JP2623985B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2623985B2
JP2623985B2 JP3024320A JP2432091A JP2623985B2 JP 2623985 B2 JP2623985 B2 JP 2623985B2 JP 3024320 A JP3024320 A JP 3024320A JP 2432091 A JP2432091 A JP 2432091A JP 2623985 B2 JP2623985 B2 JP 2623985B2
Authority
JP
Japan
Prior art keywords
substrate
semiconductor substrate
metal
heat treatment
metal impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3024320A
Other languages
Japanese (ja)
Other versions
JPH04263421A (en
Inventor
正典 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3024320A priority Critical patent/JP2623985B2/en
Publication of JPH04263421A publication Critical patent/JPH04263421A/en
Application granted granted Critical
Publication of JP2623985B2 publication Critical patent/JP2623985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法、
特に半導体基板の高温熱処理における半導体基板の金属
汚染を防止する方法に関する。
The present invention relates to a method for manufacturing a semiconductor device,
In particular, the present invention relates to a method for preventing metal contamination of a semiconductor substrate during high-temperature heat treatment of a semiconductor substrate.

【0002】半導体装置の製造プロセスにおいて、例え
ば M0S DRAMのウエル拡散工程やバイポーラ素子の埋込
み拡散工程等、イオン注入等によって半導体基板面に導
入された硼素(B) や燐(P) などのドーパントを、例えば
1200℃程度の高温において基板中に深く拡散させる高温
熱処理工程では、半導体基板を収容する炉芯管外の例え
ばヒータ線材等から炉芯管の管壁を通してその内部に侵
入した金属不純物が、半導体基板面に吸着され、基板内
を容易に拡散する。そしてこの結果、半導体基板に形成
される素子に、例えば熱酸化膜の絶縁破壊電圧の低下、
接合リークの増大等の特性劣化を招く。そこで上記のよ
うな高温熱処理においては、金属不純物による半導体基
板の汚染を防止することが特に望まれる。
In a semiconductor device manufacturing process, a dopant such as boron (B) or phosphorus (P) introduced into a semiconductor substrate surface by ion implantation or the like, for example, in a well diffusion step of an M0S DRAM or a buried diffusion step of a bipolar element. For example
In the high-temperature heat treatment step of deeply diffusing into the substrate at a high temperature of about 1200 ° C., metal impurities that have entered the inside of the furnace core tube through the tube wall of the furnace core tube from the outside of the furnace core tube containing the semiconductor substrate through the tube wall of the furnace core tube, for example, It is adsorbed on the surface and easily diffuses in the substrate. As a result, the element formed on the semiconductor substrate has, for example, a decrease in the breakdown voltage of the thermal oxide film,
This causes characteristic deterioration such as an increase in junction leakage. Therefore, in the high-temperature heat treatment as described above, it is particularly desired to prevent contamination of the semiconductor substrate by metal impurities.

【0003】[0003]

【従来の技術】高温熱処理における上記のような金属不
純物の炉芯管内への侵入による半導体素子特性の劣化を
防止するための従来技術としては、熱処理温度を例え
ば1100℃以下に下げて炉芯管内への金属不純物の侵入を
抑える。
2. Description of the Related Art As a conventional technique for preventing deterioration of semiconductor element characteristics due to intrusion of metal impurities into a furnace core tube as described above during high-temperature heat treatment, a heat treatment temperature is reduced to, for example, 1100 ° C. or lower, and the inside of the furnace core tube is reduced. Infiltration of metal impurities into metal.

【0004】金属の拡散定数の小さい物質例えば窒化
シリコン(Si3N4) 等で基板の表面を被覆し、基板表面へ
付着した金属不純物の拡散を抑えながら熱処理を行う。
などの方法が用いられていた。
[0004] The surface of a substrate is covered with a substance having a small metal diffusion constant, such as silicon nitride (Si 3 N 4 ), and heat treatment is performed while suppressing diffusion of metal impurities attached to the substrate surface.
Such methods were used.

【0005】[0005]

【発明が解決しようとする課題】しかしの温度を下げ
る方法においては、基板内に注入されたドーパントの拡
散幅を必要充分な値に形成することが出来ないという問
題があって現在では実用性がなく、またの基板面を金
属の拡散定数の小さい物質で被覆する方法においては、
金属の拡散定数の小さい物質の被覆工程と剥離工程の増
加によりスループットが低下するという問題、及び基板
上の前記物質の剥離残渣に起因した素子特性の劣化によ
り歩留りの低下を招き易いという問題があった。
However, in the method of lowering the temperature, there is a problem that the diffusion width of the dopant implanted in the substrate cannot be formed to a necessary and sufficient value. Without, in the method of coating the substrate surface with a substance having a small metal diffusion constant,
There is a problem that the throughput is reduced due to an increase in the number of steps of coating and stripping a substance having a small metal diffusion constant, and a problem that the yield is easily reduced due to deterioration of device characteristics due to the stripped residue of the substance on the substrate. Was.

【0006】そこで本発明は、熱処理温度の低温化や、
金属の拡散定数の小さい物質による基板面の被覆などを
行わずに、容易に且つ確実に金属汚染を防止できる半導
体基板の高温熱処理方法を提供することを目的とする。
Accordingly, the present invention provides a method for reducing the heat treatment temperature,
It is an object of the present invention to provide a high-temperature heat treatment method for a semiconductor substrate that can easily and surely prevent metal contamination without coating a substrate surface with a substance having a small metal diffusion constant.

【0007】[0007]

【課題を解決するための手段】上記課題は、半導体基板
(6)の熱処理に際して、該半導体基板(6)に比べて
金属の拡散定数が小さい物質からなる物体若しくは該物
質で被覆された物体からなる遮蔽物体(7)を、少なく
とも該半導体基板(6)の主面となる一方の面上を覆う
ように該半導体基板(6)と共に炉芯管(1)内に配置
して熱処理を行う工程を有する本発明による半導体装置
の製造方法によって解決される。
SUMMARY OF THE INVENTION The object of the present invention is to provide a method for heat treating a semiconductor substrate (6) from an object made of a substance having a smaller metal diffusion constant than that of the semiconductor substrate (6) or an object coated with the substance. A step of arranging the shielding object (7) with the semiconductor substrate (6) in the furnace core tube (1) so as to cover at least one surface which is a main surface of the semiconductor substrate (6), and performing a heat treatment. The problem is solved by a method for manufacturing a semiconductor device according to the present invention having the following.

【0008】[0008]

【作用】図1は本発明の原理説明用の模式図で、図中、
1は石英炉芯管、2はガス導入口、3はガス排出口、4
は蓋部、5は鉄(Fe)−ニッケル(Ni)−クロム(Cr)合金等
からなるヒータ線、6は半導体基板、7は 500〜10000
Å程度の厚さの窒化シリコン(Si3N4) 膜で表面を被覆し
たシリコン(Si)基板からなる金属不純物遮蔽基板、8は
金属不純物を示す。
FIG. 1 is a schematic view for explaining the principle of the present invention.
1 is a quartz furnace core tube, 2 is a gas inlet, 3 is a gas outlet, 4
Is a lid, 5 is a heater wire made of an iron (Fe) -nickel (Ni) -chromium (Cr) alloy, 6 is a semiconductor substrate, 7 is 500 to 10,000
A metal impurity shielding substrate 8 made of a silicon (Si) substrate whose surface is covered with a silicon nitride (Si 3 N 4 ) film having a thickness of about Å, and 8 indicates a metal impurity.

【0009】この図に示されるように本発明の方法によ
れば、半導体基板6の少なくとも主面となる一方の面、
即ち図では両面を、必要な厚さの半導体基板6に比べて
金属の拡散定数が著しく小さいSi3N4 膜で表面が被覆さ
れた半導体基板6と等しい大きさの金属不純物遮蔽基板
7で挟み込むことにより、半導体基板6の表面を炉芯管
1内の雰囲気からほぼ遮断する状態に金属不純物遮蔽基
板7で覆って熱処理が行われる。
As shown in FIG. 1, according to the method of the present invention, at least one of the main surfaces of the semiconductor substrate 6,
That is, in the figure, both surfaces are sandwiched between metal impurity shielding substrates 7 of the same size as the semiconductor substrate 6 whose surface is covered with a Si 3 N 4 film whose metal has a significantly smaller diffusion constant than the required thickness of the semiconductor substrate 6. Thus, the heat treatment is performed by covering the surface of the semiconductor substrate 6 with the metal impurity shielding substrate 7 in a state where the surface is substantially shielded from the atmosphere in the furnace core tube 1.

【0010】そのため、1200℃程度の高温長時間の熱処
理によって石英炉芯管1の管壁を通して炉芯管1内に侵
入して来たヒータ線5の成分であるFe、Ni、Cr等の金属
不純物8は上記金属不純物遮蔽基板7上に付着し、この
遮蔽基板7の表面に被覆されている金属の拡散定数の小
さいSi3N4 膜中を半導体基板6に向かって拡散して行
く。そしてこのSi3N4 膜が必要充分な厚さを有するため
に所定の長時間熱処理を行っても金属不純物8は半導体
基板6側にまで到達せず、半導体基板6内への金属不純
物8の拡散は防止される。
Therefore, a metal such as Fe, Ni, or Cr, which is a component of the heater wire 5 that has entered the furnace core tube 1 through the tube wall of the quartz furnace core tube 1 through a heat treatment at a high temperature of about 1200 ° C. for a long time. The impurities 8 adhere to the metal impurity shielding substrate 7 and diffuse toward the semiconductor substrate 6 through the Si 3 N 4 film having a small diffusion constant of the metal coated on the surface of the shielding substrate 7. Since the Si 3 N 4 film has a necessary and sufficient thickness, the metal impurity 8 does not reach the semiconductor substrate 6 side even if a heat treatment is performed for a predetermined long time, so that the metal impurity 8 enters the semiconductor substrate 6. Spreading is prevented.

【0011】[0011]

【実施例】以下本発明を、図を参照し実施例により具体
的に説明する。図2は本発明に係る金属不純物遮蔽物体
材料構造の実施例の模式図で、(a)はSi3N4 被覆基
板、(b)はCVD-SiC 被覆基板、(c)はCVD-SiC 基
板、図3は本発明に係る金属不純物遮蔽物体の形状及び
配置の実施例の模式図で、(a)は半導体基板の単枚用
の一例、(b)は容器形状の一例、(c)は容器形状の
他の例、(d)は複数枚の半導体基板を同時処理する一
例、図4は本発明の効果測定に用いた一実施例の模式図
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 2 is a schematic view of an embodiment of a metal impurity shielding object material structure according to the present invention, wherein (a) is a Si 3 N 4 coated substrate, (b) is a CVD-SiC coated substrate, and (c) is a CVD-SiC base.
FIG. 3 is a schematic view of an embodiment of the shape and arrangement of the metal impurity shielding object according to the present invention, wherein (a) is an example of a single semiconductor substrate, and (b) is an example of a container shape. , (C) is another example of the container shape, (d) is an example of simultaneous processing of a plurality of semiconductor substrates, and FIG. 4 is a schematic view of an example used for measuring the effect of the present invention.

【0012】本発明の方法により高温長時間の熱処理を
行う際、半導体基板と共に炉芯管内に配置される金属不
純物遮蔽物体の材料には、例えば図2(a)〜()に
示す様な構造を有するものが用いられる。
When the heat treatment is performed at a high temperature for a long time by the method of the present invention, the material of the metal impurity shielding object disposed in the furnace core tube together with the semiconductor substrate is, for example, as shown in FIGS. 2 (a) to 2 ( c ). One having a structure is used.

【0013】第1の例は、図2(a) に示すように、Si基
板11の表面をCVD 法によるSi3N4 膜12で被覆した構造で
ある。この場合、Si基板11の厚さは大きさによって異な
るが0.5〜1mm程度が適切である。また被覆するSi3N
4 膜12に必要な厚さは、半導体基板内へ拡散するのを阻
止しようとする金属の拡散定数及び処理温度、処理時間
によって異なるが、1200℃、5〜10時間程度の通常の高
温熱処理においてアルカリ金属や重金属の遮蔽を行う場
合 500〜10000 Å程度あれば充分である。なおこの構造
において、基板には上記Si以外に、セラミックスSiC 、
セラミックスSiN 、石英、カーボン等も用いられる。
The first example has a structure in which the surface of a Si substrate 11 is covered with a Si 3 N 4 film 12 by a CVD method, as shown in FIG. In this case, the thickness of the Si substrate 11 varies depending on the size, but is suitably about 0.5 to 1 mm. Si 3 N to cover
4 The thickness required for the film 12 depends on the diffusion constant and the processing temperature of the metal that is to be prevented from diffusing into the semiconductor substrate, and the processing time, but in a normal high-temperature heat treatment of about 1200 ° C., about 5 to 10 hours. When shielding alkali metals and heavy metals, about 500 to 10,000 mm is sufficient. In this structure, besides the above-mentioned Si, ceramic SiC,
Ceramics such as SiN, quartz, and carbon are also used.

【0014】第2の例は、図2(b) に示すように、Si基
板11の表面をCVD-SiC 膜13で被覆した構造である。この
場合、Si基板11の厚さは前記の例と同様でよく、またCV
D-SiC 膜13の厚さは金属の拡散定数が極度に小さいので
上記熱処理条件で 500〜1000Å程度あれば充分である
が、製造工程の関係から通常例えば50〜300 μm程度に
形成される。この場合も、基板にはSi以外に、セラミッ
クスSiC 、セラミックスSiN 、石英、カーボン等も用い
られる。
The second example has a structure in which the surface of a Si substrate 11 is covered with a CVD-SiC film 13 as shown in FIG. In this case, the thickness of the Si substrate 11 may be the same as in the above example, and the CV
The thickness of the D-SiC film 13 is sufficient if the heat treatment conditions are about 500 to 1000 ° because the diffusion constant of the metal is extremely small. However, the thickness of the D-SiC film 13 is usually about 50 to 300 μm due to the manufacturing process. Also in this case, ceramic SiC, ceramic SiN, quartz, carbon or the like is used for the substrate in addition to Si.

【0015】第3の例は、図2(c)に示すようにCVD-
SiC 基板14である。この場合、機械的強度を考慮して
厚さは数100 μm 〜3 mm程度に形成される。
In the third example, as shown in FIG.
The SiC substrate 14. In this case, the thickness is formed in the order of several 100 μm to 3 mm in consideration of mechanical strength .

【0016】そして本発明の方法の実施に際しては、上
記図2の材料構造を有する金属不純物遮蔽物体材料を用
い、例えば図3(a) 〜(d) に示すような形状を有する遮
蔽物体を形成して用いる。
In carrying out the method of the present invention, a shielding object having a shape as shown in FIGS. 3 (a) to 3 (d) is formed by using the metal impurity shielding object material having the material structure shown in FIG. Used.

【0017】第1の例は、図3(a) に示すように、一枚
の被処理半導体基板6上を完全に覆うに充分な面積を有
する単枚用金属不純物遮蔽基板16である。この場合熱処
理は、通常図示のように2枚の単枚用金属不純物遮蔽基
板16の間に被処理半導体基板6を挟み込んだ状態で、半
導体基板6の表面にほぼ密接する金属不純物遮蔽基板16
により炉芯管内の雰囲気及びその中を拡散して来る金属
不純物から半導体基板6の両面を遮蔽しながら熱処理が
行われるが、一枚の単枚用金属不純物遮蔽基板16を被処
理半導体基板6の主面側のみに主面全面を覆うように載
置した状態(図示せず)で、この金属不純物遮蔽板16に
より半導体基板6の主面のみ遮蔽して行ってもよい。な
お被処理半導体基板6と不純物遮蔽基板16との密着度を
高めるために重しを用いることもある。
The first example is, as shown in FIG. 3A, a single metal impurity shielding substrate 16 having a sufficient area to completely cover one semiconductor substrate 6 to be processed. In this case, the heat treatment is generally performed with the metal impurity shielding substrate 16 substantially in close contact with the surface of the semiconductor substrate 6 with the semiconductor substrate 6 to be processed sandwiched between the two single metal impurity shielding substrates 16 as shown in the figure.
The heat treatment is performed while shielding both surfaces of the semiconductor substrate 6 from the atmosphere in the furnace core tube and the metal impurities diffused in the furnace core by the heat treatment. The metal impurity shielding plate 16 may be used to shield only the main surface of the semiconductor substrate 6 in a state where the semiconductor device is placed on the main surface only so as to cover the entire main surface (not shown). A weight may be used to increase the degree of adhesion between the semiconductor substrate 6 to be processed and the impurity shielding substrate 16.

【0018】第2の例は、図3(b) に示すように、底板
部17B と、この底板部17B に縁部が密接し、下方に被処
理基板6を収容し得る空洞部が形成される蓋部17A とか
らなる第1の金属不純物遮蔽容器17である。この場合熱
処理は、この容器17内に被処理基板6を収容し、この容
器17で炉芯管内の雰囲気及びその中を拡散して来る金属
不純物から半導体基板6を遮蔽した状態で熱処理が行わ
れる。なお蓋部17A の縁部と底板部17B との密着性を高
めるために重しを用いることもある。
In the second example, as shown in FIG. 3 (b), a bottom plate portion 17B and a hollow portion capable of accommodating the substrate 6 to be processed are formed below the bottom plate portion 17B. The first metal impurity shielding container 17 is composed of a lid 17A. In this case, the heat treatment is performed in a state where the substrate 6 to be processed is accommodated in the container 17 and the semiconductor substrate 6 is shielded from the atmosphere in the furnace core tube and metal impurities diffused therein by the container 17. . A weight may be used to enhance the adhesion between the edge of the lid 17A and the bottom plate 17B.

【0019】第3の例は、図3(c) に示すように、被処
理半導体基板6を収容し得る凹部を有する容器部18B
と、その上縁部に密接する蓋板部18A とからなる第2の
金属不純物遮蔽容器18である。この場合の熱処理も、こ
の容器18内に被処理基板6を収容し、金属不純物から半
導体基板6を遮蔽した状態で熱処理が行われ、容器部18
B の縁部と蓋板部18A との密着性を高めるために重しを
用いることもある。
In the third example, as shown in FIG. 3C, a container 18B having a concave portion capable of accommodating the semiconductor substrate 6 to be processed is provided.
And a lid plate portion 18A closely contacting the upper edge of the second metal impurity shielding container 18. In this case, the heat treatment is also performed in a state where the substrate 6 is accommodated in the container 18 and the semiconductor substrate 6 is shielded from metal impurities.
A weight may be used to increase the adhesion between the edge of B and the cover plate 18A.

【0020】第4の例は、図3(d) に示すように、複数
の被処理半導体基板6を並置できる大面積を有する多枚
用金属不純物遮蔽板19である。この場合熱処理は、通常
図示のように2枚の多枚用金属不純物遮蔽板19の間に複
数枚の被処理半導体基板6を挟み込んだ状態で、半導体
基板6の表面にほぼ密接する金属不純物遮蔽基板19によ
り炉芯管内の雰囲気及びその中を拡散して来る金属不純
物から半導体基板6の両面を遮蔽しながら熱処理が行わ
れる。この場合も図示しないが、一枚の多枚用金属不純
物遮蔽基板19上に複数枚の被処理基板6を主面を下に向
けて載置し、この金属不純物遮蔽基板19で複数枚の被処
理基板6の主面のみを金属不純物から遮蔽して熱処理す
る場合もある。また、被処理半導体基板6と金属不純物
遮蔽基板19との密着性を高めるために重しを用いること
もある。
A fourth example is a large metal impurity shielding plate 19 having a large area in which a plurality of semiconductor substrates 6 to be processed can be juxtaposed, as shown in FIG. In this case, the heat treatment is generally performed with the metal impurity shielding plate 19 being sandwiched between the two metal impurity shielding plates 19 as shown in FIG. Heat treatment is performed while the substrate 19 shields both surfaces of the semiconductor substrate 6 from the atmosphere in the furnace core tube and metal impurities diffused therein. Although not shown in this case, a plurality of substrates 6 to be processed are placed on a single metal impurity shielding substrate 19 with the main surface thereof facing down. In some cases, only the main surface of the processing substrate 6 is shielded from metal impurities and heat-treated. In addition, a weight may be used to enhance the adhesion between the semiconductor substrate 6 to be processed and the metal impurity shielding substrate 19.

【0021】なお、上記実施例に示した単枚用金属不純
物遮蔽板16及び多枚用金属不純物遮蔽板19は、被処理半
導体基板6と接する面の面粗度が100μm以下で可能な
限り細かいことが望ましい。
The single metal impurity shielding plate 16 and the multiple metal impurity shielding plate 19 shown in the above embodiment have a surface roughness of 100 μm or less as small as possible in contact with the semiconductor substrate 6 to be processed. It is desirable.

【0022】また、上記実施例に示した第1、第2の金
属不純物遮蔽容器17、18の蓋と容器の接触部は可能な限
り気密に近いことが望ましい。次に、本発明の方法の効
果を測定するために行った実施例について、図4を参照
し説明する。
Further, it is desirable that the contact portions between the lids of the first and second metal impurity shielding containers 17 and 18 shown in the above embodiment and the containers are as air-tight as possible. Next, an example performed for measuring the effect of the method of the present invention will be described with reference to FIG.

【0023】この実施例においては金属不純物遮蔽物体
として前記実施例に示したCVD-SiC 基板14からなる2枚
の単枚用金属不純物遮蔽板16を用い、この金属不純物遮
蔽板16の間に挟み込んだ第2のSi基板21と、何にも挟ま
ない裸の儘の第1のSi基板20とを、同時に石英炉芯管1
内に配置し、この炉芯管1内へガス導入口2から窒素(N
2)ガス22を導入して炉芯管1内をN2雰囲気に保った状態
で、1200℃、6時間の高温熱処理を行った。なお図中、
3はガス流出口、4は蓋部、5はヒータ線を示す。
In this embodiment, two single metal impurity shielding plates 16 made of the CVD-SiC substrate 14 shown in the above embodiment are used as metal impurity shielding objects, and are sandwiched between the metal impurity shielding plates 16. At the same time, the second Si substrate 21 and the first Si substrate 20 that is not sandwiched between the two are simultaneously placed in the quartz furnace core tube 1.
In the furnace core tube 1 from the gas inlet 2 through nitrogen (N
2 ) A high-temperature heat treatment was performed at 1200 ° C. for 6 hours while the inside of the furnace core tube 1 was kept in an N 2 atmosphere by introducing the gas 22. In the figure,
3 is a gas outlet, 4 is a lid, and 5 is a heater wire.

【0024】上記熱処理を終わった第1のSi基板20と第
2のSi基板21及び熱処理を行わない照合用Si基板との反
射マイクロ波法で測定したライフタイムの値(基板内61
点について測定した平均値)を示したのが下記の表1で
ある。
The values of the lifetimes of the first Si substrate 20 and the second Si substrate 21 after the heat treatment and the reference Si substrate not subjected to the heat treatment, measured by the reflection microwave method (61
Table 1 below shows the average values measured for the points).

【0025】[0025]

【表1】 この表1の値から、何にも挟まずに裸で炉芯管1内に
置いた第1のSi基板20のライフタイムは、熱処理を行わ
ない照合用基板に比べて 100分の1近傍の値に大幅に劣
化しているのに対し、前記金属不純物遮蔽板16に挟んで
炉芯管内に配置した第2のSi基板21のライフタイムは、
照合用基板のライフタイムの値に対し1/3 程度の値にな
る僅かな劣化しかないことがわかる。
[Table 1] From the values in Table 1, the lifetime of the first Si substrate 20 barely placed in the furnace core tube 1 without being sandwiched by anything is about 1/100 that of the reference substrate not subjected to the heat treatment. Whereas the lifetime of the second Si substrate 21 placed in the furnace core tube between the metal impurity shielding plates 16 is
It can be seen that there is only a slight deterioration of about 1/3 of the lifetime value of the reference substrate.

【0026】また表2は、 950℃程度の熱酸化により予
めSi基板上に厚さ250 Å程度の熱酸化膜を形成したSi基
板を、上記実施例の第1、第2のSi基板に対応した高温
熱処理を行った後、それぞれのSi基板の熱酸化膜中に含
まれるFe及びCuの量を原子吸光分析法で測定し、熱処理
を行わない照合用Si基板の熱酸化膜中に含まれるFe及び
Cuの量と比較して示した表である。
Table 2 shows that the Si substrate, on which a thermal oxide film having a thickness of about 250 ° was previously formed on the Si substrate by thermal oxidation at about 950 ° C., corresponds to the first and second Si substrates of the above embodiment. After performing high-temperature heat treatment, the amounts of Fe and Cu contained in the thermal oxide film of each Si substrate were measured by atomic absorption spectrometry, and contained in the thermal oxide film of the reference Si substrate not subjected to the heat treatment. Fe and
It is a table shown in comparison with the amount of Cu.

【0027】この表2に示す通り金属不純物遮蔽手段を
何も用いず裸の状態で高温熱処理した第1のSi基板上の
熱酸化膜中からは、Fe及びCuが検出されたのに対しCVD-
SiC 基板で挟んで高温熱処理をした第2のSi基板上の熱
酸化膜からは検出さておらず、このことからも第2のSi
基板に対する金属汚染の防止は充分になされていること
がわかる。
As shown in Table 2, Fe and Cu were detected from the thermal oxide film on the first Si substrate which had been subjected to a high-temperature heat treatment in a bare state without using any metal impurity shielding means, whereas Fe and Cu were detected. -
No detection was made from the thermal oxide film on the second Si substrate that was subjected to high-temperature heat treatment sandwiched between the SiC substrates.
It can be seen that the metal contamination of the substrate has been sufficiently prevented.

【0028】[0028]

【表2】 以上本発明の効果測定用の実施例に示すように、被
処理Si基板の主面上を金属の拡散定数の小さい金属不純
物遮蔽基板で覆うように挟んだ状態、即ち被処理Si基板
面に金属不純物遮蔽基板を密着させることにより被処理
Si基板面を炉芯管内の雰囲気からほぼ遮断した状態で高
温熱処理を行うことにより、Si基板への金属不純物の付
着拡散を防ぐことが可能になる。従って炉芯管内雰囲気
からの遮断効果のより優れた前記容器構造の金属不純物
遮蔽物体を用いれば、被処理基板の金属汚染を防止する
効果は一層大きくなる。
[Table 2] As described above in the embodiment for measuring the effect of the present invention, a state in which the main surface of the Si substrate to be processed is sandwiched so as to be covered with a metal impurity shielding substrate having a small metal diffusion constant, that is, Processed by bringing the impurity shielding substrate into close contact
By performing the high-temperature heat treatment in a state where the Si substrate surface is substantially shielded from the atmosphere in the furnace core tube, it becomes possible to prevent adhesion and diffusion of metal impurities to the Si substrate. Therefore, if a metal impurity shielding object having the above-mentioned container structure having a better effect of shielding from the atmosphere in the furnace core tube is used, the effect of preventing metal contamination of the substrate to be processed is further enhanced.

【0029】なお本発明の方法においては、金属不純物
遮蔽物体の厚さが厚い程、不純物の遮蔽効果は大きく、
且つ使用可能回数の増大を図れる。
In the method of the present invention, the greater the thickness of the metallic impurity shielding object, the greater the impurity shielding effect.
In addition, the number of usable times can be increased.

【0030】[0030]

【発明の効果】以上説明のように本発明によれば、高温
熱処理に際して、被処理半導体基板上を金属不純物遮蔽
物質よりなる基板を重ねて覆う、或いは被処理半導体基
板を金属不純物遮蔽物質よりなる容器内に収容する等の
簡単な操作により被処理半導体基板の金属不純物による
汚染を防止することができる。
As described above, according to the present invention, during high-temperature heat treatment, a substrate made of a metal impurity shielding material is overlaid on a semiconductor substrate to be processed, or a semiconductor substrate to be processed is made of a metal impurity shielding material. By a simple operation such as housing in a container, contamination of the semiconductor substrate to be processed by metal impurities can be prevented.

【0031】従って被処理半導体基板の表面を金属不純
物遮蔽物質で被覆する必要がなくなるので、この金属不
純物遮蔽物質被膜の被着及び剥離による工程の増加がな
くなり、スループットが増加すると同時に、上記金属不
純物遮蔽物質被膜の剥離残渣に起因する半導体素子の製
造歩留りの低下もなくなり、 M0S DRAM やバイポーラI
C等の高温拡散プロセスを含む半導体装置の製造に効果
を生ずる。
Therefore, it is not necessary to cover the surface of the semiconductor substrate to be treated with the metal impurity shielding material, so that the number of steps due to the application and peeling of the metal impurity shielding material film is not increased, so that the throughput is increased and at the same time the metal impurity shielding material is increased. The reduction in the production yield of semiconductor devices due to the peeling residue of the shielding material film is also eliminated, and M0S DRAM and bipolar I
This is effective in manufacturing a semiconductor device including a high-temperature diffusion process such as C.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理説明図FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】本発明に係る金属不純物遮蔽物体材料構造の実
施例の模式図で、(a) はSi3N4被覆基板、(b)はCVD-S
iC 被覆基板、(c) はCVD-SiC 基板
FIG. 2 is a schematic view of an embodiment of a metal impurity shielding object material structure according to the present invention, wherein (a) is a Si 3 N 4 coated substrate, and (b) is a CVD-S
iC coated substrate, (c) is CVD-SiC substrate

【図3】本発明に係る金属不純物遮蔽物体の形状及び配
置の実施例の模式図で、(a)は単枚用の一例、(b)
は容器形状の一例、(c)は容器形状の他の例、(d)
は複数枚の半導体基板を同時処理する一例
3A and 3B are schematic diagrams of an embodiment of the shape and arrangement of a metal impurity shielding object according to the present invention, wherein FIG. 3A is an example for a single sheet , and FIG.
Is an example of a container shape, (c) is another example of a container shape, (d)
Is an example of simultaneous processing of multiple semiconductor substrates

【図4】本発明の効果測定に用いた一実施例の模式図FIG. 4 is a schematic view of one embodiment used for measuring the effect of the present invention.

【符号の説明】[Explanation of symbols]

1 石英炉心管 2 ガス導入口 3 ガス排出口 4 蓋部 5 ヒータ線 6 被処理半導体基板 7 金属不純物遮蔽基板 8 金属不純物 DESCRIPTION OF SYMBOLS 1 Quartz furnace tube 2 Gas inlet 3 Gas outlet 4 Lid 5 Heater wire 6 Semiconductor substrate to be processed 7 Metal impurity shielding substrate 8 Metal impurity

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体基板(6)の熱処理に際して、 該半導体基板(6)に比べて金属の拡散定数が小さい
質からなる物体若しくは該物質で被覆された物体からな
る遮蔽物体(7)を、少なくとも該半導体基板(6)の
主面となる一方の面上を覆うように該半導体基板(6)
と共に炉芯管(1)内に配置して熱処理を行う工程を有
することを特徴とする半導体装置の製造方法。
1. A heat treatment of a semiconductor substrate (6), an object made of a material having a smaller metal diffusion constant than the semiconductor substrate (6) or a shielded object made of an object coated with the material. (7) the semiconductor substrate (6) so as to cover at least one of the main surfaces of the semiconductor substrate (6).
And a step of performing heat treatment by disposing the semiconductor device in a furnace core tube (1).
【請求項2】 前記金属がアルカリ金属または重金属よ
りなることを特徴とする請求項1記載の半導体装置の製
造方法。
2. The method according to claim 1, wherein the metal is made of an alkali metal or a heavy metal.
【請求項3】 前記遮蔽物体(7)が該半導体基板
(6)と同等以上の大きさを有する平板状、若しくは該
半導体基板(6)を内包できる容器状を有することを特
徴とする請求項1記載の半導体装置の製造方法。
3. The semiconductor device according to claim 2, wherein said shielding object has a flat plate shape having a size equal to or larger than said semiconductor substrate, or a container shape capable of containing said semiconductor substrate. 2. The method for manufacturing a semiconductor device according to claim 1.
【請求項4】 前記半導体基板(6)に比べて金属の拡
散定数が小さい物質が、窒化珪素若しくは炭化珪素より
なることを特徴とする請求項1記載の半導体装置の製造
方法。
4. The method for manufacturing a semiconductor device according to claim 1, wherein the substance having a smaller metal diffusion constant than said semiconductor substrate is made of silicon nitride or silicon carbide.
JP3024320A 1991-02-19 1991-02-19 Method for manufacturing semiconductor device Expired - Fee Related JP2623985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3024320A JP2623985B2 (en) 1991-02-19 1991-02-19 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3024320A JP2623985B2 (en) 1991-02-19 1991-02-19 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH04263421A JPH04263421A (en) 1992-09-18
JP2623985B2 true JP2623985B2 (en) 1997-06-25

Family

ID=12134893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3024320A Expired - Fee Related JP2623985B2 (en) 1991-02-19 1991-02-19 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2623985B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297947A (en) * 2002-04-01 2003-10-17 Hitachi Ltd Semiconductor integrated circuit device and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163440A (en) * 1984-02-03 1985-08-26 Sumitomo Electric Ind Ltd Protecting method for compound semiconductor in high temperature heat treatment

Also Published As

Publication number Publication date
JPH04263421A (en) 1992-09-18

Similar Documents

Publication Publication Date Title
TW479268B (en) Method for in-situ cleaning of surfaces in a substrate processing chamber
US5810936A (en) Plasma-inert cover and plasma cleaning process and apparatus employing same
US20060032848A1 (en) Process and system for heating semiconductor substrates in a processing chamber containing a susceptor
US20090186489A1 (en) Thermal treatment apparatus, method for manufacturing semiconductor device, and method for manufacturing substrate
EP0463633A1 (en) Chemical-vapor-deposition apparatus and method for reducing particulate contamination in a chemical-vapor-deposition process
US6649427B2 (en) Method for evaluating impurity concentrations in epitaxial susceptors
JP5069967B2 (en) Manufacturing method of heat treatment member
EP0434984A2 (en) Gettering apparatus and method
JP2623985B2 (en) Method for manufacturing semiconductor device
JP3285723B2 (en) Semiconductor heat treatment jig and surface treatment method thereof
US4802842A (en) Apparatus for manufacturing semiconductor device
JPH11121311A (en) Silicon carbide material, its manufacture and silicon carbide wafer
JP2003324106A (en) Heat-treatment apparatus, manufacturing method of semiconductor device, and manufacturing method of substrate
EP0092435A1 (en) A method of, and a susceptor for use in, vapour deposition of films
KR100205193B1 (en) Single-crystal silicon wafer and thermal oxidation of its surface
US20060148249A1 (en) Method of eliminating boron contamination in annealed wafer
JPH06177222A (en) Evaluating method for contamination quantity from susceptor
JPH027516A (en) Method of diffusing impurity in semiconductor
JP3029953B2 (en) Semiconductor wafer heat treatment equipment
JP2005086132A (en) Heat treating apparatus, manufacturing method of semiconductor device, manufacturing method of substrate, and treating method of substrate
JP3260245B2 (en) Heat treatment furnace for semiconductor wafer and method for heat treatment of semiconductor wafer
CN112928021A (en) Pretreatment method of heat treatment furnace, heat treatment furnace and preparation method of wafer
JPS6220999Y2 (en)
JPH07106270A (en) Heat treatment equipment
JPH0786193A (en) Boat inserting/drawing method in semiconductor fabrication system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees