JP2620983B2 - Fish finder and transducer for weighing - Google Patents

Fish finder and transducer for weighing

Info

Publication number
JP2620983B2
JP2620983B2 JP33915889A JP33915889A JP2620983B2 JP 2620983 B2 JP2620983 B2 JP 2620983B2 JP 33915889 A JP33915889 A JP 33915889A JP 33915889 A JP33915889 A JP 33915889A JP 2620983 B2 JP2620983 B2 JP 2620983B2
Authority
JP
Japan
Prior art keywords
transmitting
elements
output
receiving element
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33915889A
Other languages
Japanese (ja)
Other versions
JPH03199991A (en
Inventor
恭三 山谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaijo Corp
Original Assignee
Kaijo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaijo Corp filed Critical Kaijo Corp
Priority to JP33915889A priority Critical patent/JP2620983B2/en
Publication of JPH03199991A publication Critical patent/JPH03199991A/en
Application granted granted Critical
Publication of JP2620983B2 publication Critical patent/JP2620983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 (発明の技術分野) 本発明はデュアルビーム方式とスプリットビーム方式
に併用可能な計量用魚群探知機用およびその送受波器に
関するものである。
Description: TECHNICAL FIELD The present invention relates to a weighing fish finder that can be used in a dual beam system and a split beam system, and a transducer therefor.

(従来技術) 効率のよい魚撈或いは資源量の調査に当たっては、魚
群を形成する魚の体長,体重などを知ることが必要であ
る。そこで従来から発射音波の音圧レベルと魚からの反
射波の音圧レベルの比である音圧反射率、所謂ターゲッ
トレングスが魚体長の2乗に比例し、魚体重の2/3乗に
比例することを利用した計量用魚群探知機が使用されて
いる。
(Prior Art) In conducting efficient fishery or resource amount surveys, it is necessary to know the body length and weight of the fish forming the fish school. Therefore, the sound pressure reflectance, so-called target length, which is the ratio of the sound pressure level of the emitted sound wave to the sound pressure level of the reflected wave from the fish, is proportional to the square of the fish length and proportional to the 2/3 power of the fish weight. A fish finder for weighing is used.

ところで一般に音波の音圧は送受波器の正面、即ち指
向性主軸上において最も強く、主軸から離れるに伴い減
衰して行く。このため音圧反射率が同一の魚Fであって
も、第1図のように送受波器SRの指向性主軸Mとのなす
角度θによって受信レベルが異なり、計量結果に誤差を
与えるのを防ぎ得ない。
Generally, the sound pressure of a sound wave is strongest in front of the transducer, that is, on the directivity main axis, and attenuates as the distance from the main axis increases. Therefore, even if the fish F has the same sound pressure reflectance, the reception level varies depending on the angle θ between the directivity main axis M of the transducer SR as shown in FIG. It cannot be prevented.

従ってその解決のためには魚Fからの反射波が送受波
器の指向性主軸に対して、如何なる角度から帰来したも
のであるかを知りうるようにして角度に対応して受波レ
ベルを補正し、その結果を用いて魚体長や魚体重などの
演算を行わなけれは正確な結果を得ることができない。
そこで従来から反射体の送受波器の指向性主軸とのなす
角を知るための手段としてデュアルビーム法とスプリッ
トビーム法が案出されており、それぞれを独立または併
用して補正することが行われている。
Therefore, in order to solve the problem, it is possible to know from what angle the reflected wave from the fish F is returned from the directivity main axis of the transmitter / receiver and correct the received wave level corresponding to the angle. However, accurate calculations cannot be obtained unless the calculation of the fish length and fish weight is performed using the results.
Therefore, a dual beam method and a split beam method have been devised as means for knowing the angle between the reflector and the directivity main axis of the transducer, and correction is performed independently or in combination. ing.

この方法は例えばデュアルビーム法とスプリットビー
ム法の併用の場合、送受波器SRとして第2図に示すよう
に断面円形の広指向性送受波素子Aと、これを取り囲む
ように配設された4個の断面扇形の同一形状寸法の送受
波素子B,C,D,Eとから形成された、指向性主軸が広指向
性送受波素子Aの主軸と一致する狭指向性送受波素子と
からなるものを用いる。
In this method, for example, in a case where the dual beam method and the split beam method are used in combination, a wide directional transmitting / receiving element A having a circular cross section as shown in FIG. A narrow directivity transmitting / receiving element, whose directivity main axis coincides with the main axis of the wide directivity transmitting / receiving element A, formed by the transmitting / receiving elements B, C, D, and E having the same shape and dimensions having a sector shape in cross section. Use something.

そしてデュアルビーム法によるときは、第3図(a)
のように送受波素子A,B,C,D,Eにより狭指向性で下方に
向けて音波を発射し、これによる反射波を第3図(b)
のように広指向性送受波素子Aと第3図(a)のように
A,B,C,D,Eからなる狭指向性送受波素子により、第4図
のように同時に受波して、これら2個の受波出力のレベ
ル差から指向性主軸Mに対して反射体Fが何度ずれて位
置するかを求めて素子A+B+C+D+Eビームによる
反射波レベルを補正する。
When the dual beam method is used, FIG. 3 (a)
As shown in Fig. 3 (b), a sound wave is emitted downward with narrow directivity by the transmitting and receiving elements A, B, C, D, and E, and the reflected wave due to this is emitted.
As shown in FIG. 3 (a).
As shown in FIG. 4, signals are simultaneously received by the narrow directivity transmitting / receiving elements A, B, C, D, and E, and reflected from the level difference between these two reception outputs with respect to the main directivity axis M. The level of the reflected wave by the element A + B + C + D + E beam is corrected by determining how many times the body F is displaced.

またスプリットビーム法によるときは、デュアルビー
ムの送信と同様に狭指向性送受波素子A,B,C,D,Eを同相
で励振させて下方に音波を発射し、エコーを受波する。
同時に素子BとD、およびCとEの受波出力をそれぞれ
加算して、素子B,DとC,EのそれぞれのX軸方向の幾何面
積中心点間に距離Lをもつ2本のビームを形成する。更
に素子B,CとD,Eの受波出力をそれぞれ加算して、素子B,
CとC,EのそれぞれのY軸方向の幾何面積中心点間に距離
Lをもつ2本のビームを形成する。そして第5図のよう
にX軸と反射体F間の電気位相角φとY軸と反射体F
間の電気位相角φを求め、これらから、反射体Fの指
向性主軸Mに対する角度γxとの間に φ=(2πL/λ)・sinγ ここでλ:波長 なる関係が存在することを利用してγxを求め、更
にこれらの合成によりθを求めて素子A,B,C,D,Eで受波
した信号のレベルを補正する方法である。
When the split beam method is used, similarly to the transmission of the dual beam, the narrow directional transmitting / receiving elements A, B, C, D, and E are excited in phase to emit a sound wave downward and receive an echo.
At the same time, the reception outputs of the elements B and D and the reception outputs of the elements C and E are respectively added, and two beams having a distance L between the geometric area center points in the X-axis direction of the elements B and D and C and E are formed. Form. Further, the reception outputs of the elements B and C and the reception outputs of the elements D and E are added, and the elements B and C are added.
Two beams having a distance L between the center points of the geometric areas in the Y-axis direction of C, C, and E are formed. Then, as shown in FIG. 5, the electric phase angle φ x between the X axis and the reflector F, the Y axis and the reflector F
Obtains the electrical phase angle phi y between, these angle gamma x for directional main axis M of the reflector F, gamma y and φ = (2πL / λ) · sinγ where between lambda: presence wavelength becomes relation This is a method of obtaining γ x and γ y by utilizing the above, and further obtaining θ by combining these to correct the level of the signal received by the elements A, B, C, D and E.

(従来技術の解決すべき問題点) しかし上記のようなスプリットビーム法による場合、
電気位相角φから反射体Fの指向性主軸Mとのなす角度
θを知るためには第6図(a)(b)に示すように素子
BDとCE間および素子BCとDE間の幾何面積中心点間の距離
Lを知っていることが必要である。
(Problems to be solved by the prior art) However, in the case of the split beam method as described above,
In order to know the angle θ between the directivity main axis M of the reflector F and the electric phase angle φ, as shown in FIGS.
It is necessary to know the distance L between the geometric area center points between BD and CE and between elements BC and DE.

しかしこの距離Lは送受波器の大きさが変わると必然
的に変わるため、送受波器の大きさが変わる毎に、角度
θの演算回路に入れる係数を変えなければならない。従
ってそれだけ設計製作が面倒となる。これに加えてこの
送受波素子の配列では送受波器の面積が大きくなり、素
子間距離Lが発射音波の1/2波長より大きくなった場合
には、第5図に示すX軸と指向性主軸およびY軸と指向
性主軸とのなす角0〜±90゜以内に同一の電気位相角φ
が多数発生する。従ってφを特定できなくなり、補正を
行うことができなくなる欠点がある。
However, since the distance L necessarily changes when the size of the transducer changes, the coefficient to be input to the angle θ calculation circuit must be changed each time the size of the transducer changes. Therefore, the design and production become more complicated. In addition to this, in the arrangement of the transmitting and receiving elements, the area of the transmitting and receiving element becomes large, and when the distance L between the elements becomes larger than 1/2 wavelength of the emitted sound wave, the X axis shown in FIG. The same electrical phase angle φ within an angle of 0 to ± 90 ° between the main axis and the Y axis and the directivity main axis
Many occur. Therefore, there is a disadvantage that φ cannot be specified and correction cannot be performed.

(発明の目的) 本発明は以上説明した問題点を解決したデュアルビー
ムとスプリットビーム法併用の計量用魚群探知機とその
送受波器の提供を目的としてなされたものである。
(Object of the Invention) The present invention has been made to provide a fish finder for weighing which uses the dual beam and split beam methods together and which solves the problems described above, and a transducer for the same.

(問題点を解決するための本発明の手段) 第7図は本発明デュアルビームとスプリットビーム併
用送受波器の構成を示す平面図、第8図は各素子出力の
処理回路図であって、本発明の特徴とするところは次の
点にある。即ち中心部に同心的に断面円形の送受波素子
Aを設けた送受波素子Bと、この素子Bの四周に1個宛
配列された一辺の長さが素子Bの一辺の長さと同一であ
って、それぞれの幅がlの断面長方形状の送受波素子C,
D,E,Fおよび前記送受波素子Aと同心的となるように、
素子C,D,E,Fの外周部に設けた、外形が円形の送受波素
子Gとよりなる送受波器と、その出力の処理回路を用い
て次に説明するように動作させることを特徴とするもの
である。
(Means of the Invention for Solving the Problems) FIG. 7 is a plan view showing the configuration of a dual beam / split beam combined transducer of the present invention, and FIG. 8 is a processing circuit diagram of each element output. The features of the present invention are as follows. That is, a transmitting / receiving element B provided with a transmitting / receiving element A having a circular cross section concentrically at the center, and the length of one side arranged on one of four sides of the element B is the same as the length of one side of the element B. And each of the transmitting and receiving elements C, each having a rectangular cross section having a width of l,
D, E, F and so as to be concentric with the transmitting and receiving element A,
A transceiver, which is provided on the outer periphery of the elements C, D, E, and F and includes a transmitting and receiving element G having a circular outer shape, and a processing circuit for the output thereof is operated as described below. It is assumed that.

デュアルビーム法による使用の場合には、第8図で示
すように送波時には発振源(1)からの入力により素子
A〜Gを同相で振動させて送波する。そして受波時には
素子A〜Gの各出力を、前置増幅器(2a)(2b)(2c)
…(2g)によりそれぞれ増幅したのち、第9図(a)の
ように素子Aのみの広指向性ビーム出力DWと、第9図
(b)と第8図のように素子A〜Gの出力を素子面積に
応じた重み係数を持たせて加算器(3a)(3b)(3c)…
(3f)により加算して得られた狭指向性ビーム出力DN
即ち広指向性と狭指向性の2本のビーム出力により補正
演算回路(4a)によりデュアルビーム補正演算が行える
ようにする。
In the case of the use by the dual beam method, as shown in FIG. 8, the elements A to G are vibrated in the same phase by the input from the oscillation source (1) at the time of transmitting the wave and transmitted. At the time of receiving a wave, the outputs of the elements A to G are used as preamplifiers (2a) (2b) (2c)
.. (2g), the wide directional beam output DW of only the element A as shown in FIG. 9 (a) and the elements A to G as shown in FIG. 9 (b) and FIG. Adders (3a), (3b), (3c) ...
The narrow directional beam output D N obtained by adding (3f),
That is, dual beam correction calculation can be performed by the correction calculation circuit (4a) using the two beam outputs of the wide directivity and the narrow directivity.

またスプリットビーム法の場合には、第8図のように
素子A〜Gの同相発振により得られた前置増幅器(2a)
(2b)(2c)の出力と(2a)(2b)(2d)の出力を加算
器(3c)(3d)に加えて、第10図(a)のように重み係
数をもたせながら、素子A,B,Cの出力と素子A,B,Dの出力
をそれぞれ加算して、X軸方向に距離差をもつ2本のビ
ーム出力Sx1とSx2とを得る。
In the case of the split beam method, a preamplifier (2a) obtained by in-phase oscillation of elements A to G as shown in FIG.
The outputs of (2b) and (2c) and the outputs of (2a), (2b) and (2d) are added to adders (3c) and (3d), and a weighting coefficient is applied as shown in FIG. , B, C and the outputs of the elements A, B, D are added to obtain two beam outputs S x1 and S x2 having a distance difference in the X-axis direction.

また前置増幅器(2a)(2b)(2e)の出力と(2a)
(2b)(2f)の出力を加算器(3e)(3f)に加えて、第
10図(b)のように重み係数をもたせながら素子A,B,E
の出力と素子A,B,Fの出力をそれぞれ加算して、Y軸方
向に距離差をもつ2本のビーム出力Sy1とSy2を得る。そ
してこれらSx1,Sx2およびSy1とSy2から補正演算回路(4
b)により第5図のように反射体FのX軸方向とY軸方
向の位相角を検出し更に前記と同様に φ=(2πL/λ)・sinγ からγとγを求めて、その合成から遠距離音場にお
ける反射体Fの角度θを求める。そしてこれにより前記
加算器(3b)による送受波素子A〜Gの加算出力DNの受
信レベルを角度θに応じて補正する。
The outputs of the preamplifiers (2a) (2b) (2e) and (2a)
(2b) The output of (2f) is added to adders (3e) and (3f),
10 As shown in Fig. 10 (b), the elements A, B, E
Are added to the outputs of the elements A, B, and F to obtain two beam outputs S y1 and S y2 having a distance difference in the Y-axis direction. Then, from these S x1 , S x2 and S y1 and S y2 , a correction operation circuit (4
According to b), the phase angles of the reflector F in the X-axis direction and the Y-axis direction are detected as shown in FIG. 5, and γ x and γ y are obtained from φ = (2πL / λ) · sin γ in the same manner as described above. From the combination, the angle θ of the reflector F in the far field is obtained. And thereby correcting the receiving level of the addition output D N of the wave transceiver device A~G by the adder (3b) of the angle theta.

(発明の効果) 以上のような素子の組合わせによって送受波器を形成
すれば、素子C〜Fの幅lを一定としたまま、第11図
(a)(b)のように素子A,B,Gの大きさを変えて送受
波器の大きさを変えることができる。従って素子A+B
+CとA+B+Dの幾何面積中心点間、および図示して
いないが素子A+B+EとA+B+Fの幾何面積中心点
間の距離Lは、常に素子C〜Fの幅lによって定まる一
定値となり、前記従来のデュアル,スプリットビーム併
用の送受波器のように大きさによって異なることがな
い。このため設計製造が容易となる。
(Effects of the Invention) If the transducer is formed by combining the above-described elements, the elements A and B are maintained as shown in FIGS. The size of the transducer can be changed by changing the size of B and G. Therefore, element A + B
The distance L between the center points of the geometric areas of + C and A + B + D and between the center points of the geometric areas of the elements A + B + E and A + B + F (not shown) are always a constant value determined by the width l of the elements C to F. There is no difference depending on the size unlike the transducer using the split beam. This facilitates design and manufacture.

また上記のように距離Lは素子C〜Fの幅lによって
定まり、lは送受波器の大きさ即ち面積が変わっても一
定であるから、素子C〜Fの幅を1/2波長以内とすれ
ば、従来のように送受波器下面半球内における反射波の
検出位相角φxが180゜を越えることがない。この
ためスプリットビーム法による角度の検出を確実に行う
ことができ、前記した従来のデュアルビームとスプリッ
トビーム法併用の送受波器のもつ問題点を解決できる。
Further, as described above, the distance L is determined by the width l of the elements C to F. Since l is constant even if the size, that is, the area of the transducer is changed, the width of the elements C to F is set to be within 1/2 wavelength. If this is the case, the detection phase angles φ x and φ y of the reflected waves in the lower hemisphere of the transducer will not exceed 180 ° as in the prior art. For this reason, the angle can be reliably detected by the split beam method, and the problem of the above-described conventional dual beam transmitter / receiver combined with the split beam method can be solved.

これに加えて本発明では以上のような基本的な素子A
〜Gの組合わせにおいて、各素子の面積を変えることに
よって測定に適当な指向幅を得ることができる。また素
子A〜Gを細分化して加算時による重み係数を変更する
ことにより、サイドロープの抑制が可能であるなどのス
プリットビーム法による補正上の各種の利点が得られ
る。
In addition to this, in the present invention, the above basic element A
By changing the area of each element in the combination of G, a directivity width suitable for measurement can be obtained. By subdividing the elements A to G and changing the weight coefficient at the time of addition, various advantages in correction by the split beam method, such as suppression of side lobes, can be obtained.

なお、第7図に示した素子A〜Gは各々の一つの素子
として説明しているが小素子を配列して加算し等価的に
A〜Gなる区別を付ければ同様の効果をもつことは言う
までもない。
Note that the elements A to G shown in FIG. 7 are described as one element each. However, the same effect can be obtained by arranging and adding small elements and equivalently distinguishing A to G. Needless to say.

更に、A及びΣA〜Gを円形にせず、矩形にしても類
似の効果が得られる。
Further, similar effects can be obtained even if A and ΔA to G are not circular but rectangular.

【図面の簡単な説明】[Brief description of the drawings]

第1図は計量用魚群探知機における指向性主軸と反射体
の角度にもとづく測定誤差の説明図、第2図,第3図,
第4図,第5図および第6図はデュアルビーム法とスプ
リットビーム法に併用の送受波器による補正方法の説明
図、第7図,第8図,第9図,第10図および第11図は本
発明の一実施例の説明図である。 A,B,C,D,E,F,G……送受波素子、(1)……振動源、(2
a)(2b)(2c)(2d)(2e)(2f)……前置増幅器、
(3a)(3b)(3c)(3d)(3e)(3f)……加算器、
(4a)(4b)……補正演算回路。
FIG. 1 is an explanatory view of a measurement error based on an angle between a directivity main axis and a reflector in a fish finder for measurement, FIG. 2, FIG.
4, 5 and 6 are explanatory views of a correction method using a transducer used in combination with the dual beam method and the split beam method, and FIGS. 7, 8, 9, 10 and 11. FIG. 3 is an explanatory diagram of one embodiment of the present invention. A, B, C, D, E, F, G …… Transceiver element, (1)… Vibration source, (2
a) (2b) (2c) (2d) (2e) (2f) ... preamplifier,
(3a) (3b) (3c) (3d) (3e) (3f) ... Adder,
(4a) (4b) ... Correction calculation circuit.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】断面円形の送受波素子Aを中心部に同軸的
に設けた断面正方形の送受波素子Bと、その四周に配列
された幅がlの同一形状寸法をもつ断面長方形の送受波
素子C,D,E,Fと、その外周部に上記送受波素子A,Bと同軸
的に配列された送受波素子Gとを備えた送受波器と、同
相励振による前記各送受波素子からの反射信号を重み係
数を持たせて加算した前記送受波素子Aのみの出力、A
〜Gまでの総加算出力、A,B,Cの加算出力、A,B,Cの加算
出力、A,B,Eの加算出力、A,B,Fの加算出力を得る加算回
路と、前記送受波素子Aの広指向性ビーム出力とA〜G
による狭指向性ビームの出力とを用いて、反射体の指向
性主軸に対する角度を、広,狭両ビーム出力のレベル差
により素子A〜Gの加算出力の測定レベル誤差を補正す
るデュアルビーム補正回路と、前記送受波素子A,B,Cと
A,B,DおよびA,B,EとA,B,Fの加算出力を用いて反射体の
指向性主軸に対する角度による前記素子A〜Gの加算出
力の測定レベル誤差を補正するスプリットビーム補正回
路を備えたことを特徴とする計量用魚群探知機。
1. A transmitting and receiving element B having a square cross section and a transmitting and receiving element B having a square cross section and having the same shape and dimensions having a width of l and arranged on the four circumferences thereof. Elements C, D, E, F, and a transducer equipped with a transmitting and receiving element G coaxially arranged with the transmitting and receiving elements A and B on the outer periphery thereof, and from each of the transmitting and receiving elements by in-phase excitation. Output of only the transmitting / receiving element A obtained by adding the reflected signals of
An addition circuit for obtaining a total addition output up to G, an addition output of A, B, C, an addition output of A, B, C, an addition output of A, B, E, and an addition output of A, B, F; Broad directional beam output of transmitting / receiving element A and A to G
A dual beam correction circuit that corrects the measurement level error of the sum output of the elements A to G by using the output of the narrow directional beam by using the output of the narrow beam and the angle of the reflector with respect to the main axis of directivity using the level difference between the wide and narrow beam outputs. And the transmitting and receiving elements A, B, C
A, B, D and A, B, E and A, B, F split beam correction for correcting the measurement level error of the added output of the elements A to G due to the angle with respect to the directivity main axis of the reflector using the added output of A, B, F A fish finder for weighing, comprising a circuit.
【請求項2】断面円形の送受波素子Aを中心部に同軸的
に設けた断面正方形の送受波素子Bと、その四周に配列
された幅がlの同一形状寸法をもつ断面長方形の送受波
素子C,D,E,Fと、その外周部に上記送受波素子A,Bと同軸
的に配列された送受波素子Gとを備えた計量用魚群探知
機用送受波器。
2. A wave transmitting / receiving element B having a square cross section and a wave transmitting / receiving element A having a circular cross section provided coaxially at the center thereof, and a wave transmitting / receiving element having a rectangular cross section having the same shape and dimensions having a width of l and arranged on four sides thereof. A transmitter / receiver for a fish finder for measurement, comprising: elements C, D, E, F, and a transmitting / receiving element G arranged coaxially with the transmitting / receiving elements A, B on the outer periphery thereof.
JP33915889A 1989-12-27 1989-12-27 Fish finder and transducer for weighing Expired - Fee Related JP2620983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33915889A JP2620983B2 (en) 1989-12-27 1989-12-27 Fish finder and transducer for weighing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33915889A JP2620983B2 (en) 1989-12-27 1989-12-27 Fish finder and transducer for weighing

Publications (2)

Publication Number Publication Date
JPH03199991A JPH03199991A (en) 1991-08-30
JP2620983B2 true JP2620983B2 (en) 1997-06-18

Family

ID=18324792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33915889A Expired - Fee Related JP2620983B2 (en) 1989-12-27 1989-12-27 Fish finder and transducer for weighing

Country Status (1)

Country Link
JP (1) JP2620983B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4052086B2 (en) * 2002-10-23 2008-02-27 オムロン株式会社 Object detection apparatus and object detection method

Also Published As

Publication number Publication date
JPH03199991A (en) 1991-08-30

Similar Documents

Publication Publication Date Title
US7193930B2 (en) Quantitative echo sounder and method of quantitative sounding of fish
US9213095B2 (en) Combined direction finder and radar system, method and computer program product
EP1608996A2 (en) Approach radar with array antenna having rows and columns skewed relative to the horizontal
US7315728B2 (en) Polarized wave measuring apparatus, and antenna characteristic measuring apparatus and radio wave measuring apparatus using the same
JP2620983B2 (en) Fish finder and transducer for weighing
JP3070589B2 (en) Radar equipment
RU2477497C2 (en) Hydroacoustic navigation system
JP5722026B2 (en) Direction of arrival estimation method
US11194046B2 (en) Multiple frequency side-scan sonar
JPH0479548B2 (en)
JPH0648453Y2 (en) Fish finder for fish length discrimination
JPH0720107A (en) Ultrasonic signal processor
JPH11248821A (en) Phased array type ultrasonic sensor
JPH03295487A (en) Detecting method for space floating body
JPH0989917A (en) Phased array and doppler sodar
JPH07253469A (en) Instrument for measuring frequency characteristic of fish
JPS5839970A (en) Transmitting and receiving device of speed measuring instrument
JPH0643748Y2 (en) Fish finder for fish length discrimination
JP2010151720A (en) Transducer, line array antenna, and fan beam formation method
JPH0357982A (en) Directional receiving device for variable-depth sonar
JP2010151496A (en) Azimuth detection device
JPS5951372A (en) Antenna
JPH0372950B2 (en)
JPH0563749B2 (en)
JP2947622B2 (en) Radar equipment

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees