JP2620237B2 - Composite structure rotary tool and method of manufacturing the same - Google Patents

Composite structure rotary tool and method of manufacturing the same

Info

Publication number
JP2620237B2
JP2620237B2 JP62112861A JP11286187A JP2620237B2 JP 2620237 B2 JP2620237 B2 JP 2620237B2 JP 62112861 A JP62112861 A JP 62112861A JP 11286187 A JP11286187 A JP 11286187A JP 2620237 B2 JP2620237 B2 JP 2620237B2
Authority
JP
Japan
Prior art keywords
cemented carbide
composite structure
rotary tool
steel
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62112861A
Other languages
Japanese (ja)
Other versions
JPS63278707A (en
Inventor
靖弘 清水
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62112861A priority Critical patent/JP2620237B2/en
Publication of JPS63278707A publication Critical patent/JPS63278707A/en
Application granted granted Critical
Publication of JP2620237B2 publication Critical patent/JP2620237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 イ.発明の目的 (a)産業上の利用分野 本発明は、ドリル、エンドミル、ホブ、タップ等の回
転工具の新しい構造並びにその製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new structure of a rotary tool such as a drill, an end mill, a hob, a tap, and a method for manufacturing the same.

(b)従来の技術 ドリル、エンドミル、ホブ、タップ等の回転工具の材
質として従来多く用いられているのは高速度工具鋼であ
る。これは鋼中の合金成分としてCr,Mo,W,Vなどを含み
熱処理によってこれらの成分の炭化物を析出させ、通常
の鋼より耐摩耗性を高めた合金である。次に多く用いら
れるのが、WCをCoで焼結した超硬合金である。
(B) Conventional Technology High-speed tool steel is often used as a material for rotary tools such as drills, end mills, hobs, and taps. This is an alloy that contains Cr, Mo, W, V, etc. as alloy components in steel and precipitates carbides of these components by heat treatment, and has higher wear resistance than ordinary steel. The next most commonly used cemented carbide is WC sintered with Co.

これは高速度工具鋼に比べ、炭化物(WC)の量が多
く、耐摩耗性は格段に向上し、また、高温での硬さの低
下が少ないことから高速切削が可能となった。しかし、
靭性の面では高速度鋼に及ばず、これまではその使用領
域は限定されていた。
Compared to high-speed tool steel, it has a larger amount of carbide (WC), has significantly improved wear resistance, and has a small decrease in hardness at high temperatures, enabling high-speed cutting. But,
In terms of toughness, it is inferior to high-speed steel, and until now its use has been limited.

この高速度工具鋼と超硬合金の間を埋めるべく種々の
改良がなされている。まず、高速度工具鋼からの改良と
して、粉末高速度工具鋼とコーティング高速度鋼が挙げ
られる。粉末高速度工具鋼は、合金成分のCr,Mo,W,Vな
どを高めた高速度工具鋼の合金粉末をアトマイズ法など
により作り、これを熱間静水圧プレス等により焼結した
ものである。従来の溶製法では合金成分を多くすると炭
化物粒子の粗大化が避けられず、靭性の低下が著しかっ
たが粉末法により、これらの炭化物を微細に分散するこ
とが可能となり、靭性を損うことなく耐熱性、耐摩耗性
を高めることに成功している。次にコーティング高速度
工具鋼は、従来の高速度工具鋼の表面にPVD法により、T
iC,TiN等の硬質セラミックスを数μmから十数μmの厚
みにコーティングしたもので、このセラミックスが耐摩
耗性を向上させるものである。
Various improvements have been made to fill the gap between the high speed tool steel and the cemented carbide. First, as improvements from high-speed tool steel, there are powder high-speed tool steel and coated high-speed steel. Powdered high-speed tool steel is a high-speed tool steel alloy powder with increased alloy components such as Cr, Mo, W, V, etc., made by atomizing method etc., and sintered by hot isostatic pressing etc. . In the conventional smelting method, coarsening of carbide particles is unavoidable when the alloy component is increased, and the toughness is significantly reduced.However, by the powder method, it is possible to disperse these carbides finely, without impairing toughness It has succeeded in improving heat resistance and wear resistance. Next, coated high-speed tool steel is applied to the surface of conventional high-speed tool steel by PVD
Hard ceramics such as iC and TiN are coated to a thickness of several μm to several tens μm, and the ceramics improve wear resistance.

超硬合金からの改良としてはWCの粒子を極微細(1μ
m以下)にして合金の強度を向上し、信頼性を高めてい
る例がある。
As an improvement from cemented carbide, WC particles are extremely fine (1μ
m or less) to improve the strength of the alloy and increase the reliability.

(c) 発明が解決しようとする問題点 従来技術のうち高速度工具鋼(粉末高速度工具鋼、コ
ーティング高速度工具鋼含む)は鉄ベースの合金であ
り、炭化物を増したり、表面にコーティングしたりして
も本質的な耐熱性の改善にはなっておらず、600℃以下
の焼戻し温度により上の温度域では急速に刃先が軟化し
使いものにならなくなる。これでは切削速度を上げるこ
とができず、加工能率の向上に対応することができな
い。
(C) Problems to be Solved by the Invention Among the conventional techniques, high-speed tool steel (including powdered high-speed tool steel and coated high-speed tool steel) is an iron-based alloy, which has an increased amount of carbide or a coating on the surface. However, the heat resistance has not been essentially improved, and the tempering temperature of 600 ° C or less rapidly softens the cutting edge in the upper temperature range, making it unusable. In this case, the cutting speed cannot be increased, and it is not possible to cope with an improvement in machining efficiency.

次に超硬合金では、強度的には高速度工具鋼と同等程
度のものが得られているが、脆性材料であることに変わ
りはなく、突然刃先が欠けたり、根元から折れたりする
ことがあり、信頼性に乏しく加工の無人化等には対応す
ることが難しかった。
Next, with cemented carbide, although the strength is about the same as high-speed tool steel, it is still a brittle material, and the cutting edge suddenly breaks or breaks from the root. Therefore, the reliability was poor and it was difficult to cope with unmanned processing.

また、両者を接合した工具は確かに超硬合金を比べる
と靭性は向上するものの時々接合部から割れることがあ
り、十分満足できる性能ではなかった。
In addition, although the tool in which the two were joined was certainly improved in toughness as compared with the cemented carbide, it sometimes cracked from the joint, and the performance was not sufficiently satisfactory.

ロ.発明の構成 (a) 問題点を解決するための手段 本発明の構成は以下のようになる。B. Configuration of the Invention (a) Means for Solving the Problems The configuration of the present invention is as follows.

上記の問題を解決する手段として中心部が鋼(望まし
くは高速度工具鋼)より成る複合構造回転工具におい
て、その切刃を含む外側表面が超硬合金より成り、超硬
合金部分の厚みが工具外径の1%以上10%以下である複
合構造回転工具を提供する。またその製造方法として、
所望の工具形状に加工された鋼材を反応室内に置き、そ
の反応室中に気相合成されたWC粒子流とこれに混合され
たCo粒子流を導入し、WCとCoの混合物を鋼材表面に堆積
させる。しかる後にこの反応室中の鋼材の温度を1200℃
以上1500℃以下に保持することにより、表面のWC−Co混
合層を焼結して複合構造回転工具を得るものである。
As a means for solving the above problem, in a composite-structure rotary tool having a central portion made of steel (preferably high-speed tool steel), an outer surface including a cutting edge thereof is made of a cemented carbide, and a thickness of a cemented carbide portion is reduced. Provided is a composite structure rotary tool having an outer diameter of 1% or more and 10% or less. Also, as its manufacturing method,
A steel material processed into a desired tool shape is placed in a reaction chamber, and a gas phase synthesized WC particle flow and a Co particle flow mixed therein are introduced into the reaction chamber, and a mixture of WC and Co is applied to the surface of the steel material. Deposit. Thereafter, the temperature of the steel material in the reaction chamber is increased to 1200 ° C.
By maintaining the temperature at 1500 ° C. or less, the WC-Co mixed layer on the surface is sintered to obtain a composite structure rotary tool.

(b) 作用 中心となる鋼は、工具全体の靭性を担い、切刃を含む
外側表面にある超硬合金は耐熱性、耐摩耗性を担ってい
る。この切刃を含む外側表面の超硬合金の厚みは工具外
径の1%から10%の範囲である。1%以下では所望の耐
熱性、耐摩耗性が得られず、10%以上では靭性の低下が
著しい。
(B) Action Steel serving as the center bears the toughness of the entire tool, and the cemented carbide on the outer surface including the cutting edge bears heat resistance and wear resistance. The thickness of the cemented carbide on the outer surface, including the cutting edge, ranges from 1% to 10% of the tool outer diameter. If it is 1% or less, the desired heat resistance and wear resistance cannot be obtained, and if it is 10% or more, the toughness significantly decreases.

切刃を含む外側表面にある超硬合金の組成は、WC5〜9
5(wt%)WC以外のIV a,V a,VI a族金属の炭化物又は窒
化物0〜95(wt%)、Fe族金属3〜40(wt%)である。
The composition of the cemented carbide on the outer surface, including the cutting edge, is WC5-9
5 (wt%) Carbides or nitrides of Group IVa, Va, VIa metals other than WC are 0 to 95 (wt%), and Fe group metals are 3 to 40 (wt%).

WCは超硬合金の耐熱性、耐摩耗性を担っているが5%
以下では耐熱性、耐摩耗性が十分でなく95%を超えると
靭性が低下する。
WC is responsible for heat resistance and wear resistance of cemented carbide, but 5%
Below, heat resistance and abrasion resistance are not sufficient, and if it exceeds 95%, toughness decreases.

IV a,V a,VI a族金属の炭化物又は窒化物は合金の耐
熱性、耐摩耗性を更に向上させる働きがあるが、95%を
超えて入れるとやはり靭性が低下する。
Carbides or nitrides of Group IVa, Va and VIa metals have the function of further improving the heat resistance and wear resistance of the alloy. However, if the content exceeds 95%, the toughness also decreases.

Fe族金属は、合金の靭性を担っているが、3%以下で
はその効果がなく40%を超えると耐摩耗性が劣化する。
The Fe group metal plays a role in the toughness of the alloy. However, if the content is less than 3%, the effect is not obtained. If the content exceeds 40%, the wear resistance is deteriorated.

次に製造法について述べると、まずWCを気相合成にて
作ることにより得られるWC粒子が100nm(0.1μm)以下
の超微粒子となり、焼結性が著しく向上するとともに、
焼結後の超硬合金の強度が向上し、靭性が高められる効
果がある。気相合成の方法としては、炭化水素雰囲気中
でWをアーク放電により蒸発させ、炭化水素の炭素を結
合させる方法、Wのハロゲン化物(WF6,WCl6等)を高温
の炭化水素中で分解し炭化する方法、Wの酸化物を昇華
させ、これを水素と炭化水素の混合気流中で還元、炭化
する方法などがあるが、いずれによっても本発明の効果
に変りはない。Coの微粉末を作る方法はガス雰囲気中ア
ークや、電子銃を使う方法もあるが、抵抗加熱で十分で
ある。
Next, the manufacturing method is described. First, WC particles obtained by producing WC by vapor phase synthesis become ultrafine particles of 100 nm (0.1 μm) or less, and the sinterability is remarkably improved,
This has the effect of increasing the strength of the cemented carbide after sintering and increasing the toughness. As a method of gas phase synthesis, W is vaporized by arc discharge in a hydrocarbon atmosphere to combine hydrocarbon carbon, and W halides (WF 6 , WCl 6 etc.) are decomposed in high temperature hydrocarbons. And a method of sublimating an oxide of W, and reducing and carbonizing the same in a mixed gas stream of hydrogen and hydrocarbon. The method of producing Co fine powder includes an arc in a gas atmosphere and a method using an electron gun, but resistance heating is sufficient.

次にこれらを反応室中へ導入するのであるが、微粉末
になっているので、反応室側を減圧にすることによって
各粒子は容易に導入できる。又反応室中に入れる前にWC
とCoを混合するとは均一な合金を得るために望ましい。
Next, these are introduced into the reaction chamber. Since the powder is in the form of fine powder, each particle can be easily introduced by reducing the pressure in the reaction chamber. WC before putting in the reaction chamber
Mixing with Co is desirable to obtain a uniform alloy.

またこの方法によれば、中心の鋼材との界面部から表
面にわたって超硬合金の組成を連続的に変化させること
も可能である。即ち鋼材との界面部では、Fe族金属を多
くすることにより、超硬合金と鋼材の接合を十分に行
い、表面に近づくにつれてFe族金属を減らして耐摩耗性
を高めるということも可能である。
Further, according to this method, it is also possible to continuously change the composition of the cemented carbide from the interface with the central steel material to the surface. In other words, at the interface with the steel material, by increasing the amount of the Fe group metal, the cemented carbide and the steel material can be sufficiently joined together, and the Fe group metal can be reduced toward the surface to increase the wear resistance. .

次に焼結工程であるが、これはWC−Coの混合粉を堆積
した段階で反応室より取り出し新たに焼結炉の中にチャ
ージしても良いが反応室内でそのまま昇温することが出
来れば、移動の手間も少なく、また大気にさらすことも
ないので酸化を防ぐ意味からも好ましい。焼結温度はWC
粒成長抑制の観点からなるべく低温が望ましく、良好範
囲は1200℃〜1500℃である。
Next, in the sintering process, this may be done by taking out the WC-Co mixed powder from the reaction chamber and recharging it into the sintering furnace, but the temperature can be raised as it is in the reaction chamber. This is preferable from the viewpoint of preventing oxidation because it requires less time and effort to move and is not exposed to the atmosphere. Sintering temperature is WC
The temperature is preferably as low as possible from the viewpoint of suppressing grain growth, and a good range is 1200 ° C to 1500 ° C.

実施例1 高速度工具鋼製のドリル(SKH51 刃径9.0mm)を母材
とし、これを加熱装置を備えた真空槽へ入れ1×10-2To
rrまで真空引きをした。この真空槽にはWC気相合成装置
とCo微粉末製造装置が混合槽を介して接続されている。
Example 1 A high speed tool steel drill (SKH51, blade diameter 9.0 mm) was used as a base material, and this was put into a vacuum chamber equipped with a heating device and 1 × 10 -2 To.
Vacuum was pulled to rr. A WC gas phase synthesis device and a Co fine powder production device are connected to this vacuum tank via a mixing tank.

このWC気相合成装置と、Co蒸発装置を稼動し、WCの粒
子とCoの粒子を混合器に導入して混合した後真空槽中へ
導入し、ドリルの表面上にWC−Coの混合槽を堆積させ
た。
The WC gas phase synthesizing apparatus and the Co evaporator are operated, the WC particles and the Co particles are introduced into a mixer, mixed, and then introduced into a vacuum chamber, and the WC-Co mixing tank is placed on the surface of the drill. Was deposited.

なおWC気相合成は、以下の条件で行った。 The WC gas phase synthesis was performed under the following conditions.

W蒸発方式:アーク放電(放電電圧20v 放電電流80A) W蒸発量:450g/hr 導入ガス量: CH4 1/min H2 3/min 圧力:200Torr Co蒸発は抵抗加熱で行い、50g/hrの蒸発速度とし、H2
3/minで200Torrに保持した。
W Evaporation method: arc discharge (discharge voltage 20v discharge current 80A) W evaporation: 450 g / hr introduced amount of gas: CH 4 1 / min H 2 3 / min Pressure: 200 Torr Co evaporation is carried out by resistance heating, the 50 g / hr H 2
It was kept at 200 Torr at 3 / min.

1時間後、装置を停止した時、WC−Coの混合層の厚み
は0.65mmとなっていた。
One hour later, when the apparatus was stopped, the thickness of the WC-Co mixed layer was 0.65 mm.

次にこれを真空槽中に入れたまま加熱昇温1280℃で1
時間保持した後、室温まで冷却した。
Next, while keeping this in a vacuum chamber,
After holding for a time, it was cooled to room temperature.

そしてドリルを取り出して外径を調べたところ10.1mm
となっていたのでこれを研磨して刃径10mmのドリルに調
整した。外側の超硬部分の組成はWC−10%Coで母材と超
硬部分の界面は確認できないような連続的な組織となっ
ていた。
Then I took out the drill and checked the outer diameter 10.1mm
Therefore, this was polished and adjusted to a drill with a blade diameter of 10 mm. The composition of the outer superhard part was WC-10% Co and had a continuous structure in which the interface between the base metal and the superhard part could not be confirmed.

次にこの本発明品のドリルを10φの高速度工具鋼製の
ドリル(SKH51)粉末高速度工具鋼製のドリル、コーテ
ィング高速度工具鋼のドリル、と超硬合金製(WC−10C
o)のドリルと以下の条件でテストした。
Next, the drill of the present invention is made of 10φ high speed tool steel drill (SKH51) powder high speed tool steel drill, coated high speed tool steel drill, and cemented carbide (WC-10C).
o) The drill was tested under the following conditions.

条件1 被削材 S50C 切削速度 40m/min 送り 0.2mm/rev 穴深さ 40mm(貫通) 評価 加工穴数 条件2 被削材 SKD11 切削速度 20m/min 送り 0.15mm/rev 穴深さ 20mm(止り) 被削材テーブル送り 50mm/min〜(加工中) 評価 折損に至るテーブル送り ここで条件1は、ドリルの耐摩耗性を調べるためのテ
ストで条件2は加工中の被削材を横に動かすことでドリ
ルに横方向の荷重をかけ、折れに対する抵抗を調べるた
めのテストである。
Condition 1 Work material S50C Cutting speed 40m / min Feed 0.2mm / rev Hole depth 40mm (penetration) Evaluation Number of processed holes Condition 2 Work material SKD11 Cutting speed 20m / min Feed 0.15mm / rev Hole depth 20mm (stop) Workpiece table feed 50mm / min ~ (during machining) Evaluation Table feed leading to breakage Here, condition 1 is a test for examining the wear resistance of the drill, and condition 2 is that the work material being processed is moved sideways. Is a test for applying a lateral load to the drill and examining the resistance to breaking.

テストの結果を第1表に示す。 Table 1 shows the test results.

これからわかる様に、本発明品は超硬並の耐摩耗性と
高速度工具鋼並の靭性を兼ね備えている。なお、同一組
成でありながら本発明品の耐摩耗性が超硬合金を凌ぐの
は、気相合成法によるためWCの粒度が超微粒となってい
るためと考えられる。
As can be seen, the product of the present invention has both abrasion resistance comparable to carbide and toughness comparable to high speed tool steel. It is considered that the reason why the wear resistance of the product of the present invention is superior to that of a cemented carbide even though it has the same composition is that the WC has a very fine particle size due to the vapor phase synthesis method.

実施例2 高速度工具鋼製のエンドミルSKH59 刃径4.5mm)を母
材とし、これを実施例1と同様の装置に入れてWC−Co混
合層を堆積させた。
Example 2 An end mill SKH59 made of high-speed tool steel (diameter: 4.5 mm) was used as a base material, and was placed in the same apparatus as in Example 1 to deposit a WC-Co mixed layer.

ここでCoの蒸発は実施例1と同じく抵抗加熱によった
が、WCの生成はWCl6の分解により行った。条件は600
℃、H2流量10/min、CH4流量1/minとした。得られ
るWCの平均粒径は50nmであった。
Here, Co was evaporated by resistance heating as in Example 1, but WC was formed by decomposition of WCl 6 . Condition is 600
° C., H 2 flow rate of 10 / min, and a CH 4 flow rate 1 / min. The average particle size of the obtained WC was 50 nm.

次にこのエンドミルを加熱昇温し、1350℃で1時間焼
結した。その後これを新たに刃径5.0mmのエンドミルに
加工し、既存の高速度工具鋼超硬合金等と比較した。
Next, this end mill was heated and heated, and sintered at 1350 ° C. for 1 hour. After that, this was newly processed into an end mill with a blade diameter of 5.0 mm, and compared with existing high-speed tool steel cemented carbide.

被削材:インコネル750 軸方向切込み 7.0mm 切削速度:20m/min 径方向切込み 1.0mm 送り:0.3mm/rev 不水溶性切削油使用 判定 VB=0.20mmとなるまでの切削長 ハ.発明の効果 以上説明したように、本発明によれば超硬合金の耐摩
耗性を備えたまま靭性を高速度工具鋼並に向上させるこ
とができるので、ドリル、エンドミル、タップ、ホブ等
の信頼性が特に要求される切削分野でこれまで高速度工
具鋼を使っていた場合には、切削速度の向上および送り
速度の向上が可能となり、加工能率が大幅に向上しこれ
まで超硬合金を使っていた場合には、送り速度を上げる
ことが可能となり、加工能率が向上する。また得られた
複合構造工具にTiC,TiN,Al2O3等のセラミックスをCVD法
あるいはPVD法を用いてコーティングすることは耐摩耗
性向上の点から好ましい。
Work material: Inconel 750 Axial depth of cut 7.0mm Cutting speed: 20m / min Radial depth of cut 1.0mm Feed: 0.3mm / rev Use of water-insoluble cutting oil Judgment Cutting length until VB = 0.20mm C. Effect of the Invention As described above, according to the present invention, the toughness can be improved to the same level as that of high-speed tool steel while maintaining the wear resistance of the cemented carbide, so that the reliability of drills, end mills, taps, hobs, etc. If high-speed tool steel has been used in the cutting field where cutting performance is particularly required, the cutting speed and feed rate can be increased, and the machining efficiency is greatly improved. In such a case, the feed rate can be increased, and the processing efficiency is improved. It is preferable to coat the obtained composite structural tool with ceramics such as TiC, TiN, and Al 2 O 3 by using a CVD method or a PVD method from the viewpoint of improving wear resistance.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の工具を作るための装置の一例である。
これはまた、実施例1で用いた装置の概略でもある。 1は真空槽、2は被処理材(ドリル)、3は被処理材の
回転および左右への移動を支持する支持台、4は加熱用
ヒーター、5は混合器、6はCo蒸発装置、7は加熱ヒー
ター電源、8はコバルト塊、9はWC合成装置、10はアー
ク放電用電源、11はタングステン塊を示す。
FIG. 1 is an example of an apparatus for making a tool of the present invention.
This is also a schematic of the apparatus used in Example 1. 1 is a vacuum chamber, 2 is a material to be processed (drill), 3 is a support base for supporting the rotation and left and right movement of the material to be processed, 4 is a heater for heating, 5 is a mixer, 6 is a Co evaporator, 7 Denotes a heater heater power supply, 8 denotes a cobalt lump, 9 denotes a WC synthesizing apparatus, 10 denotes an arc discharge power supply, and 11 denotes a tungsten lump.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】工具の中心部が鋼より成る複合構造回転工
具において、その切刃を含む外側表面が超硬合金より成
り、該超硬合金部分の厚みが工具の全体の径の1%〜10
%となっていることを特徴とする複合構造回転工具。
An outer surface including a cutting edge thereof is made of a cemented carbide, and the thickness of the cemented carbide portion is 1% to 1% of the entire diameter of the tool. Ten
% Rotary tool with a composite structure.
【請求項2】前記特許請求の範囲第(1)項において超
硬合金の組成がWC5〜95%、WC以外のIV a,V a,VI a族金
属の炭化物、窒化物0〜95%、Fe族金属3〜40%である
ことを特徴とする複合構造回転工具。
2. The composition according to claim 1, wherein the composition of the cemented carbide is from 5 to 95% of WC, and from 0 to 95% of carbides and nitrides of Group IVa, Va, and VIa metals other than WC. A composite structure rotary tool comprising 3 to 40% of Fe group metal.
【請求項3】WCを気相で合成し、このWCをCo微粉末と気
相中で混合しながら中心材である鋼に堆積し、その後12
00℃以上1500℃以下の温度で焼結することを特徴とする
複合構造回転工具の製造方法。
(3) WC is synthesized in the gas phase, and the WC is deposited on the steel as the central material while mixing the WC with the Co fine powder in the gas phase.
A method for manufacturing a rotary tool having a composite structure, comprising sintering at a temperature of from 00 ° C to 1500 ° C.
【請求項4】前記特許請求の範囲第(3)項において堆
積中のWCとCoの比率をコントロールすることにより焼結
後の超硬合金部分の組成を鋼材との界面ではCoに富み表
面に至るにつれてCo量が徐々に減少していくように変化
させたことを特徴とする複合構造回転工具の製造方法。
4. The composition of the cemented carbide part after sintering is controlled by controlling the ratio of WC and Co during deposition in claim (3) to make the surface rich with Co at the interface with the steel material. A method for manufacturing a rotary tool with a composite structure, characterized in that the amount of Co is changed so as to gradually decrease as the temperature increases.
JP62112861A 1987-05-08 1987-05-08 Composite structure rotary tool and method of manufacturing the same Expired - Fee Related JP2620237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62112861A JP2620237B2 (en) 1987-05-08 1987-05-08 Composite structure rotary tool and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62112861A JP2620237B2 (en) 1987-05-08 1987-05-08 Composite structure rotary tool and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS63278707A JPS63278707A (en) 1988-11-16
JP2620237B2 true JP2620237B2 (en) 1997-06-11

Family

ID=14597365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62112861A Expired - Fee Related JP2620237B2 (en) 1987-05-08 1987-05-08 Composite structure rotary tool and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2620237B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140005U (en) * 1982-03-16 1983-09-20 ダイジヱツト工業株式会社 Cutting tools

Also Published As

Publication number Publication date
JPS63278707A (en) 1988-11-16

Similar Documents

Publication Publication Date Title
WO2003061884A1 (en) Surface coated cutting tool member having hard coating layer exhibiting excellent abrasion resistance in high-speed cutting, and method for forming said hard coating layer on surface of cutting tool
JP3928480B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2008087114A (en) Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy
JP2620237B2 (en) Composite structure rotary tool and method of manufacturing the same
JP2917555B2 (en) Hard layer coated cemented carbide cutting tool and its manufacturing method
JP4367032B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4844884B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to its excellent hard coating layer in high-speed cutting of heat-resistant alloys
JP2827597B2 (en) Hard layer coated cemented carbide cutting tool and its manufacturing method
JP2927098B2 (en) Physical vapor deposited hard layer coated drill and its manufacturing method
JP3922141B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP4244379B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP2533872B2 (en) Composite material for cutting tools
JP3900520B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions
JPH05261604A (en) Physically deposited hard layer coated throwaway tip and manufacture thereof
JPH0617228A (en) Cutting tool made of gradient hard layer coated sintered hard alloy
JP2004058217A (en) Surface coated cemented carbide cutting tool whose hard coating layer exhibits chipping resistance under high-speed heavy cutting condition
JP3900517B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions
JPH08260129A (en) Cubic boron nitride composite cermet tool and its production
JPH01127629A (en) Production of hard alloy
JP3900516B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3972776B2 (en) Slow-away surface-coated cemented carbide cutting tip that exhibits excellent chipping resistance in high-speed cutting
JP4725770B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance with a hard coating layer in high-speed cutting of highly reactive materials
JPH04297507A (en) Manufacture of cutting tool made of hard layer-coated tungsten carbide base-sintered hard alloy
JP3982348B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4379912B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees