KR100450211B1 - Method for manufacturing silicon-containing carbon molecular sieve membrane for gas separation - Google Patents

Method for manufacturing silicon-containing carbon molecular sieve membrane for gas separation Download PDF

Info

Publication number
KR100450211B1
KR100450211B1 KR10-2001-0026866A KR20010026866A KR100450211B1 KR 100450211 B1 KR100450211 B1 KR 100450211B1 KR 20010026866 A KR20010026866 A KR 20010026866A KR 100450211 B1 KR100450211 B1 KR 100450211B1
Authority
KR
South Korea
Prior art keywords
temperature
silicon
containing carbon
membrane
molecular sieve
Prior art date
Application number
KR10-2001-0026866A
Other languages
Korean (ko)
Other versions
KR20020087821A (en
Inventor
이영무
박호범
서인영
Original Assignee
학교법인 한양학원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 한양학원 filed Critical 학교법인 한양학원
Priority to KR10-2001-0026866A priority Critical patent/KR100450211B1/en
Publication of KR20020087821A publication Critical patent/KR20020087821A/en
Application granted granted Critical
Publication of KR100450211B1 publication Critical patent/KR100450211B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0067Inorganic membrane manufacture by carbonisation or pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0213Silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/10Specific pressure applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/50Control of the membrane preparation process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 기체분리용 규소함유 탄소분자체 분리막의 제조방법 및 그 전구체가 되는 고분자의 성분 및 조성에 관한 것으로, 좀 더 상세하게는 규소를 함유한 고분자전구체막을 제조하는 단계; 기존의 폴리이미드의 합성에 이용되었던 단량체와 실록산기를 함유한 양말단이 아민기인 올리고머를 공중합시키는 조성 결정단계, 상기 고분자전구체막을 5-10℃/min의 승온속도로 400℃까지 승온시킨 다음, 3-5℃/min의 승온속도로 550-600℃까지 승온시킨 후 같은 온도범위에서 1-2시간의 등온과정을 거치는 단계, 및 상기 등온과정을 거친 안정화된 분리막을 1-5℃/min의 승온속도로 800℃와 1000℃까지 각각 승온시켜 같은 온도에서 1-2시간의 등온과정을 거쳐 탄소화 시키는 단계를 포함하는 기체분리용 탄소분자체 분리막의 조성 및 제조방법에 관한 것이다. 상기 분리막은 헬륨, 수소, 산소, 질소, 메탄 또는 이산화탄소와 같은 기체를 매우 효율적으로 분리할 수 있다.The present invention relates to a method for producing a silicon-containing carbon molecular sieve separation membrane for gas separation, and to a component and a composition of a polymer serving as a precursor thereof, and more particularly, to prepare a polymer precursor membrane containing silicon; A composition determination step of copolymerizing an oligomer of an amine group in a sock end containing a monomer and a siloxane group used in the synthesis of a conventional polyimide, and heating the polymer precursor membrane to 400 ° C. at a temperature increase rate of 5-10 ° C./min, and then 3 After heating up to 550-600 ° C. at a temperature increase rate of −5 ° C./min, undergoing an isothermal process for 1-2 hours in the same temperature range, and raising the temperature of 1-5 ° C./min. It relates to a composition and manufacturing method of a gas-molecular separation membrane for carbon separation membrane comprising the step of raising the temperature to 800 ℃ and 1000 ℃ at a rate, respectively, and carbonization through an isothermal process at 1-2 hours. The separator can very efficiently separate gases such as helium, hydrogen, oxygen, nitrogen, methane or carbon dioxide.

Description

기체분리용 규소함유 탄소분자체 분리막제조방법{Method for manufacturing silicon-containing carbon molecular sieve membrane for gas separation}Method for manufacturing silicon-containing carbon molecular sieve membrane for gas separation

본 발명은 규소를 함유한 탄소분자체 분리막의 고분자전구체 조성 및 제조방법에 관한 것으로, 좀 더 상세하게는 헬륨, 수소, 질소, 산소, 메탄 또는 이산화탄소와 같은 기체를 높은 투과도와 함께 효율적으로 분리할 수 있는 규소함유 탄소분자체 분리막의 고분자 전구체 조성 및 제조방법에 관한 것이다.The present invention relates to a polymer precursor composition and a method for producing a carbon-molecular separator containing silicon, and more particularly, it is possible to efficiently separate gases such as helium, hydrogen, nitrogen, oxygen, methane or carbon dioxide with high permeability. The present invention relates to a polymer precursor composition and method for producing a silicon-containing carbon molecular separator.

일반적으로 기체분리용막의 소재로 폭넓게 이용되어 왔던 것은 고분자로서, 특히 기체분리용막의 소재로 많이 이용되는 고분자는 폴리술폰, 폴리카보네이트, 셀룰로오즈 및 폴리이미드 등이 있다. 이러한 고분자막들은 비교적 높은 기체 분리성능을 가지고 있는 고분자들이며, 주로 다공성 지지체위에 얇은 선택층을 가진 비대칭성 구조의 형태로 제조된다. 하지만 이러한 고분자막들은 고압 혹은 고온공정이나 탄화수소, 방향족, 그리고 극성용매가 포함된 공정에 있어 장기간 노출되면 막의 압밀화 및 가소화에 의하여 막의 분리성능이 현저히 감소하는 단점을 가진다. 그리고 현재 알려진 고분자막들은 일반적으로 투과도가 높으면 선택도가 낮고, 선택도가 낮으면 투과도가 높은 상관관계의 상한선을 넘지 못하는 단점을 가지고 있다.Generally, polymers that have been widely used as materials for gas separation membranes are polymers, and polymers that are frequently used as materials for gas separation membranes include polysulfone, polycarbonate, cellulose, and polyimide. These polymer membranes are polymers having a relatively high gas separation performance, and are mainly manufactured in the form of an asymmetric structure having a thin selection layer on the porous support. However, these polymer membranes have a disadvantage that the separation performance of the membrane is significantly reduced by consolidation and plasticization of the membrane after prolonged exposure in a high pressure or high temperature process or a process including a hydrocarbon, an aromatic, and a polar solvent. In general, polymer membranes currently known have a disadvantage that high selectivity is low and low selectivity, and low selectivity does not exceed an upper limit of correlation.

이에 반해 뛰어난 열적 안정성 및 내화학성을 가지고 있는 지올라이트나 탄소분자체막과 같은 무기막들이 기체 분리에 있어 많은 주목과 관심을 받고 있다. 이 중 탄소분자체막은 보통 고분자전구체를 진공상태 혹은 비활성 기체의 흐름하에서 열분해를 통해 얻어질 수 있는데, 이 탄소분자체막들은 기존의 고분자막에 비해 매우 높은 투과선택성을 보인다.In contrast, inorganic membranes such as zeolites and carbon molecular sieve membranes, which have excellent thermal stability and chemical resistance, have received much attention and attention in gas separation. Among these, the carbon molecular film can be obtained by pyrolysis of the polymer precursor under vacuum or inert gas flow, and the carbon molecular film shows a very high permeation selectivity compared to the conventional polymer film.

이러한 고분자전구체들의 열분해를 통한 탄화과정의 제어는 고분자막의 안정성을 증가시키며 높은 투과분리 효율을 낳는 전도유망한 방법으로 1983년 Koresh와 Soffer에 의해 처음으로 유기전구체를 열분해하여 탄소분자체막이 제조되었다 (미합중국 특허 제 4,685,940호). 또한 이러한 탄소막의 전구체로 사용되어온 고분자들로는 폴리퍼푸릴알콜(polyfurfuryl alcohol), 폴리비닐리덴 클로라이드(polyvinylidene chloride), 페놀 포름 알데히드(phenol formaldehyde) 그리고 폴리이미드(polyimide) 등이 있다.The control of the carbonization process through pyrolysis of these polymer precursors increased the stability of the polymer membrane and produced a carbon molecule membrane by pyrolyzing organic precursors for the first time in 1983 by Koresh and Soffer as a promising method of producing high permeation efficiency. 4,685,940). Polymers that have been used as precursors of such carbon films include polyfurfuryl alcohol, polyvinylidene chloride, phenol formaldehyde, and polyimide.

이러한 유기 전구체를 사용해 제조된 탄소분자체막은 여러가지 기체혼합물들의 분리에 이용될 수 있는데, 현재까지 탄소막의 분리성능에 대한 주 연구대상이 되었던 기체혼합물들은 산소/질소, 헬륨/질소, 수소/질소, 수소/일산화탄소, 이산화탄소/질소, 메탄/에탄, 에틸렌/에탄 그리고 프로필렌/프로판 등이 있다.Carbon molecular membranes prepared using these organic precursors can be used for the separation of various gas mixtures. Gas mixtures, which have been the main researches on the separation performance of carbon membranes, are oxygen / nitrogen, helium / nitrogen, hydrogen / nitrogen, hydrogen Carbon monoxide, carbon dioxide / nitrogen, methane / ethane, ethylene / ethane and propylene / propane.

상술한 유기전구체를 사용해 제조된 탄소막에 대한 기존의 연구를 살펴보면, 우선 탄소섬유의 재료로 사용되었던 폴리아크릴로니트릴이 많이 사용된다. 그러나 이를 탄화시켜 제조된 막은 매우 낮은 기체투과성능을 보여 상업적인 가치가 크게떨어진다. 또한 Journal of Membrane Science 109(1996) 267-270에서 중국의 W. Shusen등이 포름알데히드수지를 전구체로하여 탄소화된 막을 제조하였는데, 산소투과도가 2300 10-10×㎤(STP)㎝/㎠.sec.cmHg (Barrer)이며 산소/질소 선택도는 10.65로 매우 우수한 성능을 보였다. 하지만 재료의 기계적 특성이 매우 낮아 실용성이 매우 떨어진다는 단점을 가지고 있다. 미합중국 특허 제 4,685,940호에서 미국의 Koresh등에 의해 셀룰로오즈를 탄화시킨 막이 보고되었으며, 산소/질소 선택도 7.1, 산소투과도가 0.71×10-6㎤(STP)/㎠.sec.cmHg (GPU) 인 투과성능을 보였다.Looking at the existing research on the carbon film produced using the organic precursor described above, first, polyacrylonitrile, which was used as a material of carbon fiber, is used a lot. However, membranes made by carbonization show very low gas permeability, which greatly reduces commercial value. Also, in Journal of Membrane Science 109 (1996) 267-270, a carbonized membrane was prepared by W. Shusen et al in China as a precursor of formaldehyde resin, and the oxygen permeability was 2300 10 -10 × cm 3 (STP) cm / cm 2. sec.cmHg (Barrer) and oxygen / nitrogen selectivity was 10.65, which was very good. However, the mechanical properties of the material is very low, the practicality is very poor. In U.S. Patent No. 4,685,940, a membrane carbonized by cellulose was reported by Koresh et al. Of the United States, with an oxygen / nitrogen selectivity of 7.1 and an oxygen permeability of 0.71 × 10 −6 cm 3 (STP) / cm 2 .sec.cm Hg (GPU). Showed.

이 경우에는 탄소막의 열분해를 통한 제조시간이 매우 길며, 따라서 시간을 단축하기 위해 승온속도를 높이면 필름의 중량감소률이 두드려져 기계적 강도에서의 감소를 낳는 단점이 있다. 또한 Journal of Physical Chemistry B 101 (1997) 3988-3994에서 일본의 Suda등이 상업용 폴리이미드인 Kapton필름을 사용하여 진공 및 비활성기체 기류하에서 제조한 탄소막에 대한 기체 분리성능 결과를 보고하였으며, 산소/질소 선택도가 36인 고선택도를 가지지만 산소투과도가 0.96 Barrer로 매우 낮은 투과성능을 보여 실용화하는데 많은 어려움이 따른다. 미합중국 특허 제 5,288,304호에서는 일반적인 기체분리용 중공사형 비대칭막의 경우처럼 제조된 폴리이미드계 중공사형막을 불소를 포함하는 수지로 코팅시켜 균열부분을 막고 수분에 대한 탄소막의 장기 사용성능저하를 감소시켰다. 그러나, 이막은 재료가 고가이며 중공사를 탄화시켜 높은 기계적 강도를 유지하기 어려운 단점을 가지고 있다.In this case, the production time through the pyrolysis of the carbon film is very long, and thus, in order to shorten the time, increasing the temperature increase rate causes the weight reduction rate of the film to be knocked out, resulting in a decrease in mechanical strength. In addition, in the Journal of Physical Chemistry B 101 (1997) 3988-3994, the results of gas separation performance on carbon membranes prepared under vacuum and inert gas streams were reported by Suda et al in Japan using a commercial polyimide Kapton film. Although it has high selectivity with selectivity of 36, oxygen permeability is 0.96 Barrer and shows very low permeability, which makes it difficult to put to practical use. In US Pat. No. 5,288,304, a polyimide hollow fiber membrane prepared as in the case of a hollow fiber asymmetric membrane for gas separation is coated with a resin containing fluorine to prevent cracks and to reduce the long-term performance degradation of the carbon film against moisture. However, this film has a disadvantage that the material is expensive and it is difficult to maintain high mechanical strength by carbonizing hollow fiber.

이에 본 발명자들은 선택도가 크게 떨어지지 않으면서 투과도가 상당히 개선된 탄소분자체막을 찾기 위해 예의 연구하던 바, 실록산올리고머가 폴리이미드와 공중합체를 이루고 있는, 즉 두 개의 서로 다른 영역을 가지며 미세상분리구조로 된 폴리이미드실록산과 같은 고분자필름을 열분해법을 이용하여 탄화시켜 규소가 함유된 탄소분자체막을 제조하고 탄소분자체내의 규칙적이고 밀집된 탄소결정들간의 간격을 규소가 포함된 영역이 방해하여 규소 혹은 초기 고분자 전구체의 실록산 함유량에 따라 산소/질소, 헬륨/질소, 수소/질소, 이산화탄소/질소, 및 이산화탄소/메탄등과 같은 기체분리에 있어 선택적으로 적용할 수 있음을 발견하고 본 발명에 이르렀다.Thus, the present inventors have diligently studied to find a carbon molecular film that has a significantly improved permeability without significantly decreasing selectivity. As a result, the siloxane oligomer forms a copolymer with polyimide, that is, has two different regions and has a microphase separation structure. Carbonized polymer film, such as polyimide siloxane, was prepared by pyrolysis to produce silicon-containing carbon molecular film, and silicon or initial polymer precursor was formed by interfering the gap between silicon and regular densely packed carbon crystals in the carbon molecule. According to the siloxane content, it has been found that the present invention can be selectively applied in gas separation such as oxygen / nitrogen, helium / nitrogen, hydrogen / nitrogen, carbon dioxide / nitrogen, and carbon dioxide / methane.

따라서, 본 발명의 목적은 우수한 선택도를 지니며 높은 투과도를 지니는 규소함유 탄소분자체 분리막의 조성 및 제조방법을 제공하는 데 있다.Accordingly, it is an object of the present invention to provide a composition and method for preparing a silicon-containing carbon molecular sieve membrane having excellent selectivity and high permeability.

상기 목적을 달성하기 위한 본 발명의 방법은 규소를 함유한 고분자 전구체막을 제조하는 단계; 기존의 폴리이미드의 합성에 이용되었던 단량체와 실록산기를 함유한 양말단이 아민기인 올리고머를 공중합시키는 조성 결정단계, 상기 고분자전구체막을 5-10℃/min의 승온속도로 400℃까지 승온시킨 다음, 3-5℃/min의 승온속도로 550-600℃까지 승온시킨 후 같은 온도범위에서 1-2시간의 등온과정을 거치는 단계, 및 상기 등온과정을 거친 안정화된 분리막을 1-5℃/min의 승온속도로 800℃와 1000℃까지 각각 승온시켜 같은 온도에서 1-2시간의 등온과정을 거쳐 탄소화 시키는 단계를 포함한다.The method of the present invention for achieving the above object comprises the steps of preparing a polymer precursor film containing silicon; The composition determination step of copolymerizing the monomer used in the synthesis of the polyimide and the siloxane group copolymerizes the oligomer of the amine group, the polymer precursor film is heated to 400 ℃ at a temperature increase rate of 5-10 ℃ / min, 3 After heating up to 550-600 ° C. at a temperature increase rate of −5 ° C./min, undergoing an isothermal process for 1-2 hours in the same temperature range, and raising the temperature of 1-5 ° C./min. Including the step of raising the temperature to 800 ℃ and 1000 ℃ at a rate of carbonization through an isothermal process of 1-2 hours at the same temperature.

이하 본 발명의 방법을 좀 더 구체적으로 살펴보면 다음과 같다.Hereinafter, the method of the present invention will be described in more detail.

본 발명에서는 규소가 함유된 탄소분자체분리막을 제조하기 위하여 실록산기를 함유한 폴리이미드를 여러 가지 조성으로 제조하였다.상기 폴리이미드는 무수물, 디아민, 그리고 양말단에 아민기를 함유한 실록산 올리고머를 축합시켜 사용할 수 있는데, 무수물로는 파이로멜릭 무수물, 벤조페논 무수물, 2,2-비스(3,4-디카르보페닐)프로판 무수물, 3,3',4,4'-비스페닐 테트라카르복실산 무수물, 비스(3,4-디카르복실페닐)에테르 무수물, 비스(3,4-디카르복시페닐)티오에테르 무수물, 2,3,6,7-나프탈렌 테트라카르복실산 무수물 및 비스(3,4-디카르복시페닐)술폰 무수물로 이루어진 군으로부터 하나 또는 그 이상 선택하여 사용하였다. 디아민으로는 m- 또는 p-페닐렌디아민, 2,4- 또는 2,6-디아미노톨루엔, 4,4'-디아미노 페닐에테르, 4,4'-디아미노벤조페논, 4,4'-디아미노 페닐술피드, 4,4'-디아미노 페닐 메탄, 3,3'-디메틸벤지딘, 및 4,4'-이소프로필-리덴 디아민으로 이루어진 군으로부터 하나 또는 그 이상 선택하여 사용하였다. 양말단에 아민기를 함유한 실록산 올리고머로는 수평균 분자량이 900에서 1600사이의 양말단이 디아민인 디메틸실록산 군으로부터 하나 또는 그 이상 선택하여 고분자를 합성하여 사용할 수 있다.In the present invention, a polyimide containing a siloxane group was prepared in various compositions to prepare a silicon-containing carbon molecular separation membrane. The polyimide is used by condensing anhydride, diamine, and a siloxane oligomer containing an amine group in a sock end. Anhydrides include pyromellitic anhydride, benzophenone anhydride, 2,2-bis (3,4-dicarbophenyl) propane anhydride, 3,3 ', 4,4'-bisphenyl tetracarboxylic anhydride, Bis (3,4-dicarboxylphenyl) ether anhydride, bis (3,4-dicarboxyphenyl) thioether anhydride, 2,3,6,7-naphthalene tetracarboxylic anhydride and bis (3,4-di One or more selected from the group consisting of carboxyphenyl) sulfone anhydride was used. Diamines include m- or p-phenylenediamine, 2,4- or 2,6-diaminotoluene, 4,4'-diamino phenylether, 4,4'-diaminobenzophenone, 4,4'- One or more selected from the group consisting of diamino phenylsulfide, 4,4'-diamino phenyl methane, 3,3'-dimethylbenzidine, and 4,4'-isopropyl-idene diamine were used. As the siloxane oligomer containing an amine group in the sock end, the polymer may be synthesized by selecting one or more from the dimethylsiloxane group in which the sock end is diamine having a number average molecular weight of 900 to 1600.

또한 상기의 고분자를 합성하기 위하여 N-메틸피롤리돈(NMP), 디메틸아세트아미드(DMAc), 디메틸포름아미드(DMF), 디메틸술폭시드(DMSO)등의 극성용매와 테트라히드로퓨란(THF)등의 무극성용매를 공용매로하여 합성시 사용되는 실록산올리고머의 양에 따라 1:1, 1:2, 1:3 등의 부피비율로 혼합하여 사용하였는데 이들 용매의 비율이 위의 세 가지 비율에 국한되는 것은 아니다.In addition, polar solvents such as N-methylpyrrolidone (NMP), dimethylacetamide (DMAc), dimethylformamide (DMF), dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), and the like are used to synthesize the polymer. Using a nonpolar solvent as a cosolvent, the volume ratio of 1: 1, 1: 2, 1: 3, etc. was used according to the amount of siloxane oligomer used in the synthesis.The ratio of these solvents is limited to the above three ratios. It doesn't happen.

본 발명의 탄소분자체분리막의 전구체가 되는 다양한 조성의 폴리이미드실록산을 탄화시키기 위해서 1500도까지의 온도를 제어할 수 있는 온도 프로그램이 장착된 관형 열분해 전기로에서 열분해를 수행한다. 상기 열분해는 10 cc/min이상의 헬륨, 질소, 또는 아르곤과 같은 비활성 기체 흐름하에서 수행하는 것이 바람직하지만, 상기 기체에만 국한되는 것은 아니다.Pyrolysis is carried out in a tubular pyrolysis electric furnace equipped with a temperature program capable of controlling a temperature of up to 1500 degrees in order to carbonize polyimide siloxanes of various compositions serving as precursors of the carbon molecular separation membrane of the present invention. The pyrolysis is preferably performed under an inert gas stream such as helium, nitrogen, or argon of 10 cc / min or more, but is not limited to the gas.

또한, 상기 열분해는 0.1기압 이하의 진공상태에서도 제조가 가능하다. 만약, 비활성이나 진공상태가 아닌 산소, 이산화탄소, 및 물과 같은 산화제가 있는 조건에서 열분해를 수행하면 고분자전구체가 거의 대부분 분해되어 바람직한 기계적 강도를 유지할 수 없기 때문이다.In addition, the pyrolysis can be produced even in a vacuum of 0.1 atm or less. If the thermal decomposition is carried out in the presence of oxidizing agents such as oxygen, carbon dioxide, and water rather than inert or vacuum, the polymer precursors are almost decomposed and cannot maintain the desired mechanical strength.

한편, 탄소화과정에 대한 바람직한 승온속도 및 최종처리온도를 알기 위하여 질량분석기가 장착된 열중량감소계를 사용하여 중량감소곡선 및 중량감소가 일어나는 부분에서 발생하는 기체의 종류를 실시간으로 분석할 수 있으며 이를 이용하여 본 발명의 승온조건 및 최종처리온도를 결정하는 데 이용하였다. 또한 각각의 열중량 감소곡선을 비교하기 위하여 각 최종 처리 온도에서의 무게감소를 각각의 초기중량으로 나누어 비교하였다. 또한, 상기에서 제조한 고분자전구체의 탄소화반응에 대한 전환율은 FT-IR 및 원소 분석기(EA)를 사용하여 측정할 수 있는데, FT-IR의 경우, 1360, 1600 cm-1의 피크의 높이로 확인할 수 있으며, EA의 경우, C,H,O,N,Si에 대한 상대적인 원소함유량을 비교하여 확인할 수 있다. 제조된 막은 헬륨,질소,산소 및 이산화탄소에 대한 각각의 기체투과도를 측정하여 기체분리성능을 확인하였는데 이들 기체의 종류에 제한되는 것은 아니다.On the other hand, in order to know the desirable temperature increase rate and final processing temperature for the carbonization process, a thermogravimetry equipped with a mass spectrometer can be used to analyze the type of gas generated in the weight loss curve and the part where the weight loss occurs in real time. This was used to determine the elevated temperature condition and final treatment temperature of the present invention. In addition, the weight loss at each final treatment temperature was divided by the initial weight to compare the thermogravimetric reduction curves. In addition, the conversion rate for the carbonization reaction of the polymer precursor prepared above can be measured using FT-IR and Elemental Analyzer (EA). In the case of FT-IR, the height of the peak of 1360, 1600 cm -1 In the case of EA, it can be confirmed by comparing the relative element content for C, H, O, N, Si. The prepared membrane was confirmed gas separation performance by measuring the gas permeability for helium, nitrogen, oxygen and carbon dioxide, but is not limited to the type of these gases.

비교예 1 내지 3Comparative Examples 1 to 3

4,4'-디아미노 페닐 에테르 분말(1mol)을 플라스크에 넣고 질소분위기 하에서 디메틸아세트아미드(DMAC)에 교반시켜 용해시킨다. 완전히 용해시킨 상기 용액에 파이로멜릭 무수물 분말(1mol)을 천천히 주입한 후 12시간 후에 노란색의 투명한 점도가 있는 용액을 제조한다. 상기의 용액을 테프론판 위에 캐스팅한 후, 건조용 오븐에서 100도에서 2시간, 200도에서 1시간, 300도에서 1시간동안 열경화시킨 후 잔유용매를 완전히 제거하기위하여 60도의 진공오븐에서 24시간동안 진공건조한 후 30-125㎛의 엷은 노란색의 투명한 폴리이미드 필름을 제조한다. 상기에서 제조된 두께 30㎛의 4cm×4cm의 폴리이미드 필름을 평평한 알루미나로 제조된 홀더사이에 넣고 관형 열분해 전기로에서 Ar 기류하에서 1-10℃/min의 승온속도로 각각 600℃, 800℃,및 1000℃까지 열분해하여 탄소분자체막을 제조하였다. 열분해시 사용한 알루미나관의 내부 직경은 12cm였으며 필름과 필름홀더를 열이 가해지는 전기로의 중앙부분에 위치시켜 정착한 온도범위에서 제조하였다. 상기 제조된 탄소분자체막에 대해 헬륨, 산소, 질소, 및 이산화탄소의 투과도를 측정하고, 선택도를 계산하여 표 1에 나타내었다. 기체투과도의 측정은 감압법을 사용하였으며, 투과셀의 상부와 하부의 압력차이는 200torr에서 많게는 760torr까지 조절하였다. 투과도의 계산은 정해진 하부의 부피에서 시간에 따른 하부압의 증가에 대한 기울기로부터 계산하였다. 또한 선택도는 선택기체의 투과도/질소투과도로 나타내었다.4,4'-diamino phenyl ether powder (1 mol) is placed in a flask and dissolved by stirring in dimethylacetamide (DMAC) under a nitrogen atmosphere. After slowly injecting pyromellitic anhydride powder (1 mol) into the completely dissolved solution, a solution having a yellow transparent viscosity was prepared after 12 hours. After casting the above solution on a teflon plate, heat curing for 2 hours at 100 ° C, 1 hour at 200 ° C and 1 hour at 300 ° C in a drying oven, and then in a vacuum oven at 60 ° C to completely remove the residual solvent. After vacuum drying for 24 hours, a pale yellow transparent polyimide film of 30-125 μm was prepared. A polyimide film having a thickness of 30 μm and having a thickness of 4 cm × 4 cm was placed between holders made of flat alumina, and the temperature was increased at 600 ° C. and 800 ° C., respectively, at a temperature of 1-10 ° C./min under Ar air flow in a tubular pyrolysis furnace. Thermal decomposition was carried out to 1000 ℃ to prepare a carbon molecular sieve film. The inner diameter of the alumina tube used during pyrolysis was 12 cm, and the film and the film holder were placed at the center of the electric furnace to which heat was applied, and were manufactured in the temperature range where they were fixed. The permeability of helium, oxygen, nitrogen, and carbon dioxide was measured for the prepared carbon molecular film, and the selectivity was calculated and shown in Table 1 below. Gas permeability was measured using a reduced pressure method, and the pressure difference between the top and bottom of the permeation cell was adjusted from 200 tor to as much as 760 tor. The calculation of permeability was calculated from the slope with respect to the increase in the bottom pressure over time in the defined bottom volume. The selectivity is also expressed as permeability / nitrogen permeability of the select gas.

[표 1]TABLE 1

*투과도단위 (Barrer), 1 Barrer = 10-10×㎤(STP)cm/㎠.sec.cmHgPermeability (Barrer), 1 Barrer = 10 -10 × cm3 (STP) cm / cm2.sec.cmHg

비교예 4 내지 6Comparative Examples 4 to 6

실시예 1 내지 9처럼 제조된 폴리이미드실록산 필름 중 0.2mol의 디메틸실록산올리고머를 함유하는 두께 30㎛의 폴리이미드필름을 4cm×4cm의 크기로 자른 후, 평평한 알루미나로 제조된 홀더사이에 넣고 관형 열분해 전기로에서 Ar 기류하에서 어떠한 승온프로그램없이 최종온도 800℃까지 각각 1℃/min, 5℃/min, 그리고 10℃/min의 단일 승온조건으로 필름을 열분해시켜 탄소분자체막을 제조한다. 열분해시 사용한 알루미나관의 내부 직경은 12cm였으며 필름과 필름홀더를 열이 가해지는 전기로의 중앙부분에 위치시켜 정확한 온도범위에서 제조하였다. 상기 제조된 탄소분자체막에 대해 헬륨, 산소, 질소, 및 이산화탄소의 투과도를 측정하고, 선택도를 계산하여 표 2에 나타내었다. 기체투과도의 측정은 상기 비교예 1 내지 3과 동일한 방법을 사용하였다.Polyimide film having a thickness of 30 μm containing 0.2 mol of dimethylsiloxane oligomer in a polyimide siloxane film prepared as in Examples 1 to 9 was cut to a size of 4 cm × 4 cm, and then sandwiched between holders made of flat alumina and tubular pyrolysis. In the electric furnace, a carbon molecular film was prepared by thermally decomposing the film under a single air temperature condition of 1 ° C./min, 5 ° C./min, and 10 ° C./min, respectively, to a final temperature of 800 ° C. without any temperature raising program under an Ar stream. The inner diameter of the alumina tube used during pyrolysis was 12 cm, and the film and the film holder were placed at the center of the electric furnace to which heat was applied, and thus they were manufactured in the correct temperature range. The permeability of helium, oxygen, nitrogen, and carbon dioxide was measured for the prepared carbon molecular film, and the selectivity was calculated and shown in Table 2. Gas permeability was measured in the same manner as in Comparative Examples 1 to 3.

[표 2]TABLE 2

*투과도단위 (Barrer), 1 Sarrer = 10-10×㎤(STP)cm/㎠.sec.cmHgPermeability (Barrer), 1 Sarrer = 10 -10 × cm3 (STP) cm / cm2.sec.cmHg

실시예 1 내지 9Examples 1-9

양말단에 아민기를 가지고 있는 수평균분자량 900인 디메틸실록산을 리고머(ODMS)(0.2-2mol)을 플라스크에 넣고 질소분위기 하에서 테트라하이드로푸란(THF)에 교반시켜 용해시킨다.완전히 용해시킨 상기 용액에 파이로멜릭 무수물 분말(10mol)을 천천히 주입한 후 상온에서 교반시킨다. 1시간 후에 상기용액에 N-메틸피롤리돈(NMP)에 완전히 녹인 4,4'-디아미노 페닐에테르(9.8-8mol)용액을 일정시간동안 천천히 적하시킨 후, 12시간동안 교반시키면서 반응시켰다. 상기의 용액을 테프론판 위에 캐스팅한 후, 건조용 오븐에서 100도에서 2시간, 200도에서 1시간, 300도에서 1시간동안 열경화시킨 후 잔유용매를 완전히 제거하기위하여 60도의 진공오븐에서 24시간동안 진공건조한 후 30-125㎛의 엷은 노란색의 투명한 폴리이미드실록산 필름을 제조하였다.상기에서 제조된 두께 30㎛의 4㎝×4㎝의 폴리이미드 필름을 평평한 알루미나로 제조된 홀더사이에 넣고 관형 열분해전기로에서 Ar 기류하에서 초기단계에서 10℃/min의 비교적 빠른 승온속도로 400℃까지 올린 후,이산화탄소, 일산화탄소 및 메탄과 같은 분해기체가 지배적으로 나오는 구간인 400℃와 600℃사이에서는 3℃/min의 승온속도를 유지한다. 그후 600℃에서 90분간의 등온단계를 거친후, 다시 3℃/min의 승온속도로 각각 800℃ 및 1000℃까지 열분해하여 각각의 단계에서 1시간이상의 등온단계를 거친 후, 온도를 천천히 내려 규소가 함유된 탄소분자체막을 제조하였다.상기 제조된 규소가 함유된 탄소분자체막에 대해 헬륨, 산소, 질소, 및 이산화탄소의 투과도를 측정하고, 선택도를 계산하여 표 3에 나타내었다. 기체투과도의 측정법 및 질소에 대한 선택도의 계산은 비교예 1 내지 3에서 측정한 방법과 같다.Dimethylsiloxane having a number-average molecular weight of 900 having an amine group at the end of the sock end is dissolved in ODMS (0.2-2 mol) in a flask and stirred in tetrahydrofuran (THF) under a nitrogen atmosphere. Pyromelic anhydride powder (10 mol) is slowly injected and then stirred at room temperature. After 1 hour, 4,4'-diamino phenyl ether (9.8-8 mol) solution completely dissolved in N-methylpyrrolidone (NMP) was slowly added dropwise to the solution for a predetermined time, and then reacted with stirring for 12 hours. After casting the above solution on a teflon plate, heat curing for 2 hours at 100 ° C, 1 hour at 200 ° C and 1 hour at 300 ° C in a drying oven, and then in a vacuum oven at 60 ° C to completely remove the residual solvent. After vacuum drying for 24 hours, a light yellow transparent polyimide siloxane film having a thickness of 30-125 μm was prepared. A 4 cm × 4 cm polyimide film having a thickness of 30 μm prepared above was placed between holders made of flat alumina. In the tubular pyrolysis furnace, after raising the temperature to 400 ° C at a relatively fast temperature increase rate of 10 ° C / min in the initial stage under Ar flow, between 3 ° C and 400 ° C between 400 ° C and 600 ° C, which is a dominant section in which decomposition gases such as carbon dioxide, carbon monoxide and methane are released. Maintain a heating rate of / min. After the isothermal stage at 600 ℃ for 90 minutes, and then pyrolyzes to 800 ℃ and 1000 ℃ at a temperature rising rate of 3 ℃ / min, respectively, after each isothermal step of more than 1 hour in each stage, and then slowly lowered the temperature The carbon-molecular film contained therein was prepared. The permeability of helium, oxygen, nitrogen, and carbon dioxide was measured for the silicon-containing carbon-molecular film, and the selectivity was calculated and shown in Table 3. The measurement of gas permeability and the calculation of selectivity to nitrogen are the same as those measured in Comparative Examples 1 to 3.

[표 3]TABLE 3

*투과도단위 (Barrer), 1 Barrer = 10-10×㎤(STP)㎝/㎠.sec.cmHgPermeability (Barrer), 1 Barrer = 10 -10 × cm3 (STP) cm / cm2.sec.cmHg

표3에서 보듯이, 상기 실시예1 내지 9는 폴리이미드실록산 고분자조성물내에 실록산의 함량을 변화시켜 세 가지의 최종 열분해온도에서의 헬륨, 산소, 질소 및 이산화탄소의 투과도를 측정한 것이다. 실시예 1 - 9를 상기 비교예 1-3와 비교하면, 예를 들어 전구체인 폴리이미드실록산 매트릭스에 실록산의 함량(mol수)이 증가할수록 산소/질소 선택도는 10-23정도의 선택도를 유지하면서 비교예 1-3에 비해산소에 대한 투과도가 180 Barrer까지 증가한 결과를 나타냈다.또한 특별한 승온프로그램없이 단일 승온속도 및 등온단계를 거치지 않고 제조한 비교예 4-6과 똑같은 폴리이미드실록산의 조성을 가지며 상기에 밝힌 승온프로그램을 사용해 제조한 실시예 2의 경우를 비교해보면, 투과도와 선택도 모두 월등히 향상된 결과를 나타내었다.As shown in Table 3, Examples 1 to 9 measure the permeability of helium, oxygen, nitrogen and carbon dioxide at three final pyrolysis temperatures by changing the content of siloxane in the polyimide siloxane polymer composition. Comparing Examples 1 to 9 with Comparative Examples 1-3, for example, as the content (mole number) of the siloxane increases in the polyimide siloxane matrix as a precursor, the oxygen / nitrogen selectivity is about 10-23. In comparison with Comparative Example 1-3, the transmittance to oxygen was increased to 180 Barrer. Also, the composition of polyimide siloxane was the same as that of Comparative Example 4-6, which was prepared without a single temperature increase rate and isothermal step without a special temperature increase program. Comparing the case of Example 2 prepared using the temperature raising program described above, both the transmittance and the selectivity were significantly improved.

실시예 10 내지 12Examples 10-12

상기에서 실시예 1에서 제조된 고분자전구체인 1.0mol의 디메틸실록산올리고머를 함유하는 두께 30㎛의 폴리이미드필름을 4㎝×4㎝의 크기로 자른 후, 평평한 알루미나로 제조된 홀더사이에 넣고 관형 열분해 전기로에서 진공하에서 초기단계에서 10℃/min의 비교적 빠른 승온속도로 400℃까지 올린 후,이산화탄소, 일산화탄소 및 메탄과 같은 분해기체가 지배적으로 나오는 구간인 400℃와 600℃사이에서는 3℃/min의 승온속도를 유지한다. 그후 600℃에서 90분간의 등온단계를 거친후, 다시 3℃/min의 승온속도로 각각 800℃ 및 1000℃까지 열분해하여 각각의 단계에서 1시간이상의 등온단계를 거친 후, 온도를 천천히 내려 규소가 함유된 탄소분자체막을 제조하였다.The polyimide film having a thickness of 30 μm containing 1.0 mol of dimethylsiloxane oligomer, which is the polymer precursor prepared in Example 1, was cut to a size of 4 cm × 4 cm, and then placed between the holders made of flat alumina, and subjected to tubular pyrolysis. After raising the temperature to 400 ° C at a relatively rapid temperature increase rate of 10 ° C / min in the initial stage under vacuum in an electric furnace, the temperature of 3 ° C / min is between 400 ° C and 600 ° C, which is the dominant section in which decomposition gases such as carbon dioxide, carbon monoxide and methane are released. Maintain the rate of temperature increase. After the isothermal stage at 600 ℃ for 90 minutes, and then pyrolyzes to 800 ℃ and 1000 ℃ at a temperature rising rate of 3 ℃ / min, respectively, after each isothermal step of more than 1 hour in each stage, and then slowly lowered the temperature A carbon molecular film containing was prepared.

상기 제조된 탄소분자체막에 대해 헬륨, 산소, 질소, 및 이산화탄소의 투과도를 측정하고, 선택도를 계산하여 표 4에 나타내었다. 기체투과도의 측정은 상기 비교예 1 내지 3과 동일한 방법을 사용하였다.The permeability of helium, oxygen, nitrogen, and carbon dioxide was measured for the prepared carbon molecular film, and the selectivity was calculated and shown in Table 4 below. Gas permeability was measured in the same manner as in Comparative Examples 1 to 3.

[표 4]TABLE 4

*투과도단위 (Barrer), 1 Barrer = 10-10×㎤(STP)㎝/㎠.sec.cmHgPermeability (Barrer), 1 Barrer = 10 -10 × cm3 (STP) cm / cm2.sec.cmHg

상기 표4에서 보는바와 같이 Ar과 같은 비활성기체기류하가 아닌 0.1 기압이하의 진공상태에서 동일한 열분해 승온조건을 사용하였을 때의 투과도와 선택도는 Ar기류하때와 비슷하거나 약간 증가함을 볼 수 있다.As can be seen from Table 4, the permeability and selectivity of the same pyrolysis temperature rise conditions under vacuum of not more than 0.1 atm but not under an inert gas stream such as Ar are similar to or slightly higher than those under Ar stream. have.

이상에서 상술한 바와같이 본 발명은, 일반적으로 방향족 디아민과 방향족 무수물로만 제조되어진 폴리이미드를 전구체로하여 진공분위기나 비활성분위기에서 열분해시켜 제조한 탄소분자체막은 최종열분해온도가 높아질수록 기체에 대한 선택도는 증가하지만 투과도는 상기 표 1에서와 같이 산소의 경우 투과도가 0.96 Barrer까지 크게 감소함을 알 수 있다. 하지만, 실록산을 함유하는 폴리이미드를 전구체로하여 진공분위기나 비활성분위기에서 열분해시켜 제조한 규소함유 탄소분자체막은 일반적으로 전구체인 폴리이미드실록산 매트릭스내에 실록산의 함량이 증가할수록 최종 제조물인 규소함유 탄소분자체막의 기체투과도가 상당히 향상된 결과를 나타내었고, 이와 동시에 기체 선택도는 산소/질소의 경우 10이상을 유지하는 결과를 나타내었다.As described above, the present invention is a carbon molecular film prepared by pyrolysis in a vacuum or inert atmosphere using polyimide, which is generally made only of aromatic diamine and aromatic anhydride, as a precursor. Although the permeability is increased as shown in Table 1 it can be seen that the permeability is greatly reduced to 0.96 Barrer. However, silicon-containing carbon molecular film prepared by pyrolysis in a vacuum or inert atmosphere using polyimide containing siloxane as a precursor generally increases the amount of siloxane in the polyimide siloxane matrix as a precursor. The gas permeability was significantly improved, and at the same time, the gas selectivity was maintained at 10 or more for oxygen / nitrogen.

Claims (6)

규소함유 탄소분자체 분리막의 고분자 전구체인 폴리이미드실록산을 제조하는 단계;Preparing a polyimide siloxane, which is a polymer precursor of a silicon-containing carbon molecule separator; 상기 폴리이미드실록산 고분자막을 5-10℃/min의 승온속도로 400℃까지 승온시키는 단계;Heating the polyimide siloxane polymer film to 400 ° C. at a temperature rising rate of 5-10 ° C./min; 상기 400℃까지 승온시킨 고분자막을, 다시, 1 - 3℃/min의 승온속도로 550 - 600℃까지 승온시킨 후 같은 온도범위에서 1 - 2시간의 등온과정을 거치는 단계; 및The polymer membrane is heated up to 400 ℃, again, the temperature is raised to 550-600 ℃ at a temperature increase rate of 1-3 ℃ / min and subjected to an isothermal process of 1-2 hours in the same temperature range; And 상기 등온과정을 거친 안정화된 분리막을 1 - 5℃/min의 승온속도로 800℃와 1000℃까지 각각 승온시켜 같은 온도에서 1 - 2시간의 등온과정을 거쳐 탄소화 시키는 단계를 포함하는 것을 특징으로 하는 규소함유 탄소분자체분리막의 제조방법.It characterized in that it comprises the step of carbonizing the stabilized separation membrane undergoing the isothermal process to 800 ℃ and 1000 ℃ at a temperature increase rate of 1-5 ℃ / min through an isothermal process of 1-2 hours at the same temperature Method for producing a silicon-containing carbon molecular sieve separation membrane. 삭제delete 제1항에 있어서, 규소함유 탄소분자체분리막의 고분자 전구체인 폴리이미드실록산 중합시 사용하는 용매는 N-메틸피롤리돈(NMP) 및 테트라히드로퓨란(THF)의 혼합용매임을 특징으로 하는 규소함유 탄소분자체분리막의 제조방법.The silicon-containing carbon powder according to claim 1, wherein the solvent used for the polymerization of polyimide siloxane, which is a polymer precursor of the silicon-containing carbon molecular sieve separation membrane, is a mixed solvent of N-methylpyrrolidone (NMP) and tetrahydrofuran (THF). Method for producing a self separation membrane. 제1항에 있어서, 상기 규소함유 탄소분자체 분리막의 고분자전구체인 폴리이미드실록산의 실록산 함유량이 전체 단량체의 10 mol%이내의 범위에 있는 것을 특징으로 하는 규소함유 탄소분자체 분리막의 제조방법.The method of producing a silicon-containing carbon molecular sieve membrane according to claim 1, wherein the siloxane content of the polyimide siloxane, which is a polymer precursor of the silicon-containing carbon molecular sieve membrane, is within a range of 10 mol% of all monomers. 제1항에 있어서, 상기 탄소화 단계가 0.1 기압이하의 진공상태 또는 10cc/min이상의 비활성 기체 분위기하에서 수행됨을 특징으로 하는 규소함유 탄소분자체 분리막의 제조방법.The method of claim 1, wherein the carbonization step is performed under a vacuum of 0.1 atm or less or in an inert gas atmosphere of 10 cc / min or more. 삭제delete
KR10-2001-0026866A 2001-05-16 2001-05-16 Method for manufacturing silicon-containing carbon molecular sieve membrane for gas separation KR100450211B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0026866A KR100450211B1 (en) 2001-05-16 2001-05-16 Method for manufacturing silicon-containing carbon molecular sieve membrane for gas separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0026866A KR100450211B1 (en) 2001-05-16 2001-05-16 Method for manufacturing silicon-containing carbon molecular sieve membrane for gas separation

Publications (2)

Publication Number Publication Date
KR20020087821A KR20020087821A (en) 2002-11-23
KR100450211B1 true KR100450211B1 (en) 2004-09-24

Family

ID=27705205

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0026866A KR100450211B1 (en) 2001-05-16 2001-05-16 Method for manufacturing silicon-containing carbon molecular sieve membrane for gas separation

Country Status (1)

Country Link
KR (1) KR100450211B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101230653B1 (en) * 2012-05-11 2013-02-06 디에이치테크 주식회사 Method for manufacturing carbon membrane for gas seperation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068626A1 (en) * 2004-12-23 2006-06-29 National University Of Singapore A method of treating a permeable membrane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04193334A (en) * 1990-11-27 1992-07-13 Ube Ind Ltd Production of asymmetric hollow carbon fiber membrane
JPH057750A (en) * 1991-07-05 1993-01-19 Sumitomo Bakelite Co Ltd Composite membrane for separating substance
JPH05220360A (en) * 1992-02-07 1993-08-31 Ube Ind Ltd Asymmetric hollow-fiber carbon membrane and its production
JPH1099664A (en) * 1996-10-02 1998-04-21 Agency Of Ind Science & Technol Carbonized membrane for gas separation
JP2000342944A (en) * 1999-03-05 2000-12-12 Ube Ind Ltd Partially carbonized asymmetric hollow fiber separation membrane, production thereof and gas separation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04193334A (en) * 1990-11-27 1992-07-13 Ube Ind Ltd Production of asymmetric hollow carbon fiber membrane
JPH057750A (en) * 1991-07-05 1993-01-19 Sumitomo Bakelite Co Ltd Composite membrane for separating substance
JPH05220360A (en) * 1992-02-07 1993-08-31 Ube Ind Ltd Asymmetric hollow-fiber carbon membrane and its production
JPH1099664A (en) * 1996-10-02 1998-04-21 Agency Of Ind Science & Technol Carbonized membrane for gas separation
JP2000342944A (en) * 1999-03-05 2000-12-12 Ube Ind Ltd Partially carbonized asymmetric hollow fiber separation membrane, production thereof and gas separation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101230653B1 (en) * 2012-05-11 2013-02-06 디에이치테크 주식회사 Method for manufacturing carbon membrane for gas seperation

Also Published As

Publication number Publication date
KR20020087821A (en) 2002-11-23

Similar Documents

Publication Publication Date Title
Budd et al. Highly permeable polymers for gas separation membranes
KR101025304B1 (en) Hollow fiber, dope composition for forming hollow fiber, and method of preparing hollow fiber using the same
Pérez-Francisco et al. CMS membranes from PBI/PI blends: Temperature effect on gas transport and separation performance
JP5265763B2 (en) Hollow fiber, dope solution composition for forming hollow fiber, and method for producing hollow fiber using the same
Sim et al. High performance carbon molecular sieve membranes derived from hyperbranched polyimide precursors for improved gas separation applications
CN107207726B (en) Method for producing thermally rearranged PBX, thermally rearranged PBX and membrane
JPH06269648A (en) Polyimide gas separation membrane for carbon dioxide thickening
US20110048229A1 (en) Solvent-resistant asymmetric hollow fiber gas separation membrane, and method for production thereof
JP2006231095A (en) Carbonized film and its manufacturing method
Kawakami et al. Gas permeability and selectivity through asymmetric polyimide membranes
KR102447406B1 (en) Improved method for making carbon molecular sieve hollow fiber membranes
WO2012167114A2 (en) Polymer synthesis and thermally rearranged polymers as gas separation membranes
CN113996193A (en) Copolyimide membrane, preparation method and application thereof in helium purification
Scholes et al. Thermal rearranged poly (imide-co-ethylene glycol) membranes for gas separation
JPH01194905A (en) Separation membrane of polyimide
Lee et al. A Hydrogen‐permselective silicon oxycarbide membrane derived from polydimethylsilane
Li et al. Pore structure and permeance of amorphous Si-CO membranes with high durability at elevated temperature
Xin et al. Development of high performance carbon molecular sieve membranes via tuning the side groups on PI precursors
KR100263333B1 (en) Preparing method of a porous carbon molecular sieve separation membrane
KR100450211B1 (en) Method for manufacturing silicon-containing carbon molecular sieve membrane for gas separation
KR102086921B1 (en) Hybrid polymeric hollow fiber membrane, carbon molecular sieve hollow fiber membrane, and processes for fabricating the same
KR100638323B1 (en) Silica/porous hollow fiber carbonmolecular sieve membrane for hydrogen gas separation and preparation method thereof
KR20150144848A (en) Gas separation membrane for oxygen gas and nitrogen gas, and the method for preparing thereof
CA2930843C (en) Crosslinked, thermally rearranged poly(benzoxazole-co-imide), gas separation membranes comprising the same and preparation method thereof
Song et al. Preparation of C/CMS composite membranes derived from Poly (furfuryl alcohol) polymerized by iodine catalyst

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110711

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20120710

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee