルとする
上で、特に好ましい。
The asymmetric hollow fiber membrane made of aromatic polyimide used in the production method of the present invention has a hydrogen gas permeation rate (PH 2 , 50 ° C.)
Is about 1 × 10 −5 to 100 × 10 −5 cm 3 / cm 2 · sec · cmHg, and the difference between the permeation rate of hydrogen gas (PH 2 ) and the permeation rate of methane gas (P CH 4 , 50 ° C.) The permselectivity (degree of separation) represented by the ratio (PH 2 / P CH 4 ) is about 30 to 250, and a dense layer (surface layer) having a thickness of about 0.001 to 5 μm and a thickness of 10 to 200
The asymmetric hollow fiber finally obtained by the production method of the present invention is a hollow fiber membrane having an asymmetric structure in which a porous layer (inner layer) of about 0 μm is continuously and integrally formed. It is particularly preferable that the carbon membrane has a sufficient asymmetric structure and that the gas separation performance is at a high level.

この発明の製法では、前述の酸素含有ガス中での予備
熱処理(熱安定化処理)は、次の炭素化処理工程におい
て前記の中空糸膜の非対称性構造が維持できるように、
前記中空糸膜を形成している芳香族ポリイミドを一部架
橋および/または一部環化させ、あるいは不融化または
不溶化して、熱的に安定である芳香族ポリイミドとする
ために、250〜495℃の範囲内の温度であって、前記中空
糸膜の非対称性構造が維持される温度で行われる。
In the production method of the present invention, the preliminary heat treatment (thermal stabilization treatment) in the oxygen-containing gas is performed so that the asymmetric structure of the hollow fiber membrane can be maintained in the next carbonization treatment step.
In order to partially cross-link and / or partially cyclize the aromatic polyimide forming the hollow fiber membrane, or to insolubilize or insolubilize the aromatic polyimide, a thermally stable aromatic polyimide is used. The temperature is in the range of ° C., and the temperature is such that the asymmetric structure of the hollow fiber membrane is maintained.

前記の中空糸膜の非対称性構造が維持される温度と
は、例えば、該ポリイミドが後述する測定法で測定され
た軟化温度を有する場合には、該ポリイミドの軟化温度
よりも、5℃以上低い温度、特に10℃以上低い温度であ
り、また、該ポリイミドが実質的に軟化温度又は二次転
移温度を有していない場合には、その該ポリイミド製中
空糸膜の非対称性構造が電子顕微鏡などで観察して大幅
に変形したりしない温度、多孔質層の平均孔径が大幅に
(50%以下に)縮小したりしない温度であればよい。
The temperature at which the asymmetric structure of the hollow fiber membrane is maintained is, for example, when the polyimide has a softening temperature measured by a measurement method described later, 5 ° C. or more lower than the softening temperature of the polyimide. Temperature, especially 10 ° C. or lower, and when the polyimide has substantially no softening temperature or second-order transition temperature, the asymmetric structure of the polyimide hollow fiber membrane may be an electron microscope or the like. Any temperature may be used as long as it is a temperature at which no significant deformation is observed as observed in and a temperature at which the average pore diameter of the porous layer is not significantly reduced (to 50% or less).

前記の予備熱処理は、前述の温度範囲内であれば、例
えば、280℃の付近の温度から450℃の付近の高温まで徐
々に昇温させながら行うことによる予備熱処理、あるい
は、250〜350℃の温度で5〜100時間(好ましくは10〜5
0時間)の熱処理し、次いで、350〜490℃の温度で10〜3
00分間(好ましくは20〜200分間)の熱処理するという
ように、複数段階で行う予備熱処理であってもよい。
The preliminary heat treatment is performed within the above-mentioned temperature range, for example, by performing a preliminary heat treatment by gradually increasing the temperature from a temperature around 280 ° C. to a high temperature around 450 ° C., or 250 to 350 ° C. 5-100 hours at temperature (preferably 10-5
0 hours), and then at a temperature of 350-490 ° C for 10-3
Preliminary heat treatment performed in a plurality of stages, such as heat treatment for 00 minutes (preferably 20 to 200 minutes) may be used.

前記の非対称性中空糸膜の予備熱処理は、前記芳香族
ポリイミド製の中空糸膜(長尺の中空糸)を高温の加熱
炉に連続的に供給して連続的に行うことができ、また、
複数本の非対称性中空糸膜の糸束を形成して、その糸束
を適当な温度の加熱炉内に配置してある時間加熱炉内に
放置してバッチ的に熱処理を行うこともできる。
The preliminary heat treatment of the asymmetric hollow fiber membrane can be performed continuously by continuously supplying the aromatic polyimide hollow fiber membrane (long hollow fiber) to a high-temperature heating furnace,
It is also possible to form a bundle of a plurality of asymmetric hollow fiber membranes and leave the bundle in a heating furnace at an appropriate temperature for a certain period of time to perform batch heat treatment.

前記の予備熱化処理で使用する酸素含有気体として
は、例えば、空気、又は、酸素と窒素等の他の不活性ガ
スとの種々の配合割合(特に、酸素含有割合;5〜30容量
%)の混合ガスなどを好げることができる。
As the oxygen-containing gas used in the preheating treatment, for example, air or various mixing ratios of oxygen and other inert gas such as nitrogen (particularly, oxygen content; 5 to 30% by volume) And the like.

この発明の製法では、前述の酸素含有ガス中での予備
熱処理を行わないと、その後の工程の炭素化工程で、中
空糸膜の非対称性構造が損なわれるので適当ではなく、
また、予備熱処理を余りに高い温度で行うと、芳香族ポ
リイミド製の非対称性中空糸膜がその非対称性構造を最
適に維持できなくなり、非対称性構造が損なわれたり、
著しくガス分離性能の劣った構造になったりすることが
あり、最終的な非対称性中空糸炭素膜が低い性能のガス
分離膜となるので適当ではない。
In the production method of the present invention, if the preliminary heat treatment in the oxygen-containing gas is not performed, the asymmetric structure of the hollow fiber membrane is impaired in the subsequent carbonization step.
Also, if the pre-heat treatment is performed at an excessively high temperature, the asymmetric hollow fiber membrane made of aromatic polyimide cannot maintain its asymmetric structure optimally, or the asymmetric structure is damaged,
In some cases, the structure of the gas separation performance may be remarkably inferior, and the final asymmetric hollow fiber carbon membrane becomes a low performance gas separation membrane, which is not suitable.

この発明の製法では、前述のようにして、予備熱処理
された芳香族ポリイミド製の非対称性中空糸膜は、例え
ば、窒素ガス、ヘリウムガス、アルゴンガスなどの不活
性気体の雰囲気中で、500〜900℃(好ましくは550〜800
℃の範囲内の温度で、0.5秒間〜100分間(特に1秒間〜
50分間)、部分的に炭素化処理をすることが好ましい。
In the manufacturing method of the present invention, as described above, the preliminarily heat-treated aromatic polyimide asymmetric hollow fiber membrane is, for example, nitrogen gas, helium gas, in an inert gas atmosphere such as argon gas, 500 to 900 ° C (preferably 550-800
For a period of 0.5 seconds to 100 minutes (particularly 1 second to
(50 minutes), it is preferable to partially perform carbonization treatment.

前述の部分的な炭素化処理は、前述の温度範囲内であ
れば、例えば、500℃〜600℃の付近の温度から700℃〜8
00℃の付近の高温まで昇温させながら約10秒間〜60分間
で行うことによる高熱処理、あるいは、500〜550℃の温
度付近で0.5〜60分間(好ましくは1〜30分間)の高熱
処理し、次いで、600〜800℃の温度付近で0.5秒間〜20
分間(好ましくは1秒間〜10分間)の高熱処理をすると
いうように複数段階で行う高熱処理であってもよい。
The above-mentioned partial carbonization treatment is performed within the above-mentioned temperature range, for example, from a temperature near 500 ° C. to 600 ° C. to 700 ° C. to 8 ° C.
High heat treatment by heating for about 10 seconds to 60 minutes while raising the temperature to a high temperature near 00 ° C, or high heat treatment for about 0.5 to 60 minutes (preferably 1 to 30 minutes) near a temperature of 500 to 550 ° C , Then at temperatures around 600-800 ° C for 0.5 seconds to 20
High heat treatment may be performed in multiple stages, such as high heat treatment for a minute (preferably 1 second to 10 minutes).

前記の予備加熱された芳香族ポリイミド製の非対称性
中空糸膜の炭素化処理は、前述の予備加熱と同様に、前
記中空糸膜(長尺の中空糸)を高温の加熱炉に連続的に
供給して連続的に行うことができ、また、複数本の非対
称性中空糸膜の糸束を形成して、その糸束を適当な温度
の加熱炉内に配置してある時間加熱炉内に放置してバッ
チ的に高熱処理(炭素化)を行うこともできる。
The carbonization of the preheated asymmetric hollow fiber membrane made of aromatic polyimide is performed by continuously feeding the hollow fiber membrane (long hollow fiber) to a high-temperature heating furnace, similarly to the preheating described above. It can be performed continuously by feeding, and a plurality of asymmetric hollow fiber membrane yarn bundles are formed, and the yarn bundles are placed in a heating furnace at an appropriate temperature for a certain time in a heating furnace. High heat treatment (carbonization) can be performed in a batch by leaving the mixture.

前記の中空糸炭素膜中間体は、水素の透過速度(P
H2、50℃)が3×10-3〜8×10-5cm3/cm2・sec・cmHg程
度であって、水素の透過速度とメタンの透過速度との比
(P H2/P CH4、50℃)で示される選択透過性(分離度)
が100以上、特に200〜800程度であることが好ましい。
The hollow fiber carbon membrane intermediate has a hydrogen permeation rate (P
H 2 , 50 ° C.) is about 3 × 10 −3 to 8 × 10 −5 cm 3 / cm 2 · sec · cmHg, and the ratio of the permeation rate of hydrogen to the permeation rate of methane (PH 2 / P CH 4 , Permselectivity (resolution)
Is preferably 100 or more, especially about 200 to 800.

前記の中空糸炭素膜中間体は、前記の選択透過性(P
H2/P CH4)が余りに低いと、該炭素膜中間体をさらに後
熱処理を行っても、炭酸ガスの透過速度(P CO2)およ
び選択透過性が著しく低下することがあるので望ましく
はない。
The hollow fiber carbon membrane intermediate described above is selectively permeated (P
If H 2 / P CH 4 ) is too low, even if the carbon film intermediate is further subjected to a post-heat treatment, the permeation rate (P CO 2 ) and permselectivity of carbon dioxide gas may be significantly reduced. Absent.

また、前記の中空糸炭素膜中間体は、炭酸ガスの透過
速度(P CO2、30℃)が、0.5×10-5〜10×10-5cm3/cm2
・sec・cmHg程度であって、しかも、炭酸ガスの透過速
度と窒素の透過速度との比(P CO2/P N2、30℃)で示さ
れる選択透過性(分離度)が10〜70、特に20〜60程度で
あることが最適である。
The hollow fiber carbon membrane intermediate has a carbon dioxide gas permeation rate (PCO 2 , 30 ° C.) of 0.5 × 10 −5 to 10 × 10 −5 cm 3 / cm 2.
- be about sec-cmHg, moreover, the ratio of the permeation rate and the nitrogen permeation rate of carbon dioxide (P CO 2 / PN 2, 30 ℃) in permselective represented (degree of separation) is 10 to 70, Particularly, it is optimally about 20 to 60.

この発明の製法において、前記中空糸炭素膜中間体
は、必要であれば、濃硫酸あるいは硝酸液中に、0〜80
℃、特に5〜60℃の温度で、約3〜30時間、特に5〜20
時間浸漬した後、イオン交換水で酸を置換するという酸
処理を行った後に、その酸処理で得られた中空糸炭素膜
中間体について前述のような後熱処理をすると、炭酸ガ
ス分離性が向上することがある。
In the production method of the present invention, the hollow fiber carbon membrane intermediate is, if necessary, 0 to 80 in concentrated sulfuric acid or nitric acid solution.
C, especially at a temperature of 5 to 60C, for about 3 to 30 hours, especially 5 to 20
After immersion for an hour, an acid treatment of replacing the acid with ion-exchanged water is performed, and then the above-described post-heat treatment is performed on the hollow fiber carbon membrane intermediate obtained by the acid treatment, thereby improving the carbon dioxide gas separation property. May be.

この発明の製法で得られた非対称性中空糸炭素膜は、
該中空糸炭素膜を形成している材質が、 i)炭素原子の含有率が70〜92重量%(特に70〜90重量
%)、 ii)窒素原子の含有率が3.5〜7重量%(特に4.0〜6.5
重量%)、および、 iii)水素原子の含有率が1.0〜4.0重量%(特に1.5〜3.
5重量%)であって、 iv)芳香族ポリイミドを高温で熱処理して部分的に炭素
化された部分炭素化物であり、 そして、 (イ)該中空糸膜の外表面に、厚さ0.0005〜5μm(特
に0.001〜2μm)の緻密層を有すると共に、(ロ)中
空糸膜の内部が、前記緻密層と連続して多孔質支持層
(平均孔径50〜20000Å、特に100〜10000Å程度の微細
孔を多数有する厚さ10〜2000μm、特に20〜1000μmの
多孔質支持層)を有する非対称性中空糸炭素膜である。
The asymmetric hollow fiber carbon membrane obtained by the production method of the present invention,
The material forming the hollow fiber carbon membrane includes: i) a carbon atom content of 70 to 92% by weight (particularly 70 to 90% by weight); ii) a nitrogen atom content of 3.5 to 7% by weight (particularly 4.0-6.5
Iii) a hydrogen atom content of 1.0 to 4.0% by weight (particularly 1.5 to 3.
Iv) a partially carbonized material obtained by partially heat-treating an aromatic polyimide at a high temperature, and (a) a thickness of 0.0005 to 0.0005 mm on the outer surface of the hollow fiber membrane. It has a dense layer of 5 μm (especially 0.001 to 2 μm), and (b) the inside of the hollow fiber membrane is continuous with the dense layer, and has a porous support layer (average pore diameter of 50 to 20000 mm, especially about 100 to 10,000 mm). (A porous support layer having a thickness of 10 to 2000 μm, particularly 20 to 1000 μm).

前記の非対称性中空糸炭素膜は、炭酸ガスの透過速度
(P CO2、30℃)が、1×10-5〜80×10-5cm3/cm2・sec
・cmHg、特に2×10-5〜60×10-5cm3/cm2・sec・cmHg程
度であって、炭酸ガスの透過速度と窒素の透過速度との
比(P CO2/P N2)で示される選択透過性(分離度)が20
〜100、特に25〜80程度である。
The asymmetric hollow fiber carbon membrane has a carbon dioxide gas permeation rate (PCO 2 , 30 ° C.) of 1 × 10 −5 to 80 × 10 −5 cm 3 / cm 2 · sec.
CmHg, especially about 2 × 10 -5 to 60 × 10 -5 cm 3 / cm 2 · sec · cmHg, and the ratio between the permeation rate of carbon dioxide and the permeation rate of nitrogen (P CO 2 / PN 2 ) Permselectivity (separation degree) indicated by is 20
About 100, especially about 25 to 80.

この発明の製法で得られた非対称性中空糸炭素膜は、
その外径が100〜2000μm、特に150〜1000μm程度であ
ることが好ましく、また、その膜厚が10〜200μm、特
に20〜150μm程度である。
The asymmetric hollow fiber carbon membrane obtained by the production method of the present invention,
Its outer diameter is preferably 100 to 2000 μm, particularly about 150 to 1000 μm, and its film thickness is about 10 to 200 μm, especially about 20 to 150 μm.

この発明の製法で得られた非対称性中空糸炭素膜は、
部分的に適度に炭素化されている材料で形成されてお
り、極めて薄い緻密層(ガス分離活性層)と比較的厚い
多孔質層(支持層)とを一体に有する非対称性構造を有
しているものであるので、高いガス透過性と高い選択性
(分離性)とを同時に保持していると共に、耐熱性、耐
久性が優れているガス分離膜である。
The asymmetric hollow fiber carbon membrane obtained by the production method of the present invention,
It is formed of a material that is partially carbonized appropriately and has an asymmetric structure that has an extremely thin dense layer (gas separation active layer) and a relatively thick porous layer (support layer) integrally. Therefore, it is a gas separation membrane that simultaneously maintains high gas permeability and high selectivity (separability) and has excellent heat resistance and durability.

〔実施例〕〔Example〕

以下、この発明を参考例および実施例によってさらに
詳しく説明する。しかし、この発明はそれらの実施例に
よって限定されるものではない。
Hereinafter, the present invention will be described in more detail by reference examples and examples. However, the present invention is not limited by those embodiments.

非対称性中空糸膜、非対称性中空糸炭素膜等につい
て、各ガスの透過性能は、次に示す方法で測定した。
For the asymmetric hollow fiber membrane, the asymmetric hollow fiber carbon membrane, and the like, the permeation performance of each gas was measured by the following method.

まず、前述のようにして製造した非対称性中空糸炭素
膜と、ステンレスパイプと、エポキシ樹脂系接着剤とを
使用して、透過性能評価用の中空糸エレメントを作成し
た。
First, a hollow fiber element for evaluating permeation performance was prepared using the asymmetric hollow fiber carbon membrane produced as described above, a stainless steel pipe, and an epoxy resin-based adhesive.

透過性能の測定A そして、透過性能Aは、ステンレス容器に、透過性能
評価用の中空糸炭素膜の中空糸エレメントを装着し、水
素ガスとメタンガスとの混合ガスを用いて、50℃の温
度、10kg/cm2の圧でガス透過試験を行い、ガス透過速度
と、各ガスの透過速度比(選択透過性、分離度を示す)
とを、ガスクロマトグラフィー分析の測定値から算出し
た。
Measurement A of permeation performance A permeation performance A is obtained by mounting a hollow fiber element of a hollow fiber carbon membrane for permeation performance evaluation on a stainless steel container and using a mixed gas of hydrogen gas and methane gas at a temperature of 50 ° C. A gas permeation test is performed at a pressure of 10 kg / cm 2 , and the ratio of the gas permeation speed to the permeation speed of each gas (indicating the selective permeability and the degree of separation)
Were calculated from the measured values of gas chromatography analysis.

透過性能の測定B ステンレス容器に、透過性能評価用の中空糸炭素膜の
糸束エレメントを装着し、炭酸ガスと窒素との混合ガス
を用いて、温度30℃、圧10kg/cm2でガス透過試験を行
い、ガス透過速度と、各ガスの透過速度比(選択透過
性、分離度を示す)とを、ガスクロマトグラフィー分析
の測定値から算出した。
Measurement of permeation performance B A fiber bundle element of a hollow fiber carbon membrane for permeation performance evaluation is attached to a stainless steel container, and gas permeation is performed at a temperature of 30 ° C and a pressure of 10 kg / cm 2 using a mixed gas of carbon dioxide and nitrogen. The test was performed, and the gas permeation rate and the permeation rate ratio of each gas (indicating the permselectivity and the degree of separation) were calculated from the measured values of gas chromatography analysis.

参考例1 〔ポリイミド溶液の調製〕 3,3′,4,4′−ビフェニルテトラカルボン酸二無水物9
9ミリモルと、4,4′−ジアミノジフェニルエーテル10ミ
リモル、3,7−ジアミノジフェニレンスルホン90ミリモ
ルとを、パラクロルフェノール293gと共に、撹拌機と窒
素ガス導入管とが付設されたセパラブルフラスコに入れ
て、窒素ガスを流して、反応液を撹拌しながら、180℃
の重合温度で16時間重合させて、芳香族ポリイミド濃度
が15重量%である芳香族ポリイミド溶液を調製した。
Reference Example 1 [Preparation of polyimide solution] 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride 9
9 mmol, 10 mmol of 4,4'-diaminodiphenyl ether and 90 mmol of 3,7-diaminodiphenylene sulfone were put together with 293 g of parachlorophenol in a separable flask equipped with a stirrer and a nitrogen gas inlet tube. 180 ° C while flowing the nitrogen gas and stirring the reaction solution.
Was polymerized at a polymerization temperature of 16 hours to prepare an aromatic polyimide solution having an aromatic polyimide concentration of 15% by weight.

この芳香族ポリイミド溶液は、100℃の回転が1004ポ
イズであり、90℃での回転粘度が1432ポイズであった。
この芳香族ポリイミド溶液を、400メッシュのステンレ
ス金網で濾過して、紡糸用のドープ液を準備した。
This aromatic polyimide solution had a rotation at 100 ° C. of 1004 poise and a rotational viscosity at 90 ° C. of 1432 poise.
This aromatic polyimide solution was filtered through a stainless steel mesh of 400 mesh to prepare a dope solution for spinning.

〔単一構造の非対称性中空糸膜の製造〕 その紡糸用ドープ液を、中空糸紡糸用ノズル(円形開
口部の外径;1000μm、円形開口部のスリット幅;200μ
m、芯部開口部の外径;400μm)を備えた紡糸装置に仕
込み、そして、前記紡糸用ノズルから中空糸状に吐出さ
せて、その中空糸状体を窒素雰囲気中を通した後、65重
量%のエタノール水溶液からなる一次凝固液(0℃)に
浸漬し、さらに、一対の案内ロールを備えた二次凝固装
置内の二次凝固液(0℃)中で案内ロール間を往復させ
て、中空糸状体の凝固を完了させて、芳香族ポリイミド
製の中空糸膜を引き取りロールで引き取りながら(引き
取り速度15m/分)、紡糸を行った。
[Production of single-structure asymmetric hollow fiber membrane] The spinning dope solution was poured into a hollow fiber spinning nozzle (outer diameter of circular opening: 1000 µm, slit width of circular opening: 200 µm).
m, the outer diameter of the core opening; 400 μm), and the mixture is discharged from the spinning nozzle in the form of a hollow fiber. Immersed in a primary coagulation liquid (0 ° C.) composed of an aqueous ethanol solution, and further reciprocated between guide rolls in a secondary coagulation liquid (0 ° C.) in a secondary coagulation apparatus equipped with a pair of guide rolls to form a hollow. After the coagulation of the filamentous body was completed, the spinning was performed while the hollow fiber membrane made of the aromatic polyimide was taken up by a take-up roll (take-up speed: 15 m / min).

最後に、この中空糸膜をボビンに巻き取り、エタノー
ルで充分に凝固溶媒等を洗浄した後、イソオクタン(置
換溶媒)でエタノール置換し、さらに、中空糸膜を100
℃に加熱して、イソオクタンの蒸発・乾燥を行い、さら
に、300℃の温度で30分間、中空糸膜の熱処理を行っ
て、乾燥及び熱処理された芳香族ポリイミド製の非対称
性中空糸膜を製造した。
Finally, the hollow fiber membrane is wound around a bobbin, the coagulation solvent and the like are sufficiently washed with ethanol, and then replaced with ethanol with isooctane (substitution solvent).
C. to evaporate and dry isooctane, and heat-treat the hollow fiber membrane at a temperature of 300.degree. C. for 30 minutes to produce a dried and heat-treated asymmetric aromatic polyimide-made hollow fiber membrane. did.

実施例1 参考例1で得られた非対称性中空糸膜を、空気雰囲気
のオーブン中、無緊張下、400℃で30分間予備熱処理し
て熱安定化した。
Example 1 The asymmetric hollow fiber membrane obtained in Reference Example 1 was preliminarily heat-treated at 400 ° C. for 30 minutes in an oven in an air atmosphere without tension, and was thermally stabilized.

次に、予備熱処理された非対称性中空糸膜は、石英ガ
ラス管中を700℃に調節し窒素雰囲気に保たれた電気管
状炉内を、送りだしロールと引き取りロールとの間で20
cm/分の等速度で通過させて、滞留時間4分間の炭素化
処理が行なわれ、中空糸炭素膜中間体Iを製造した。
Next, the pre-heat-treated asymmetric hollow fiber membrane is heated at a temperature of 700 ° C. in a quartz glass tube and kept in a nitrogen atmosphere in an electric tubular furnace between a feed roll and a take-off roll for 20 minutes.
The mixture was passed at a constant speed of cm / min and carbonized for a residence time of 4 minutes to produce a hollow fiber carbon membrane intermediate I.

この中空糸炭素膜中間体Iについて、透過性能の測定
法A及びBに従って、透過性能の測定を行った。その結
果を第1表に示す。
The permeation performance of the hollow fiber carbon membrane intermediate I was measured in accordance with the permeation performance measurement methods A and B. Table 1 shows the results.

最後に、前記中空糸炭素膜中間体を、空気雰囲気のオ
ーブン中で、無緊張下、300℃で30分間、後熱処理を行
って、非対称性中空糸炭素膜を製造した。
Finally, the hollow fiber carbon membrane intermediate was subjected to a post-heat treatment at 300 ° C. for 30 minutes without tension in an oven under an air atmosphere to produce an asymmetric hollow fiber carbon membrane.

電子顕微鏡を使用して、中空糸炭素膜の断面の10000
倍の写真を写し、その写真における中空糸炭素膜の断面
を観察することにより、中空糸炭素膜の緻密層と多孔質
層とからなる非対称性構造を確認した。
Using an electron microscope, 10,000 cross sections of the hollow fiber carbon membrane
By photographing a magnified photograph and observing the cross section of the hollow fiber carbon film in the photograph, an asymmetric structure composed of a dense layer and a porous layer of the hollow fiber carbon film was confirmed.

この非対称性中空炭素膜について、透過性能の測定B
に従って行いその結果を第2表に示す。
For this asymmetric hollow carbon membrane, measurement of permeation performance B
Table 2 shows the results.

実施例2〜3 石英ガラス管内の温度(部分炭素化温度)を、800℃
(実施例2)又は900℃(実施例3)に代えたほかは、
実施例1と同様の方法で、中空糸炭素膜中間体II及びII
Iをそれぞれ製造した。
Examples 2-3 The temperature (partial carbonization temperature) in the quartz glass tube was set to 800 ° C.
(Example 2) or 900 ° C. (Example 3)
In the same manner as in Example 1, hollow fiber carbon membrane intermediates II and II
I was manufactured respectively.

これらの中空糸炭素膜中間体II及びIIIについて、透
過性能の測定法A及びBに従って、透過性能の測定を行
い、その結果を第1表に示す。
For these hollow fiber carbon membrane intermediates II and III, the permeation performance was measured according to the permeation performance measurement methods A and B, and the results are shown in Table 1.

最後に、前記の各中空糸炭素膜中間体を、空気雰囲気
のオーブン中、無緊張下、300℃で30分間、後熱処理を
行って、非対称性中空糸炭素膜をそれぞれ製造した。
Finally, each of the above-mentioned hollow fiber carbon membrane intermediates was subjected to a post-heat treatment at 300 ° C. for 30 minutes in an air atmosphere oven without tension, thereby producing asymmetric hollow fiber carbon membranes.

各非対称性中空糸炭素膜について、透過性能の測定B
によるを第2表に示す。
Measurement of permeation performance B for each asymmetric hollow fiber carbon membrane
Are shown in Table 2.

実施例4〜5 実施例3において製造された中空糸炭素膜中間体III
を、濃硫酸中(室温)に12時間程度浸漬し(実施例
4)、又は70重量%の硝酸水溶液(室温)に12時間程度
浸漬し(実施例5)、次いで、浸漬された該中間体をそ
れぞれイオン交換水で硫酸を完全に洗浄した後、最後の
後熱処理を行ったほかは、実施例3と同様の方法で、非
対称性中空糸炭素膜をそれぞれ製造した。
Examples 4 to 5 Hollow fiber carbon membrane intermediate III produced in Example 3
Is immersed in concentrated sulfuric acid (room temperature) for about 12 hours (Example 4) or in a 70% by weight aqueous nitric acid solution (room temperature) for about 12 hours (Example 5). Was completely washed with ion-exchanged water and then subjected to a final post-heat treatment, to produce asymmetric hollow fiber carbon membranes in the same manner as in Example 3.

各非対称性中空糸炭素膜について、透過性能の測定B
による透過性能を第2表に示す。
Measurement of permeation performance B for each asymmetric hollow fiber carbon membrane
Table 2 shows the transmission performance according to the above.

実施例6 実施例3で製造された中空糸炭素膜中間体IIIの後熱
処理を行う時間を、30分間から120分間に変えたほか
は、実施例4と同様の方法で、非対称性中空糸炭素膜を
製造した。
Example 6 An asymmetric hollow fiber carbon was prepared in the same manner as in Example 4, except that the time for performing the post heat treatment was changed from 30 minutes to 120 minutes. A membrane was manufactured.

非対称性中空糸炭素膜について、透過性能の測定Bに
よる透過性能を第2表に示す。
Table 2 shows the permeation performance of the asymmetric hollow fiber carbon membrane by measurement B of the permeation performance.

比較例1〜3 実施例1、2又は3と同様な方法で製造された中空糸
炭素膜中間体の後熱処理を、空気雰囲気に代えてアルゴ
ン雰囲気でそれぞれ行ったほかは、実施例1、2又は3
と同様の方法で、非対称性中空糸炭素膜をそれぞれ製造
した。
Comparative Examples 1 to 3 Except that the post-heat treatment of the hollow fiber carbon membrane intermediate produced by the same method as in Examples 1, 2 or 3, was performed in an argon atmosphere instead of an air atmosphere, respectively. Or 3
Asymmetric hollow fiber carbon membranes were produced in the same manner as in the above.

各非対称性中空糸炭素膜について、透過性能の測定A
及びBによる透過性能を第2表に示す。
Measurement of permeation performance A for each asymmetric hollow fiber carbon membrane
Table 2 shows the transmission performances of the samples B and B.

〔本発明の作用効果〕 この発明の製法によって得られる非対称性中空糸炭素
膜は、緻密層と多孔質層とを一体に有する非対称性構造
を保持しており、例えば、炭酸がスと窒素ガスとを含む
混合ガスから炭酸ガスを高い分離性能で分離することが
でき、しかも、有機溶剤などの不純物成分が混入した混
合ガスの分離においても、その分離性能(分離度等)が
ほとんど低下しないものであり、さらに、高温で長期間
使用できる高い耐熱性を有しているものであり、また、
この発明の製法は、前述の優れた性能の非対称性中空糸
炭素膜を、再現性よく高い生産性で容易に製造すること
ができる優れた製法である。
[Functions and Effects of the Present Invention] The asymmetric hollow fiber carbon membrane obtained by the production method of the present invention has an asymmetric structure having a dense layer and a porous layer integrally. Carbon dioxide can be separated with high separation performance from a mixed gas containing, and the separation performance (separation degree, etc.) of the mixed gas mixed with impurity components such as organic solvents hardly decreases. It has high heat resistance that can be used for a long time at high temperature,
The production method of the present invention is an excellent production method capable of easily producing the above-mentioned asymmetric hollow fiber carbon membrane having excellent performance with high reproducibility and high productivity.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D01F 9/24 D01F 9/24 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location D01F 9/24 D01F 9/24

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】芳香族ポリイミドからなる非対称性中空糸
膜を250〜495℃の範囲内の温度であってしかも該中空糸
膜の非対称性構造が維持される温度、および、酸素含有
ガスの雰囲気で、予備熱処理して熱安定化し、次いで、
その予備熱処理された中空糸膜を、500〜900℃でおよび
不活性ガスの雰囲気下で部分的に炭素化処理して、中空
糸炭素膜中間体を形成し、さらに、該炭素膜中間体を、
250〜450℃の温度であって酸素含有ガスの雰囲気で、後
熱処理することを特徴とする非対称性中空糸炭素膜の製
法。
1. An asymmetric hollow fiber membrane made of an aromatic polyimide at a temperature in the range of 250 to 495 ° C. and a temperature at which the asymmetric structure of the hollow fiber membrane is maintained, and an atmosphere of an oxygen-containing gas. And heat-stabilize by preliminary heat treatment, and then
The preliminarily heat-treated hollow fiber membrane is partially carbonized at 500 to 900 ° C. and under an atmosphere of an inert gas to form a hollow fiber carbon membrane intermediate. ,
A method for producing an asymmetric hollow fiber carbon membrane, comprising post-heating at a temperature of 250 to 450 ° C. in an atmosphere of an oxygen-containing gas.
JP32095890A 1990-04-27 1990-11-27 Manufacturing method of asymmetric hollow fiber carbon membrane Expired - Lifetime JP2626837B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP32095890A JP2626837B2 (en) 1990-11-27 1990-11-27 Manufacturing method of asymmetric hollow fiber carbon membrane
EP91303687A EP0459623B1 (en) 1990-04-27 1991-04-24 Asymmetric hollow filamentary carbon membrane and process for producing same
DE69102350T DE69102350T2 (en) 1990-04-27 1991-04-24 Asymmetric hollow fiber membrane made of carbon and process for its production.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32095890A JP2626837B2 (en) 1990-11-27 1990-11-27 Manufacturing method of asymmetric hollow fiber carbon membrane

Publications (2)

Publication Number Publication Date
JPH04193334A JPH04193334A (en) 1992-07-13
JP2626837B2 true JP2626837B2 (en) 1997-07-02

Family

ID=18127195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32095890A Expired - Lifetime JP2626837B2 (en) 1990-04-27 1990-11-27 Manufacturing method of asymmetric hollow fiber carbon membrane

Country Status (1)

Country Link
JP (1) JP2626837B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017185A1 (en) * 2007-08-02 2009-02-05 National Institute Of Advanced Industrial Science And Technology Hollow fiber carbon membrane and method for production thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL105142A (en) * 1993-03-23 1997-01-10 Aga Ab Method of improving the selectivity of carbon membranes by chemical carbon vapor deposition
JP2754153B2 (en) * 1994-03-09 1998-05-20 工業技術院長 Carbonized capillary membrane and method for producing the same
KR100325343B1 (en) * 1997-12-24 2002-05-09 신현준 Process for producing carbon membrane
ES2155737B1 (en) * 1998-02-16 2001-12-01 Consejo Superior Investigacion PROCEDURE FOR THE PREPARATION OF CARBON MICROPOROUS CARBON MEMBRANES.
US6395066B1 (en) 1999-03-05 2002-05-28 Ube Industries, Ltd. Partially carbonized asymmetric hollow fiber separation membrane, process for its production, and gas separation method
JP4081956B2 (en) * 1999-03-05 2008-04-30 宇部興産株式会社 Partially carbonized asymmetric hollow fiber separation membrane, its production method and gas separation method
KR100450211B1 (en) * 2001-05-16 2004-09-24 학교법인 한양학원 Method for manufacturing silicon-containing carbon molecular sieve membrane for gas separation
CA2557599C (en) 2004-03-12 2010-07-13 Ngk Insulators, Ltd. Carbon film laminate and method for production thereof, and voc removing device
JP2011177695A (en) * 2010-03-04 2011-09-15 Toyobo Co Ltd Method for producing pervaporation membrane, pervaporation membrane and organic solvent recovery system
JP5708684B2 (en) * 2013-02-27 2015-04-30 Nok株式会社 Method for producing hollow fiber carbon membrane
US9795927B2 (en) * 2014-12-31 2017-10-24 L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Manufacturing carbon molecular sieve membranes using a pyrolysis atmosphere comprising sulfur-containing compounds
CN113877434B (en) * 2020-07-02 2022-12-09 中国石油化工股份有限公司 Method for preparing hollow fiber carbon film by direct wrapping heat treatment and hollow fiber carbon film thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017185A1 (en) * 2007-08-02 2009-02-05 National Institute Of Advanced Industrial Science And Technology Hollow fiber carbon membrane and method for production thereof

Also Published As

Publication number Publication date
JPH04193334A (en) 1992-07-13

Similar Documents

Publication Publication Date Title
EP0459623B1 (en) Asymmetric hollow filamentary carbon membrane and process for producing same
JP2673846B2 (en) Asymmetric hollow fiber carbon membrane and method for producing the same
JPH0673616B2 (en) Method for producing polyimide two-layer hollow fiber membrane
JP2588806B2 (en) Gas separation hollow fiber membrane and method for producing the same
JP2626837B2 (en) Manufacturing method of asymmetric hollow fiber carbon membrane
JPH03267130A (en) Gas separation hollow-fiber membrane and its production
US5514413A (en) Process for producing composite membranes
EP1034836B1 (en) Use of a partially carbonized asymmetric hollow fiber separation membrane
JP2006528057A (en) Monolithically skinned asymmetric membrane with solvent resistance
JP4239618B2 (en) Asymmetric gas separation membrane
JP3698078B2 (en) Method for producing asymmetric hollow fiber gas separation membrane
JP2874741B2 (en) Asymmetric hollow fiber polyimide gas separation membrane
JP2671072B2 (en) Gas separation membrane manufacturing method
JP4081956B2 (en) Partially carbonized asymmetric hollow fiber separation membrane, its production method and gas separation method
JPH07121344B2 (en) Asymmetric hollow fiber carbon membrane and method for producing the same
JP2000185212A (en) Method for separating and recovering perfluoro compound gas and device therefor
JP5380852B2 (en) Method for producing molded body with improved solvent resistance
JPH0693988B2 (en) Polyimide two-layer hollow fiber membrane and method for producing the same
JPH0693985B2 (en) Manufacturing method of polyimide two-layer hollow fiber membrane
JP5051101B2 (en) A method for separating and recovering organic vapor from mixed organic vapor using an asymmetric gas separation membrane.
JPS62231017A (en) Copolyimide hollow yarn and production thereof
JPH0788601B2 (en) Method for producing hollow fiber having finger-shaped pores
JP4702277B2 (en) Gas separation membrane and separation method
JP4269549B2 (en) New polyimide selective permeable membrane
JP3161562B2 (en) Pervaporation separation of aqueous aromatic hydrocarbon solutions.

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090418

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110418

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110418