JP2626203B2 - Manufacturing method of electrophotographic photoreceptor - Google Patents
Manufacturing method of electrophotographic photoreceptorInfo
- Publication number
- JP2626203B2 JP2626203B2 JP20630790A JP20630790A JP2626203B2 JP 2626203 B2 JP2626203 B2 JP 2626203B2 JP 20630790 A JP20630790 A JP 20630790A JP 20630790 A JP20630790 A JP 20630790A JP 2626203 B2 JP2626203 B2 JP 2626203B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- counter electrode
- photoconductor
- electrode
- vacuum chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Photoreceptors In Electrophotography (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、グロー放電等により感光体基板の表面に感
光層を形成する電子写真感光体の製造方法に関する。Description: TECHNICAL FIELD The present invention relates to a method for manufacturing an electrophotographic photoreceptor in which a photosensitive layer is formed on the surface of a photoreceptor substrate by glow discharge or the like.
(従来の技術) 従来、導電性基板上に感光層を有する電子写真感光体
の製造方法としては、グロー放電分解法、スパッタリン
グ法、真空蒸着法等の方法によるものが知られており、
特にグロー放電分解法がしばしば利用されている。(Prior Art) Conventionally, as a method for producing an electrophotographic photosensitive member having a photosensitive layer on a conductive substrate, methods such as a glow discharge decomposition method, a sputtering method, and a vacuum deposition method are known.
In particular, the glow discharge decomposition method is often used.
しかし、グロー放電分解法によって感光体上に感光層
を形成させる場合、原料ガスが分解して生じる微粉体が
感光層堆石中に該堆積面上に付着して、得られる感光層
に欠陥を生じ、電子写真装置を用いて得られる画像に白
点あるいは黒点となって現れるという問題があった。However, when the photosensitive layer is formed on the photoreceptor by the glow discharge decomposition method, the fine powder generated by the decomposition of the raw material gas adheres to the deposition surface in the photosensitive layer mound, causing defects in the obtained photosensitive layer. As a result, there is a problem that an image obtained by using an electrophotographic apparatus appears as a white point or a black point.
また、原料ガスが分解して生じる微粉体は対向電極お
よび真空槽内部壁面に付着/堆積するため、成膜終了後
の微粉体除去作業の作業時間が長くなり、生産性が低く
なるという問題があった。In addition, since the fine powder generated by the decomposition of the raw material gas adheres / deposits on the counter electrode and the inner wall surface of the vacuum chamber, the work time of the fine powder removing operation after the completion of the film formation becomes longer, and the productivity becomes lower. there were.
従来このような問題を解決するために、特開昭62−13
6572号公報には感光体基板を対向電極側からみて完全に
同一の電位に保持し、感光体基板延長部の長さが対向電
極とほぼ同じにした製造方法が提案されている。また、
電極に付着/堆積する微粉体量を低減させるために特開
昭59−193265号公報には金網状電極を用いた製造装置、
特開昭61−15973号公報には電極を加熱する方法が提案
されている。Conventionally, in order to solve such a problem, Japanese Patent Laid-Open No.
Japanese Patent No. 6572 proposes a manufacturing method in which the photosensitive member substrate is kept at the same potential as seen from the counter electrode side, and the length of the photosensitive member substrate extension is substantially the same as that of the counter electrode. Also,
In order to reduce the amount of fine powder adhering / depositing on the electrode, Japanese Patent Application Laid-Open No. 59-193265 discloses a manufacturing apparatus using a wire mesh electrode,
JP-A-61-15973 proposes a method of heating an electrode.
(発明が解決しようとする課題) ところが、上記の感光体基板延長部の長さが対向電極
とほぼ同じにした装置では、対向電極長手方向に存在す
る放電領域と非放電領域の境界部分で不均一放電が起こ
り、微粉体発生が十分に防止できないといった問題点を
残していた。(Problems to be Solved by the Invention) However, in the above-described apparatus in which the length of the photoconductor substrate extension is substantially the same as the length of the counter electrode, the length of the photoconductor substrate is not equal to the length of the counter electrode at the boundary between the discharge region and the non-discharge region. There remains a problem that uniform discharge occurs and generation of fine powder cannot be sufficiently prevented.
また、上記の金網状電極や電極を加熱する方法では真
空層内部全体にわたっての微粉体を低減することは困難
であった。Further, it has been difficult to reduce the fine powder over the entire inside of the vacuum layer by the above-described wire mesh electrode or the method of heating the electrode.
本発明は、従来技術のおける上記問題を解決するため
になされたものであって、反応器内部の微粉体量を低減
できる電子写真感光体の製造方法を提供することにあ
る。The present invention has been made in order to solve the above-mentioned problems in the prior art, and it is an object of the present invention to provide a method of manufacturing an electrophotographic photoreceptor capable of reducing the amount of fine powder inside a reactor.
他の目的は、欠陥のない耐刷性に優れた電子写真感光
体の製造方法を提供することにある。Another object is to provide a method for producing an electrophotographic photoreceptor having no defects and excellent in printing durability.
(課題を解決するための手段) 本発明は、真空槽中に感光体用基板を載置する感光体
基板支持体と感光体基板支持体に対向して設けられた対
向電極とを少なくとも有し、感光体基板の上下に脱着可
能な導電体のホルダーを該基板と該ホルダーの全長lが
対向電極全長Lに対して L+20≦l ……(単位mm) になるように嵌合し、前記対向電極と感光体用基板との
間でグロー放電を起こし、基板上に感光層を形成する電
子写真感光体の製造方法であることを特徴とする。以
下、本発明についての詳細を説明する。(Means for Solving the Problems) The present invention has at least a photoconductor substrate support for mounting a photoconductor substrate in a vacuum chamber and a counter electrode provided to face the photoconductor substrate support. A conductive holder which can be attached to and detached from the upper and lower surfaces of the photosensitive substrate is fitted so that the total length l of the substrate and the holder is L + 20 ≦ l (unit: mm) with respect to the total length L of the counter electrode. A method for producing an electrophotographic photoreceptor in which a glow discharge is caused between an electrode and a substrate for a photoreceptor to form a photosensitive layer on the substrate. Hereinafter, the details of the present invention will be described.
第1図は、本発明が適用できる容量結合型プラズマCV
D装置の一例である。図中1は真空槽であり、その内部
に接地電位に保持された、モーター8により回転する円
筒状の感光体基板支持体が設けられている。この感光体
基板支持体の周りには複数のガス噴出孔を設けた剛性の
金属よりなる中空対向電極3が感光体支持体を取り囲む
ように配置されている。この中空対向電極は高周波電源
から高周波電圧が印加されており、その外側は金属より
なるシールド板4で覆われている。中空対向電極の外側
には、該対向電極を加熱するための加熱手段7が設けら
れている。該加熱手段は加熱コイルからなりシールド板
上に設けられているか或るいは加熱ランプがシールド板
近傍に配設されたものでもよい。一方、感光体基板支持
体の内部には、上記加熱手段とは独立に加熱装置6が設
けられている。作製される感光層は単層構造のものでも
よく、また電荷発生層と電荷輸送層とに機能分離された
積層構造のものでもよい。更にまた、電荷注入阻止層や
保護層を設けたものであってもよい。FIG. 1 shows a capacitively coupled plasma CV to which the present invention can be applied.
It is an example of a D device. In FIG. 1, reference numeral 1 denotes a vacuum chamber, in which a cylindrical photoconductor substrate support rotated by a motor 8 and held at a ground potential is provided. Around this photoconductor substrate support, a hollow counter electrode 3 made of a rigid metal provided with a plurality of gas ejection holes is arranged so as to surround the photoconductor support. A high-frequency voltage is applied to this hollow counter electrode from a high-frequency power supply, and the outside thereof is covered with a shield plate 4 made of metal. Outside the hollow counter electrode, a heating means 7 for heating the counter electrode is provided. The heating means may be a heating coil provided on a shield plate, or a heating lamp may be provided near the shield plate. On the other hand, a heating device 6 is provided inside the photoconductor substrate support independently of the heating means. The photosensitive layer to be produced may have a single-layer structure or a laminated structure in which a charge generation layer and a charge transport layer are functionally separated. Furthermore, a layer provided with a charge injection blocking layer and a protective layer may be used.
特に、基板とその上下に嵌合されたホルダーの全長が
対向電極の端部より少なくとも10mmそれぞれの対向電極
長手方向に突出しているホルダーを用いることが微粉体
生成に関して著しい低減効果が得られるので、好まし
い。更に、対向電極が複数のガス噴出孔を有する剛性の
金属よりなる中空円筒形状であり、かつ該対向電極を加
熱する手段を有することにより、反応器内部、特に対向
電極およびその近傍の微粉体生成をより抑制出来る点で
好ましい。In particular, the use of a holder in which the entire length of the holder fitted above and below the substrate and projecting in the longitudinal direction of the counter electrode of at least 10 mm from the end of the counter electrode has a remarkable reduction effect on fine powder generation, preferable. Furthermore, since the counter electrode has a hollow cylindrical shape made of a rigid metal having a plurality of gas ejection holes and has a means for heating the counter electrode, it is possible to generate fine powder inside the reactor, particularly the counter electrode and its vicinity. Is preferred in that it can further suppress
本発明においてLが式を満足しない場合は中空対向
電極と感光体基板側のグロー放電領域の端部において、
不均一放電が発生し微粉体が生じ、感光層に欠陥や微粉
体の付着が生じることになる。In the present invention, when L does not satisfy the expression, at the end of the hollow counter electrode and the end of the glow discharge region on the photoconductor substrate side,
A non-uniform discharge is generated to generate fine powder, which causes defects and adhesion of fine powder to the photosensitive layer.
上記のプラズマCVD装置を用いて電子写真感光体を製
造するためには、感光体基板支持体側に下部ホルダー1
1、感光体基板12、上部ホルダー13を順次載置し、下部
ホルダーと感光体基板と上部ホルダーの全長lが、中空
対向電極3の長手方向の長さLに対して L+20≦l ……(単位mm) を満たすようにそれぞれを嵌合し、該対向電極に高周波
電圧を印加し真空槽内にシランまたはジシラン誘導体等
の原料ガスを導入し、グロー放電分解することによっ
て、該感光体用基板上に非晶質ケイ素膜等の感光層を成
膜することができる。To manufacture an electrophotographic photoreceptor using the above-described plasma CVD apparatus, a lower holder 1 is provided on the photoreceptor substrate support side.
1. The photosensitive member substrate 12 and the upper holder 13 are sequentially placed, and the total length 1 of the lower holder, the photosensitive member substrate and the upper holder is L + 20 ≦ l with respect to the length L of the hollow counter electrode 3 in the longitudinal direction. (Unit: mm) by fitting each other, applying a high-frequency voltage to the counter electrode, introducing a raw material gas such as a silane or disilane derivative into the vacuum chamber, and decomposing by glow discharge to obtain the substrate for the photoreceptor. A photosensitive layer such as an amorphous silicon film can be formed thereon.
また、感光体基板支持体は接地電位に保持されてお
り、そしてその内部には加熱装置が設けられている。感
光体基板支持体上に感光体基板を載置し真空槽内部を減
圧にし、該基板の温度を所望の値に上昇させた後、原料
ガス、例えばシランガスをボンベからガス導入管5によ
り真空槽内部に導入し感光体基板と中空得対向電極との
間でグロー放電をおこさせて、該感光体基板上に感光膜
を堆積形成させる。真空槽内部の反応ガスおよび未反応
ガスは、真空ポンプにより排気系10より除去される。Further, the photoreceptor substrate support is maintained at a ground potential, and a heating device is provided therein. The photosensitive substrate is placed on the photosensitive substrate support, the inside of the vacuum chamber is evacuated, and the temperature of the substrate is raised to a desired value. A glow discharge is caused between the photosensitive member substrate and the hollow counter electrode, and a photosensitive film is deposited and formed on the photosensitive member substrate. Reacted gas and unreacted gas inside the vacuum chamber are removed from the exhaust system 10 by a vacuum pump.
本発明のホルダーは導電性であれば良く、金属もしく
は導電性ガラスなどを用いることが出来る。The holder of the present invention only needs to be conductive, and metal or conductive glass can be used.
(作用) 本発明の装置は中空対向電極3の長手方向の長さより
も下部ホルダーの感光体基板と上部ホルダーの全長Lを
短くし、所定の範囲にしたので、両端の不均一放電が起
きにくくなり、従って、不均一放電により生じる微粉体
が発生しなくなる。(Function) In the device of the present invention, the total length L of the photosensitive member substrate of the lower holder and the upper holder is made shorter than the length of the hollow counter electrode 3 in the longitudinal direction, and is set within a predetermined range. Therefore, fine powder generated by non-uniform discharge is not generated.
(実施例) 実施例1 第2図に示すプラズマCVD装置に55mmの下部ホルダ
ー、410mmの感光体基板、55mmの上部ホルダーを感光体
基板支持体上に順次載積した(l=520mm)。対向電極
の長手方向の寸法は500mm(L=500mm)で、該対向電極
の長手方向の中点と感光体基板の長手方向の中点が一致
するように配設した。該対向電極はステンレス製で直径
3mmの穴が全面にわたって千鳥抜きされたものである。Example 1 In the plasma CVD apparatus shown in FIG. 2, a 55 mm lower holder, a 410 mm photoconductor substrate, and a 55 mm upper holder were sequentially mounted on a photoconductor substrate support (l = 520 mm). The length of the opposing electrode in the longitudinal direction was 500 mm (L = 500 mm), and the opposing electrode was arranged such that the midpoint in the longitudinal direction of the opposing electrode coincided with the midpoint in the longitudinal direction of the photosensitive member substrate. The counter electrode is made of stainless steel and has a diameter
A 3mm hole is staggered over the entire surface.
真空槽内部を約1Torrに減圧し、窒素雰囲気下で感光
体基板および対向電極をそれぞれ250℃、200℃まで加熱
する。温度が一定になった後、高真空排気をおこない電
荷注入阻止層、光導電層、表面層を表1の成膜条件で順
次堆積した。The pressure inside the vacuum chamber is reduced to about 1 Torr, and the photosensitive substrate and the counter electrode are heated to 250 ° C. and 200 ° C. in a nitrogen atmosphere, respectively. After the temperature became constant, high-vacuum evacuation was performed, and a charge injection blocking layer, a photoconductive layer, and a surface layer were sequentially deposited under the film forming conditions shown in Table 1.
成膜後の真空槽内部には微粉体が堆積しており、真空
層内部のいくつかの箇所においてサンプリングした微粉
体の堆積量の合計は表2のようであった。Fine powder was deposited inside the vacuum chamber after the film formation, and the total amount of the deposited fine powder sampled at several locations inside the vacuum layer was as shown in Table 2.
また、成膜された感光体をカールソン方式の複写機に
搭載して全面黒色の画像を複写し、得られた複写物の25
7mm×364mmの領域内に存在する白点の個数を数えたとこ
ろ表3のようになった。The photoconductor on which the film was formed was mounted on a Carlson type copier to copy the entire black image.
Table 3 shows the number of white spots in the area of 7 mm × 364 mm.
実施例2 第2図に示すプラズマCVD装置に60mmの下部ホルダ
ー、410mmの感光体基板、60mmの上部ホルダーを感光体
基板支持体上に順次載積した(l=530mm)。対向電極
の長手方向の寸法は500mm(L=500mm)で、該対向電極
の長手方向の中点と感光体基板の長手方向の中点が一致
するように配設した。該対向電極はステンレス製で直径
3mmの穴が全面にわたって千鳥抜きされたものである。Example 2 A 60 mm lower holder, a 410 mm photoconductor substrate, and a 60 mm upper holder were sequentially mounted on a photoconductor substrate support in the plasma CVD apparatus shown in FIG. 2 (l = 530 mm). The length of the opposing electrode in the longitudinal direction was 500 mm (L = 500 mm), and the opposing electrode was arranged such that the midpoint in the longitudinal direction of the opposing electrode coincided with the midpoint in the longitudinal direction of the photosensitive member substrate. The counter electrode is made of stainless steel and has a diameter
A 3mm hole is staggered over the entire surface.
真空槽内部を約1Torrに減圧し、窒素雰囲気下で感光
体基板を250℃まで加熱する。このとき対向電極の加熱
は行わなかった。感光体基板の温度が一定になった後、
高真空排気を行い電荷注入阻止槽、光導電層、表面層を
表1の成膜条件で順次堆積した。The pressure inside the vacuum chamber is reduced to about 1 Torr, and the photosensitive substrate is heated to 250 ° C. in a nitrogen atmosphere. At this time, the counter electrode was not heated. After the temperature of the photoconductor substrate becomes constant,
After performing high vacuum evacuation, the charge injection blocking tank, the photoconductive layer, and the surface layer were sequentially deposited under the film forming conditions shown in Table 1.
成膜後の真空槽内部には微粉体が堆積しており、真空
槽内部のいくつかの箇所においてサンプリングした微粉
体の堆積量の合計は表2のようであった。Fine powder was deposited inside the vacuum chamber after film formation, and the total amount of the deposited fine powder sampled at several points inside the vacuum chamber was as shown in Table 2.
また、成膜された感光体をカールソン方式の複写機に
搭載して全面黒色の画像を複写し、得られた複写物の25
7mm×364mmの領域内に存在する白点の個数を数えたとこ
ろ表3のようになった。The photoconductor on which the film was formed was mounted on a Carlson type copier to copy the entire black image.
Table 3 shows the number of white spots in the area of 7 mm × 364 mm.
実施例3 第4図に示すプラズマCVD装置に65mmの下部ホルダ
ー、410mmの感光体基板、65mmの上部ホルダーを感光体
基板支持体上に順次載積した(l=540mm)。対向電極
の長手方向の寸法は500mm(L=500mm)で、該対向電極
の長手方向の中点と感光体基板の長手方向の中点が一致
するように配設した。該対向電極はステンレス製で直径
3mmの穴が5mm間隔で電極長手方向に一列だけ空いている
ものである。Example 3 A 65 mm lower holder, a 410 mm photoconductor substrate, and a 65 mm upper holder were sequentially mounted on a photoconductor substrate support in the plasma CVD apparatus shown in FIG. 4 (l = 540 mm). The length of the opposing electrode in the longitudinal direction was 500 mm (L = 500 mm), and the opposing electrode was arranged such that the midpoint in the longitudinal direction of the opposing electrode coincided with the midpoint in the longitudinal direction of the photosensitive member substrate. The counter electrode is made of stainless steel and has a diameter
In this case, 3 mm holes are provided in a row in the longitudinal direction of the electrode at intervals of 5 mm.
真空槽内部を約1Torrに減圧し、窒素雰囲気下で感光
体基板および対向電極をそれぞれ250℃、200℃まで加熱
する。温度が一定になった後、高真空排気を行い電荷注
入阻止層、光導電層、表面層を表1の成膜条件で順次堆
積した。The pressure inside the vacuum chamber is reduced to about 1 Torr, and the photosensitive substrate and the counter electrode are heated to 250 ° C. and 200 ° C. in a nitrogen atmosphere, respectively. After the temperature became constant, high-vacuum evacuation was performed to sequentially deposit a charge injection blocking layer, a photoconductive layer, and a surface layer under the film forming conditions shown in Table 1.
成膜後の真空槽内部には微粉体が堆積しており、真空
槽内部のいくつかの箇所においてサンプリングした微粉
体の堆積量の合計は表2のようであった。Fine powder was deposited inside the vacuum chamber after film formation, and the total amount of the deposited fine powder sampled at several points inside the vacuum chamber was as shown in Table 2.
また、成膜された感光体をカールソン方式の複写機に
搭載して全面黒色の画像を複写し、得られた複写物の25
7mm×364mmの領域内に存在する白点の個数を数えたとこ
ろ表3のようになった。The photoconductor on which the film was formed was mounted on a Carlson type copier to copy the entire black image.
Table 3 shows the number of white spots in the area of 7 mm × 364 mm.
比較例1 第5図に示すプラズマCVD装置に55mmの下部ホルダ
ー、410mmの感光体基板、45mmの上部ホルダーを感光体
基板支持体上に順次載積した(l=510mm)。対向電極
の長手方向の寸法は500mm(L=500mm)で、該対向電極
の長手方向の中点と感光体基板の長手方向の中点が一致
するように配設した。該対向電極はステンレス製で直径
3mmの穴が5mm間隔で電極長手方向に一列だけ空いている
ものである。Comparative Example 1 In the plasma CVD apparatus shown in FIG. 5, a 55 mm lower holder, a 410 mm photoconductor substrate, and a 45 mm upper holder were sequentially mounted on a photoconductor substrate support (l = 510 mm). The length of the opposing electrode in the longitudinal direction was 500 mm (L = 500 mm), and the opposing electrode was arranged such that the midpoint in the longitudinal direction of the opposing electrode coincided with the midpoint in the longitudinal direction of the photosensitive member substrate. The counter electrode is made of stainless steel and has a diameter
In this case, 3 mm holes are provided in a row in the longitudinal direction of the electrode at intervals of 5 mm.
真空槽内部を約1Torrに減圧し、窒素雰囲気下で感光
体基板を250℃まで加熱する。対向電極の加熱は行わな
かった。感光体基板の温度が一定になった後、高真空排
気を行い電荷注入阻止層、光導電層、表面層を表1の成
膜条件で順次堆積した。The pressure inside the vacuum chamber is reduced to about 1 Torr, and the photosensitive substrate is heated to 250 ° C. in a nitrogen atmosphere. The counter electrode was not heated. After the temperature of the photoreceptor substrate became constant, high-vacuum evacuation was performed to sequentially deposit a charge injection blocking layer, a photoconductive layer, and a surface layer under the film forming conditions shown in Table 1.
成膜後の真空槽内部には微粉体が堆積しており、真空
槽内部のいくつかの箇所においてサンプリングした微粉
体の堆積量の合計は表2のようであった。Fine powder was deposited inside the vacuum chamber after film formation, and the total amount of the deposited fine powder sampled at several points inside the vacuum chamber was as shown in Table 2.
また、成膜された感光体をカールソン方式の複写機に
搭載して全面黒色の画像を複写し、得られた複写物の25
7mm×364mmの領域内に存在する白点の個数を数えたとこ
ろ表3のようになった。The photoconductor on which the film was formed was mounted on a Carlson type copier to copy the entire black image.
Table 3 shows the number of white spots in the area of 7 mm × 364 mm.
比較例2 第3図に示すプラズマCVD装置に55mmの下部ホルダ
ー、410mmの感光体基板、45mmの上部ホルダーを感光体
基板支持体上に順次載積した(l=510mm)。対向電極
の長手方向の寸法は500mm(L=500mm)で、該対向電極
の長手方向の中点と感光体基板の長手方向の中点が一致
するように配設した。該対向電極はステンレス製で直径
3mmの穴が全面にわたって千鳥抜きされたものである。Comparative Example 2 A 55 mm lower holder, a 410 mm photoreceptor substrate, and a 45 mm upper holder were sequentially mounted on a photoreceptor substrate support in the plasma CVD apparatus shown in FIG. 3 (l = 510 mm). The length of the opposing electrode in the longitudinal direction was 500 mm (L = 500 mm), and the opposing electrode was arranged such that the midpoint in the longitudinal direction of the opposing electrode coincided with the midpoint in the longitudinal direction of the photosensitive member substrate. The counter electrode is made of stainless steel and has a diameter
A 3mm hole is staggered over the entire surface.
真空槽内部を約1Torrに減圧し、窒素雰囲気下で感光
体基板および対向電極をそれぞれ250℃、200℃まで加熱
する。温度が一定になった後、高真空排気をおこない電
荷注入阻止層、光導電層、表面層を表1の成膜条件で順
次堆積した。The pressure inside the vacuum chamber is reduced to about 1 Torr, and the photosensitive substrate and the counter electrode are heated to 250 ° C. and 200 ° C. in a nitrogen atmosphere, respectively. After the temperature became constant, high-vacuum evacuation was performed, and a charge injection blocking layer, a photoconductive layer, and a surface layer were sequentially deposited under the film forming conditions shown in Table 1.
成膜後の真空槽内部には微粉体が堆積しており、真空
槽内部のいくつかの箇所においてサンプリングした微粉
体の堆積量の合計は表2のようであった。 Fine powder was deposited inside the vacuum chamber after film formation, and the total amount of the deposited fine powder sampled at several points inside the vacuum chamber was as shown in Table 2.
また、成膜された感光体をカールソン方式の複写機に
搭載して全面黒色の画像を複写し、得られた複写物の25
7mm×364mmの領域内に存在する白点の個数を数えたとこ
ろ表3のようになった。 The photoconductor on which the film was formed was mounted on a Carlson type copier to copy the entire black image.
Table 3 shows the number of white spots in the area of 7 mm × 364 mm.
(発明の効果) 本発明は、上述したように感光体基板上部および下部
のホルダーと感光体基板からなる全長を特定の範囲にす
ることにより、感光体基板側と対向電極の間でシランま
たはジシラン誘導体等の分解ガスの放電分解の際に発生
する不均一放電が解消され、真空槽内部壁面への微粉体
の堆積量が低減できる。従って、本法によって作製され
る感光体は、微粉体付着に基づく欠陥発生が極めて少な
くなり、その結果、この感光体を用いて欠陥のない画像
が得ることが可能になる。また、真空槽内部壁面への微
粉体堆積量が低減することにより、感光体作製後の真空
槽のクリーニング性が向上し生産性が向上するといった
効果を奏するものである。 (Effects of the Invention) As described above, the present invention provides a silane or disilane between the photoconductor substrate side and the counter electrode by setting the total length of the upper and lower holders of the photoconductor substrate and the photoconductor substrate to a specific range. The non-uniform discharge generated at the time of discharge decomposition of the decomposition gas such as a derivative is eliminated, and the amount of fine powder deposited on the inner wall surface of the vacuum chamber can be reduced. Therefore, the photoreceptor produced by this method has extremely few defects due to the attachment of fine powder, and as a result, it is possible to obtain a defect-free image using this photoreceptor. Further, by reducing the amount of the fine powder deposited on the inner wall surface of the vacuum chamber, the cleaning performance of the vacuum chamber after the photoreceptor is manufactured is improved and the productivity is improved.
第1図はプラズマCVD装置の一例であり、第2図、第4
図は本発明に係わる電極部近の構成図、また第3図、第
5図それぞれは比較例の電極部分の構成図である。 1……真空槽、2……感光体基板支持体、3……対向電
極、4……シールド板、5……ガス導入管、6……基板
加熱ヒーター、7……電極加熱ヒーター、8……基板回
転モーター、9……高周波電源、10……真空ポンプ、11
……下部ホルダー、12……感光体基板、13……上部ホル
ダー。FIG. 1 is an example of a plasma CVD apparatus, and FIGS.
The figure is a configuration diagram near the electrode portion according to the present invention, and FIGS. 3 and 5 are configuration diagrams of the electrode portion of the comparative example. DESCRIPTION OF SYMBOLS 1 ... Vacuum chamber, 2 ... Photoconductor board | substrate support, 3 ... Counter electrode, 4 ... Shield plate, 5 ... Gas introduction pipe, 6 ... Substrate heater, 7 ... Electrode heater, 8 ... ... Substrate rotation motor, 9 ... High frequency power supply, 10 ... Vacuum pump, 11
...... Lower holder, 12 Photoconductor substrate, 13 Upper holder.
Claims (1)
基板支持体と感光体基板支持体に対向して設けられた対
向電極とを少なくとも有し、感光体基板の上下に脱着可
能な導電体のホルダーを該基板と該ホルダーの全長l
(mm)が対向電極全長L(mm)に対して L+20≦l(単位mm) になるように嵌合し、前記対向電極と感光体用基板との
間でグロー放電を起こし、基板上に感光層を形成するこ
とを特徴とする電子写真感光体の製造方法。1. A photoconductor substrate support for mounting a photoconductor substrate in a vacuum chamber, and at least an opposing electrode provided opposite to the photoconductor substrate support, and detachable above and below the photoconductor substrate. The holder of the possible conductor is the substrate and the total length of the holder.
(Mm) with respect to the total length L (mm) of the counter electrode so that L + 20 ≦ l (unit: mm), and a glow discharge is generated between the counter electrode and the substrate for the photoreceptor, and the light is exposed on the substrate. A method for producing an electrophotographic photosensitive member, comprising forming a layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20630790A JP2626203B2 (en) | 1990-08-03 | 1990-08-03 | Manufacturing method of electrophotographic photoreceptor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20630790A JP2626203B2 (en) | 1990-08-03 | 1990-08-03 | Manufacturing method of electrophotographic photoreceptor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04212167A JPH04212167A (en) | 1992-08-03 |
JP2626203B2 true JP2626203B2 (en) | 1997-07-02 |
Family
ID=16521136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20630790A Expired - Lifetime JP2626203B2 (en) | 1990-08-03 | 1990-08-03 | Manufacturing method of electrophotographic photoreceptor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2626203B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6882044B2 (en) * | 2002-05-17 | 2005-04-19 | Agilent Technologies, Inc. | High speed electronic interconnection using a detachable substrate |
-
1990
- 1990-08-03 JP JP20630790A patent/JP2626203B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04212167A (en) | 1992-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4438188A (en) | Method for producing photosensitive film for electrophotography | |
US6145469A (en) | Plasma processing apparatus and processing method | |
US6410102B1 (en) | Plasma process method | |
JP2626203B2 (en) | Manufacturing method of electrophotographic photoreceptor | |
EP0720205B1 (en) | Deposited film forming apparatus | |
EP0678894B1 (en) | Plasma processing apparatus | |
US5718769A (en) | Plasma processing apparatus | |
JP2776087B2 (en) | Electrophotographic photoreceptor manufacturing equipment | |
JP3387616B2 (en) | Plasma processing equipment | |
JP3010199B2 (en) | Photoconductor | |
JP4298401B2 (en) | Deposited film forming apparatus and deposited film forming method | |
JP2907404B2 (en) | Deposition film forming equipment | |
US6486045B2 (en) | Apparatus and method for forming deposited film | |
JPH1126388A (en) | Forming equipment for deposition film and forming method for deposition film | |
JP2005133128A (en) | Apparatus and method for plasma treatment | |
JP3368142B2 (en) | Deposition film forming equipment | |
JP2925310B2 (en) | Deposition film formation method | |
JP2994658B2 (en) | Apparatus and method for forming deposited film by microwave CVD | |
JP2925291B2 (en) | Deposition film forming equipment | |
JP2000008171A (en) | Device and method for producing deposited film | |
JPH11135439A (en) | Method and apparatus for plasma treatment | |
JP2002322562A (en) | Vacuum treatment method and vacuum treatment apparatus | |
JPH05291149A (en) | Plasma cvd device | |
JP2000051687A (en) | Accumulation film forming method and apparatus therefor | |
JP2006009042A (en) | Film deposition apparatus and film deposition method |