JP2619986B2 - Hot water surface temperature measuring device for single crystal pulling device - Google Patents

Hot water surface temperature measuring device for single crystal pulling device

Info

Publication number
JP2619986B2
JP2619986B2 JP3152991A JP3152991A JP2619986B2 JP 2619986 B2 JP2619986 B2 JP 2619986B2 JP 3152991 A JP3152991 A JP 3152991A JP 3152991 A JP3152991 A JP 3152991A JP 2619986 B2 JP2619986 B2 JP 2619986B2
Authority
JP
Japan
Prior art keywords
radiation thermometer
single crystal
temperature
melt
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3152991A
Other languages
Japanese (ja)
Other versions
JPH04254488A (en
Inventor
謙治 荒木
正彦 馬場
雅彦 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP3152991A priority Critical patent/JP2619986B2/en
Publication of JPH04254488A publication Critical patent/JPH04254488A/en
Application granted granted Critical
Publication of JP2619986B2 publication Critical patent/JP2619986B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Radiation Pyrometers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、引上げ法による単結晶
育成装置に用いられる湯面温度測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the temperature of a molten metal used in a single crystal growing apparatus by a pulling method.

【0002】[0002]

【従来の技術】図3は、引上げ法による単結晶育成装置
の概略構成を示す。
2. Description of the Related Art FIG. 3 shows a schematic configuration of a single crystal growing apparatus using a pulling method.

【0003】黒鉛坩堝10内には石英坩堝12が嵌合さ
れている。この黒鉛坩堝10はヒータ14で囲繞され、
ヒータ14はさらに黒鉛断熱材16で囲繞されている。
これら構成要素は、各中心軸を同心にして、メインチャ
ンバ18内に配置されている。石英坩堝12内に多結晶
金属片を入れ、ヒータ14に電力を供給することによ
り、この多結晶が融液20となる。融液20の湯面22
の温度は結晶育成速度及び結晶の乱れに影響するので、
湯面22の温度を検出してヒータ14へ供給する電力を
調節する必要がある。そこで、従来では、メインチャン
バ18の肩部に覗き窓24を設け、この覗き窓24に放
射温度計26を固定していた。
A quartz crucible 12 is fitted in a graphite crucible 10. The graphite crucible 10 is surrounded by a heater 14,
The heater 14 is further surrounded by a graphite insulation 16.
These components are arranged in the main chamber 18 with their respective central axes concentric. A polycrystalline metal piece is put in the quartz crucible 12, and power is supplied to the heater 14. The molten metal surface 22 of the melt 20
Temperature affects the crystal growth rate and crystal disorder,
It is necessary to detect the temperature of the molten metal surface 22 and adjust the power supplied to the heater 14. Therefore, conventionally, a viewing window 24 is provided at the shoulder of the main chamber 18, and the radiation thermometer 26 is fixed to the viewing window 24.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、赤熱し
た石英坩堝12の内壁からの放射光が湯面22で反射さ
れて放射温度計26に入射したり、湯面22以外からの
放射光が放射温度計26に入射するので、湯面22の温
度を正確に測定することができなかった。この測定誤差
は10℃を越えることもあった。検出温度に対するこの
放射光の影響の程度は、ヒータ14に対し昇降自在な石
英坩堝12のレベル、石英坩堝12内の融液20の量、
融液20の温度及びヒータ14への供給電力等により異
なるので、放射温度計26で検出された温度を正確に補
正することは困難である。
However, the radiated light from the inner wall of the heated quartz crucible 12 is reflected by the molten metal surface 22 to be incident on the radiation thermometer 26, or the radiated light from other than the molten metal surface 22 is radiated by the radiation temperature. Since the light enters the total 26, the temperature of the molten metal surface 22 could not be measured accurately. This measurement error could exceed 10 ° C. The degree of the influence of the radiated light on the detection temperature depends on the level of the quartz crucible 12 which can be raised and lowered with respect to the heater 14, the amount of the melt 20 in the quartz crucible 12,
Since it differs depending on the temperature of the melt 20 and the power supplied to the heater 14, it is difficult to accurately correct the temperature detected by the radiation thermometer 26.

【0005】単結晶育成自動制御が特に難しい直径3m
m、長さ10cm程度の、種結晶に延設されるネッキン
グと称されている絞り部育成の成功率を高めるには、湯
面22の温度を正確に測定することが要求される。絞り
部育成においては、結晶が熔断したり、或は急激に直径
が増大したりして、安定した直径制御や絞り部育成続行
が困難となる場合が多々あり、従来では、絞り部育成の
成功率は通常50%以下であったが、上記湯面温度の測
定誤差がこの原因に大きく影響していると考えられる。
[0005] A diameter of 3 m is particularly difficult to automatically control for growing single crystals.
In order to increase the success rate of growing a drawn portion having a length of m and a length of about 10 cm, which is called necking extending from a seed crystal, it is required to accurately measure the temperature of the molten metal surface 22. In the growth of the narrowed portion, there are many cases where the crystal is melted or the diameter rapidly increases, so that it is difficult to control the diameter stably or to continue the growing of the narrowed portion. The rate was usually 50% or less, but it is considered that the above measurement error of the surface temperature has greatly affected the cause.

【0006】そこで、融液の真上から光軸を真下に向け
て放射温度計を配置する構成が提案されている(特開平
1−126295号公報)。
In view of this, there has been proposed a configuration in which a radiation thermometer is arranged so that the optical axis is directed from directly above the melt to directly below the melt (Japanese Patent Laid-Open No. 1-126295).

【0007】しかし、放射温度計をチャンバ内に配置し
ていたので、放射温度計全体が輻射熱を受け、放射温度
計の寿命が低下するという問題があった。また、放射温
度計をチャンバ外天井部に配置しようとすると、引上げ
ワイヤ巻上げ・回転装置との関係から充分な配置スペー
スがとれなかった。
However, since the radiation thermometer is disposed in the chamber, there is a problem that the entire radiation thermometer receives radiant heat and the life of the radiation thermometer is shortened. Further, when the radiation thermometer is to be arranged on the ceiling outside the chamber, a sufficient arrangement space cannot be obtained due to the relationship with the pulling wire winding and rotating device.

【0008】本発明の目的は、このような問題点に鑑
み、輻射熱による放射温度計の寿命低下を防止すること
ができ、放射温度計の充分な配置スペースを確保でき、
しかも、湯面温度を正確に測定することが可能な単結晶
引上装置用湯面温度測定装置を提供することにある。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to prevent the radiation thermometer from shortening its life due to radiant heat, and to secure a sufficient space for disposing the radiation thermometer.
Moreover, it is an object of the present invention to provide a temperature measuring apparatus for a single crystal pulling apparatus, which can accurately measure the temperature of the molten metal.

【0009】[0009]

【課題を解決するための手段及びその作用】上記目的を
達成するために、本発明に係る単結晶引上装置用湯面温
度測定装置では、プルチャンバ内において、融液面から
略垂直上方に進行する放射光が入射するように配置され
る反射器、好ましくは全反射プリズムと、該プルチャン
バ外かつ該プルチャンバ側方において、該反射器で全反
射された該放射光が入射するように配置される放射温度
計とを有している。該プルチャンバは、融液の入った坩
堝を収容するメインチャンバの上端に続く、メインチャ
ンバより小径の筒状物(断面形状は任意)である。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, in the apparatus for measuring the temperature of a molten metal for a single crystal pulling apparatus according to the present invention, the temperature rises substantially vertically upward from the melt surface in a pull chamber. A reflector, preferably a total reflection prism, which is arranged so that the emitted light is incident thereon, and is arranged outside the pull chamber and on the side of the pull chamber, so that the emitted light totally reflected by the reflector is incident. A radiation thermometer. The pull chamber is a cylindrical member (arbitrarily shaped in cross section) having a diameter smaller than that of the main chamber, following the upper end of the main chamber accommodating the crucible containing the melt.

【0010】この湯面温度測定装置は、融液面から略垂
直上方に進行する放射光を放射温度計に入射させて融液
面の温度を測定するので、融液の入った坩堝の内壁から
の放射光は放射温度計に殆ど入射せず、融液面の温度を
より正確に測定することができる。これにより、単結晶
育成自動制御が特に難しい直径3mm、長さ10cm程
度の絞り部育成の成功率を高めることができる。
In this apparatus, the temperature of the melt surface is measured by irradiating radiant light, which travels substantially vertically upward from the melt surface, to a radiation thermometer. Is hardly incident on the radiation thermometer, and the temperature of the melt surface can be measured more accurately. As a result, it is possible to increase the success rate of growing a drawn portion having a diameter of about 3 mm and a length of about 10 cm, in which automatic control of growing a single crystal is particularly difficult.

【0011】また、プルチャンバ外に放射温度計を配置
するので、輻射熱による放射温度計の寿命低下を防止す
ることができる。
Further, since the radiation thermometer is arranged outside the pull chamber, it is possible to prevent the life of the radiation thermometer from being shortened by radiant heat.

【0012】しかも、プルチャンバ側方に放射温度計を
配置するので、放射温度計の充分な配置スペースを確保
することができる。
In addition, since the radiation thermometer is arranged on the side of the pull chamber, a sufficient space for disposing the radiation thermometer can be secured.

【0013】上記構成にさらに、反射器の放射光入射面
に、入射立体角を制限するための制限筒を取り付けれ
ば、融液面の温度をさらに正確に測定することができ
る。
If a limiting cylinder for limiting the solid angle of incidence is attached to the radiation incident surface of the reflector, the temperature of the melt surface can be measured more accurately.

【0014】[0014]

【実施例】図1は、引上げ法による単結晶育成装置の概
略構成を示す。図3と同一構成要素には同一符号を付し
てその説明を省略する。
FIG. 1 shows a schematic structure of a single crystal growing apparatus by a pulling method. The same components as those in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted.

【0015】メインチャンバ18の肩部上端に続く小径
のプルチャンバ28の上部に、放射温度計30が取り付
けられている。図2はこの取り付け状態の詳細を示す。
図中、中心軸Cはプルチャンバ28の中心軸である。
A radiation thermometer 30 is mounted on the upper portion of the small-diameter pull chamber 28 following the upper end of the shoulder of the main chamber 18. FIG. 2 shows the details of this mounting state.
In the figure, the central axis C is the central axis of the pull chamber 28.

【0016】プルチャンバ28は二重構造になってお
り、このプルチャンバ28に穴が穿設され、この穴の部
分に外筒32の一端部が固着されている。外筒32内に
は内筒34が嵌入されている。この内筒34の一端に
は、フランジ36が固着され、フランジ36と外筒32
との間にシールリング38が嵌められ、このシールリン
グ38を覆うようにカバーリング40がねじ42でフラ
ンジ36に固着されている。フランジ36の端面には、
中間板44を介してベースプレート46が固着されてい
る。このベースプレート46に、放射温度計30がねじ
48で固着されている。また、ベースプレート46にブ
ラケット50がねじ52で固着され、このブラケット5
0により放射温度計30の対物レンズ側筒部が支持され
ている。放射温度計30の前方には、ベースプレート4
6にブラケット54が固着され、このブラケット54に
保持板56を介してミラー58が固着されている。
The pull chamber 28 has a double structure. A hole is formed in the pull chamber 28, and one end of the outer cylinder 32 is fixed to the hole. An inner cylinder 34 is fitted in the outer cylinder 32. A flange 36 is fixed to one end of the inner cylinder 34, and the flange 36 and the outer cylinder 32
A cover ring 40 is fixed to the flange 36 with screws 42 so as to cover the seal ring 38. On the end face of the flange 36,
A base plate 46 is fixed via an intermediate plate 44. The radiation thermometer 30 is fixed to the base plate 46 with screws 48. A bracket 50 is fixed to the base plate 46 with screws 52.
0 supports the objective lens side cylinder of the radiation thermometer 30. In front of the radiation thermometer 30, the base plate 4
A bracket 54 is fixed to the bracket 6, and a mirror 58 is fixed to the bracket 54 via a holding plate 56.

【0017】一方、内筒34のプルチャンバ28内側端
部には、中央部に放射光通過用穴が形成された蓋60が
ねじ62で固着され、この蓋60の前面に、放射光通過
用穴が形成されたL字型保持板64の一面が固着され、
保持板64に全反射プリズム66が固着されている。ま
た、保持板64の他面には中心軸Cに平行に制限筒68
の一端が固着されている。したがって、制限筒68の中
心軸は、図1に示す如く、湯面22に垂直になってい
る。
On the other hand, a lid 60 having a radiation light passing hole formed at the center is fixed to the inner end of the inner cylinder 34 inside the pull chamber 28 with a screw 62, and a radiation light passing hole is formed on the front surface of the lid 60. One surface of the L-shaped holding plate 64 on which is formed is fixed,
The total reflection prism 66 is fixed to the holding plate 64. On the other surface of the holding plate 64, a limiting cylinder 68 is provided in parallel with the central axis C.
Is fixed at one end. Therefore, the center axis of the restriction cylinder 68 is perpendicular to the molten metal surface 22, as shown in FIG.

【0018】上記構成において、湯面22からの放射光
は、制限筒68内を通り、全反射プリズム66で全反射
され、さらにミラー58で反射されて放射温度計30に
入射し、湯面22の温度が測定される。
In the above configuration, the radiated light from the molten metal surface 22 passes through the inside of the restricting cylinder 68, is totally reflected by the total reflection prism 66, is further reflected by the mirror 58, and is incident on the radiation thermometer 30. Is measured.

【0019】このような構成によれば、石英坩堝12の
内壁面からの放射光が放射温度計30に入射しないの
で、湯面22の温度をより正確に測定することができ、
結晶育直径をより正確に制御することができる。これに
より、単結晶育成自動制御が特に難しい直径3mm、長
さ10cm程度の絞り部育成の成功率を90%以上に高
めることができた。
According to such a configuration, since the radiation light from the inner wall surface of the quartz crucible 12 does not enter the radiation thermometer 30, the temperature of the molten metal surface 22 can be measured more accurately.
The crystal growth diameter can be controlled more accurately. As a result, the success rate of growing a drawn portion having a diameter of about 3 mm and a length of about 10 cm, which is particularly difficult to automatically control for growing a single crystal, could be increased to 90% or more.

【0020】なお、上記実施例では、制限筒68を用い
て、入射光角度を充分制限することにより、より正確に
湯面22の温度を測定する場合を説明したが、制限筒6
8を除去してもよい。この場合、内筒34の内径を小さ
くすれば、内筒34の黒色内壁面で、湯面22以外から
の斜め入射放射光が吸収されて、本発明の効果が得られ
る。しかし、入射光量が低下するので、検出信号増幅率
を増大させなければならず、このためSN比が低下し、
制限筒68を設けた場合よりも測定精度が低下する。
In the above embodiment, the case where the temperature of the molten metal surface 22 is more accurately measured by sufficiently restricting the incident light angle using the restriction cylinder 68 has been described.
8 may be removed. In this case, if the inner diameter of the inner cylinder 34 is reduced, obliquely incident radiation light from other than the molten metal surface 22 is absorbed by the black inner wall surface of the inner cylinder 34, and the effect of the present invention is obtained. However, since the amount of incident light decreases, the amplification factor of the detection signal must be increased.
The measurement accuracy is lower than when the restriction cylinder 68 is provided.

【0021】また、上記実施例のミラー58は、装置全
体をコンパクトにするのに役だっているが、本発明は、
全反射プリズム66からの全反射光を直接、放射温度計
30に導く構成であってもよい。
Although the mirror 58 of the above embodiment is used to make the whole apparatus compact, the present invention
A configuration in which the total reflection light from the total reflection prism 66 is directly guided to the radiation thermometer 30 may be employed.

【0022】さらに、全反射プリズム66の代りにミラ
ーを用いてもよい。しかし、この場合、銀等の蒸着金属
膜の熱膨張率とガラス基板の熱膨張率との差に基づき両
者間に熱応力が働いて、金属膜が劣化するので、このよ
うな問題が生じない全反射プリズム66の方が好まし
い。
Further, a mirror may be used instead of the total reflection prism 66. However, in this case, such a problem does not occur because a thermal stress acts between the two on the basis of the difference between the coefficient of thermal expansion of the deposited metal film such as silver and the coefficient of thermal expansion of the glass substrate, and the metal film is deteriorated. The total reflection prism 66 is more preferable.

【0023】[0023]

【発明の効果】以上説明した如く、本発明に係る単結晶
引上装置用湯面温度測定装置によれば、融液面から略垂
直上方に進行する放射光を放射温度計に入射させて融液
面の温度を測定するので、融液の入った坩堝の内壁から
の放射光は放射温度計に殆ど入射せず、融液面の温度を
より正確に測定することができ、また、プルチャンバ外
に放射温度計を配置するので、輻射熱による放射温度計
の寿命低下を防止することができ、しかも、プルチャン
バ側方に放射温度計を配置するので、放射温度計の充分
な配置スペースを確保することができるという効果を奏
する。
As described above, according to the apparatus for measuring the surface temperature of a single crystal pulling apparatus according to the present invention, the radiated light propagating substantially vertically upward from the surface of the melt is incident on the radiation thermometer. Since the temperature of the liquid surface is measured, the light emitted from the inner wall of the crucible containing the melt hardly enters the radiation thermometer, and the temperature of the melt surface can be measured more accurately. Since the radiation thermometer is located at the bottom, it is possible to prevent the life of the radiation thermometer from being shortened by radiant heat.Moreover, since the radiation thermometer is placed on the side of the pull chamber, it is necessary to secure a sufficient space for the radiation thermometer. This has the effect that it can be performed.

【0024】また、プルチャンバ内に配置された反射器
の放射光入射面に、入射立体角を制限するための制限筒
を取付ければ、融液面の温度をさらに正確に測定するこ
とができるという効果を奏する。
Further, if a restricting cylinder for restricting the solid angle of incidence is attached to the radiation incident surface of the reflector disposed in the pull chamber, the temperature of the melt surface can be measured more accurately. It works.

【図面の簡単な説明】[Brief description of the drawings]

【図1】放射温度計が取り付けられた、引上げ法による
単結晶育成装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a single crystal growing apparatus by a pulling method, to which a radiation thermometer is attached.

【図2】取付状態の放射温度計の詳細を示す一部断面側
面図である。
FIG. 2 is a partially sectional side view showing details of a radiation thermometer in an attached state.

【図3】放射温度計が取り付けられた、引上げ法による
単結晶育成装置の概略構成図である。
FIG. 3 is a schematic configuration diagram of a single crystal growing apparatus by a pulling method, to which a radiation thermometer is attached.

【符号の説明】[Explanation of symbols]

10 黒鉛坩堝 12 石英坩堝 14 ヒータ 16 黒鉛断熱材 18 メインチャンバ 20 融液 22 湯面 26、30 放射温度計 28 プルチャンバ 38 シールリング 58 ミラー 66 全反射プリズム 68 制限筒 DESCRIPTION OF SYMBOLS 10 Graphite crucible 12 Quartz crucible 14 Heater 16 Graphite insulation material 18 Main chamber 20 Melt 22 Hot surface 26, 30 Radiation thermometer 28 Pull chamber 38 Seal ring 58 Mirror 66 Total reflection prism 68 Restriction cylinder

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 融液の入った坩堝(12)を収容するメ
インチャンバ(18)の上端に続く、該メインチャンバ
よりも小径の筒状物であるプルチャンバ(28)内にお
いて、融液面(22)から略垂直上方に進行する放射光
が入射するように配置される反射器(66)と、該プル
チャンバ外かつ該プルチャンバ側方において、該反射器
で全反射された該放射光が入射するように配置される放
射温度計(30)と、を有することを特徴とする単結晶
引上装置用湯面温度測定装置。
1. In a pull chamber (28), which is a cylindrical body having a smaller diameter than the main chamber, following the upper end of a main chamber (18) accommodating a crucible (12) containing a melt, the melt surface ( 22) a reflector (66) arranged so as to receive the radiated light propagating substantially vertically upward from the reflector, and the radiated light totally reflected by the reflector is incident outside the pull chamber and at the side of the pull chamber. And a radiation thermometer (30) arranged as described above.
【請求項2】 前記反射器(66)の放射光入射面に、
入射立体角を制限するための制限筒(68)を取付けた
ことを特徴とする請求項1記載の単結晶引上装置用湯面
温度測定装置。
2. A radiation incident surface of the reflector (66),
2. The apparatus according to claim 1, further comprising a restriction cylinder for restricting an incident solid angle.
JP3152991A 1991-01-31 1991-01-31 Hot water surface temperature measuring device for single crystal pulling device Expired - Lifetime JP2619986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3152991A JP2619986B2 (en) 1991-01-31 1991-01-31 Hot water surface temperature measuring device for single crystal pulling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3152991A JP2619986B2 (en) 1991-01-31 1991-01-31 Hot water surface temperature measuring device for single crystal pulling device

Publications (2)

Publication Number Publication Date
JPH04254488A JPH04254488A (en) 1992-09-09
JP2619986B2 true JP2619986B2 (en) 1997-06-11

Family

ID=12333727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3152991A Expired - Lifetime JP2619986B2 (en) 1991-01-31 1991-01-31 Hot water surface temperature measuring device for single crystal pulling device

Country Status (1)

Country Link
JP (1) JP2619986B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005745A (en) * 2000-06-26 2002-01-09 Nec Corp Temperature measuring device and temperature measuring method

Also Published As

Publication number Publication date
JPH04254488A (en) 1992-09-09

Similar Documents

Publication Publication Date Title
US4508970A (en) Melt level sensing system and method
KR960013995B1 (en) Method for measuring surface temperature of semiconductor wafer substrate and heat-treating apparatus
US5577157A (en) Optical processing furnace with quartz muffle and diffuser plate
US4890245A (en) Method for measuring temperature of semiconductor substrate and apparatus therefor
US4737038A (en) Immersion infrared thermometer for molten materials
US5553939A (en) Method and device for calibrating an optical pyrometer and associated reference wafers
KR20020019016A (en) System and process for calibrating pyrometers in thermal processing chambers
KR20040007599A (en) Method and device for the thermal treatment of substrates
EP0458388B1 (en) Method and device for measuring temperature radiation using a pyrometer wherein compensation lamps are used
JP2619986B2 (en) Hot water surface temperature measuring device for single crystal pulling device
RU2200776C2 (en) Crystal growing apparatus and method
JPH0640027B2 (en) Method for measuring the temperature of an object to be heated in an optical heat treatment apparatus
JP3884173B2 (en) Substrate processing apparatus and substrate processing method
JPS6250627A (en) Controlling method for surface temperature of substrate
JP3600873B2 (en) Substrate temperature measurement unit
US6261372B1 (en) Vacuum process system
KR100415172B1 (en) Grower for single crystalline silicon ingot
JPS63182528A (en) Ultraviolet-ray illuminance measuring instrument for ultraviolet-ray irradiating device for optical fiber drawing device
JP2818124B2 (en) Semiconductor device manufacturing method
JPH07151606A (en) Instrument for measuring temperature of substrate
US5365876A (en) Crystal face temperature determination means
JPS6042363Y2 (en) optical saturation thermometer
KR100190357B1 (en) Wafer heating and monitor module and method of operation
JP2000065644A (en) Radiation transmittance measurement method and device therefor and quartz glass crucible measured by the device
JP2000114195A (en) Substrate processing apparatus, jig used for calibration of radiation termometer thereof, and calibrating method of the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080311

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080311

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090311

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100311

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110311

EXPY Cancellation because of completion of term