JP2619469B2 - Spring retainer - Google Patents

Spring retainer

Info

Publication number
JP2619469B2
JP2619469B2 JP63086842A JP8684288A JP2619469B2 JP 2619469 B2 JP2619469 B2 JP 2619469B2 JP 63086842 A JP63086842 A JP 63086842A JP 8684288 A JP8684288 A JP 8684288A JP 2619469 B2 JP2619469 B2 JP 2619469B2
Authority
JP
Japan
Prior art keywords
spring retainer
valve
aluminum alloy
weight
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63086842A
Other languages
Japanese (ja)
Other versions
JPS6456844A (en
Inventor
満 矢田部
巧 青木
忠男 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP63086842A priority Critical patent/JP2619469B2/en
Publication of JPS6456844A publication Critical patent/JPS6456844A/en
Application granted granted Critical
Publication of JP2619469B2 publication Critical patent/JP2619469B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエンジン機関に係り、さらに詳しくはエンジ
ン機関の動弁系に組込まれるスプリングリテーナに関す
るものである。
Description: TECHNICAL FIELD The present invention relates to an engine engine, and more particularly to a spring retainer incorporated in a valve train of an engine engine.

〔従来の技術および課題〕[Conventional technology and issues]

従来のエンジン機関のバルプ機構は例えば第3図のよ
うになっている。すなわちシリンダヘッド6にはバルプ
ガイド2が設けられ、バルブガイド2にはバルブステム
3が上下方向に摺動可能に支持されている。バルブステ
ム3の下端にはバルブフェース4が備えられ、バルブフ
ェース4は吸・排気ポートのバルブシート5と接離され
て吸・排気ポートを開閉するようになっている。
A conventional valve mechanism of an engine engine is, for example, as shown in FIG. That is, the valve head 2 is provided on the cylinder head 6, and the valve stem 3 is supported on the valve guide 2 so as to be slidable in the vertical direction. A valve face 4 is provided at a lower end of the valve stem 3, and the valve face 4 is brought into contact with and separated from a valve seat 5 of an intake / exhaust port to open / close the intake / exhaust port.

バルブステム3の上端にはコッター7を介してスプリ
ングリテーナ1が固定されている。スプリングリテーナ
1とシリンダヘッド6の上面との間にはバルブスプリン
グ8が介装され、バルブスプリング8はバルブフェース
4をバルブシート5に着座させる方向に付勢している。
The spring retainer 1 is fixed to the upper end of the valve stem 3 via a cotter 7. A valve spring 8 is interposed between the spring retainer 1 and the upper surface of the cylinder head 6, and the valve spring 8 urges the valve face 4 in a direction for seating on the valve seat 5.

またシリンダヘッド6の上方には潤滑油が送油される
中空軸状のロッカシャフト10が設けられ、ロッカシャフ
ト10にはロッカアーム11が揺動可能に取付けられてい
る。ロッカアーム11の一端部はバルブステム3の上端部
に当接し、ロッカアームの他端部はバルブリフタ(図示
せず)の動きを伝達するプッシュロッド12に当接されて
いる。すなわちプッシュロッド12によってロッカアーム
11の他端部を突き上げるとバルブステム3は押し下げら
れ、バルブフェース4はバルブシート5から離間され吸
・排気ポートが開かれる。プッシュロッド12の下降時に
は、バルブスプリング8の作用でスプリングリテーナ1
を押し上げると、コッター7を介して接続されているバ
ルブステム3が上昇し、吸・排気ポートは閉じられる。
A hollow shaft-shaped rocker shaft 10 through which lubricating oil is supplied is provided above the cylinder head 6, and a rocker arm 11 is swingably attached to the rocker shaft 10. One end of the rocker arm 11 is in contact with the upper end of the valve stem 3, and the other end of the rocker arm is in contact with a push rod 12 that transmits the movement of a valve lifter (not shown). Ie rocker arm by push rod 12
When the other end of the valve 11 is pushed up, the valve stem 3 is pushed down, the valve face 4 is separated from the valve seat 5, and the suction / exhaust port is opened. When the push rod 12 is lowered, the spring retainer 1 is actuated by the action of the valve spring 8.
Is pushed up, the valve stem 3 connected via the cotter 7 rises, and the intake / exhaust port is closed.

さてこのようなスプリングリテーナ1は従来はJIS G4
105に規定されているクロモブデン鋼などの強靭鋼が使
用されてきた。ところが上述したスプリングリテーナ1
の機能からも分かるようにバルブリテーナはバルブ−ス
プリング系統から発生する熱を速やかに放散させるため
に熱伝導率の大きいこと、およびバルブスプリングの負
担を軽くするため慣性質量の小さいものが望まれてい
た。
By the way, such a spring retainer 1 is conventionally JIS G4
High-strength steels, such as chromobuden steel specified in 105, have been used. However, the above-described spring retainer 1
As can be understood from the above function, it is desired that the valve retainer has a large thermal conductivity in order to quickly dissipate the heat generated from the valve-spring system, and has a small inertial mass in order to reduce the burden on the valve spring. Was.

〔課題を解決するための手段〕[Means for solving the problem]

そこで上述の課題を解決するためにアルミニウム合金
(熱伝導率は鋼の約4倍、質量の鋼の約1/3)が考えら
れる。このため本件発明者は最近開発されたFe、Ni、Mn
を含む高Siアルミニウム合金(特開昭59−13040号およ
び特開昭59−13041号)をスプリングリテーナに適用し
てみた。このアルミニウム合金は高温においても高い耐
摩耗性と強靭性をもつ優れた合金であるが、これをもっ
てしても前記のクロムモリブデン鋼大には耐摩耗性の点
で及ばないことが判明した。そこで本件発明者は上記ア
ルミニウム合金に通常のセラミックス粒子を配合したス
プリングリテーナを試作した。このスプリングリテーナ
は耐摩耗性の向上には十分な効果を示したが、通常のセ
ラミックス粒子は角ばっているためか、スプリングリテ
ーナに当接する相手材であるバルブスプリングを摩耗し
てしまうという結果が生じた。そこで本件発明者はさら
に研究試験を行なって角のない球状セラミックス粒子あ
るいはセラミック粒子のうちでも比較的軟かいものを上
記アルミニウム合金に配合すると耐摩耗性も向上し、相
手材も摩耗することなく、優れたスプリングリテーナに
なることを確認し、本件発明を完成するに至った。
Therefore, in order to solve the above-described problem, an aluminum alloy (having a thermal conductivity of about four times that of steel and about one-third of steel of mass) is considered. For this reason, the present inventor has developed the recently developed Fe, Ni, Mn
A high Si aluminum alloy (Japanese Patent Application Laid-Open Nos. 59-13040 and 59-13041) containing Ni was applied to a spring retainer. Although this aluminum alloy is an excellent alloy having high wear resistance and toughness even at high temperatures, it has been found that even with this aluminum alloy, the above-mentioned chromium-molybdenum steel size does not reach the level of wear resistance. Therefore, the present inventor prototyped a spring retainer in which ordinary ceramic particles were blended with the aluminum alloy. Although this spring retainer had a sufficient effect on improving the wear resistance, the result was that ordinary ceramic particles were square, or that the valve spring, which was the mating material that came into contact with the spring retainer, was worn. occured. Therefore, the present inventor further conducts research and tests, and when relatively soft among spherical ceramic particles or ceramic particles without corners are mixed with the aluminum alloy, the wear resistance is improved, and the mating material is also not worn, After confirming that the spring retainer was excellent, the present invention was completed.

すなわち本件発明の要旨は重量比でSi10.0〜30.0%と
Fe3.0〜15.0%、Mn5.0〜15.0%またはNi5.0〜15.0%の
うち1種または2種以上(ただしNi+Fe+Mnの合計で6.
0〜15.0%)とさらに必要に応じてCu0.5〜5.0%およびM
g0.3〜3.0%含有するアルミニウム合金に球状セラミッ
クス粒子またはジルコンを1〜20重量%分散させてなる
スプリングリテーナにある。
That is, the gist of the present invention is that Si is 10.0 to 30.0% by weight.
One or more of Fe3.0 to 15.0%, Mn5.0 to 15.0% or Ni5.0 to 15.0% (however, the total of Ni + Fe + Mn is 6.
0-15.0%) and further 0.5-5.0% Cu and M if necessary
The present invention is a spring retainer in which spherical ceramic particles or zircon is dispersed in an aluminum alloy containing 0.3 to 3.0% of g by 1 to 20% by weight.

〔発明の構成〕[Configuration of the invention]

以下本発明を詳しく述べる。本発明では高温において
も耐摩耗性および強靭性のある前記、特開昭59−13040
号および特開昭59−13041号公報記載のアルミニウム合
金を母材として使用する。
Hereinafter, the present invention will be described in detail. In the present invention, the above-mentioned JP-A-59-13040 having abrasion resistance and toughness even at a high temperature.
And an aluminum alloy described in JP-A-59-13041 is used as a base material.

セラミックス粒子の一群としては硬質粒子が使用でき
るが特にアルミナ(Al2O3)、炭化けい素(SiC)、窒化
けい素(Si3N4)、ジルコニア(ZrO2)が好ましい。テ
ラミックス粒子の比率は1〜20重量%が使用される。1
重量%より小さい場合は耐摩耗性の点で効果がなく、20
重量%より大きい場合はもろくなり、又加工性も悪くな
り実用的ではない。
As a group of ceramic particles, hard particles can be used, but alumina (Al 2 O 3 ), silicon carbide (SiC), silicon nitride (Si 3 N 4 ), and zirconia (ZrO 2 ) are particularly preferable. The ratio of the terramix particles is 1 to 20% by weight. 1
If it is less than 20% by weight, there is no effect in terms of wear resistance.
If it is larger than the weight percentage, it becomes brittle and the workability deteriorates, which is not practical.

本発明で使用される上記硬質セラミックス粒子は球状
セラミックスでなければならない。なぜなら角のあるセ
ラミックス粒子を使用するとスプリングリテーナの相手
材であるバルブスプリングを摩耗させてしまうからであ
る。球状セラミックスは機械的、熱的方法など既知の方
法で角を丸くしたもので市販品(例えば昭和電工(株)
製アルナビーズ)がある。本発明で使用できる他のセラ
ミックス粒子にはジルコン(Zr2O・SiO2)がある。ジル
コンはアルミナ、炭化けい素にくらべて軟かく、粒子自
身の硬さ、圧縮強さ、引張強さはアルミナの3分の2程
度である。従って球状でなくても相手材を傷つけること
は少ない。勿論球状であればなお好ましい。
The hard ceramic particles used in the present invention must be spherical ceramics. This is because the use of angular ceramic particles causes the valve spring, which is the mating member of the spring retainer, to be worn. Spherical ceramics have rounded corners by known methods such as mechanical and thermal methods and are commercially available (for example, Showa Denko KK)
Alnabeads). Other ceramic particles that can be used in the present invention include zircon (Zr 2 O.SiO 2 ). Zircon is softer than alumina and silicon carbide, and the hardness, compressive strength, and tensile strength of the particles themselves are about two-thirds that of alumina. Therefore, even if it is not spherical, the partner material is hardly damaged. Of course, a spherical shape is more preferable.

セラミックスの粒子径は3μ〜40μのものが好まし
い。平均粒子径が3μm未満では細かすぎて耐摩耗性の
効果が余り得られないし、40μ以上では熱間加工が困難
になるとともに強度の低下をまねく。
The particle diameter of the ceramic is preferably 3 μm to 40 μm. If the average particle size is less than 3 μm, the particle size is too small to provide a sufficient abrasion resistance effect. If the average particle size is 40 μm or more, hot working becomes difficult and strength is reduced.

セラミックス粒子の分散のための手段としてはアルミ
ニウム合金溶湯に分散させる方法、アルミニウム合金粉
末に混合し押出す方法のいずれでもよいが粉末合金を用
いる方が好ましい。その理由はセラミックス粒子を多量
に均一分散させるのはアルミニウム合金溶湯ではかなり
困難であるからである。セラミックス粒子とアルミニウ
ム合金とからなる成形体を得る方法は例えば次のように
する。アルミニウム合金溶湯をアトマイズ法や遠心微粉
化法など既知の方法によってアルミニウム粉末合金を得
る。このアルミニウム粉末合金に所定量のセラミックス
粒子を配合し、V型コーンミキサー等によって均一に混
合する。そして得られた混合粉を200〜350℃に加熱して
圧縮成形する。成形圧力は0.5〜3TON/cm2程度でよい。
そしてつぎに350℃以上の温度、好ましくは400〜500℃
の温度で熱間押出しを行なえばよい。
As a means for dispersing the ceramic particles, any of a method of dispersing in a molten aluminum alloy and a method of mixing and extruding with an aluminum alloy powder may be used, but it is preferable to use a powder alloy. The reason is that it is considerably difficult to uniformly disperse a large amount of ceramic particles with a molten aluminum alloy. A method for obtaining a molded body composed of ceramic particles and an aluminum alloy is, for example, as follows. An aluminum powder alloy is obtained from a molten aluminum alloy by a known method such as an atomizing method or a centrifugal pulverization method. A predetermined amount of ceramic particles are blended with this aluminum powder alloy, and uniformly mixed with a V-shaped cone mixer or the like. Then, the obtained mixed powder is heated to 200 to 350 ° C. and compression-molded. The molding pressure may be about 0.5 to 3 TON / cm 2 .
And then over 350 ° C, preferably 400-500 ° C
The hot extrusion may be performed at the above temperature.

又この成形品は必要に応じて焼なまし、焼入れ、焼も
どしなどの熱処理を行って合金の強度を改善してもよ
い。最後に熱間鍛造などのわずかな操作で最終製品であ
るスプリングリテーナを作ることができる。
The molded product may be subjected to a heat treatment such as annealing, quenching, or tempering if necessary to improve the strength of the alloy. Finally, the spring retainer, which is the final product, can be made with a few operations such as hot forging.

〔摩耗試験〕(Wear test)

本件発明者はこのようにして作ったアルミニウム合金
−セラミックス複合材の摩耗試験を行った。測定したの
は発明品としてのA材および比較品としてB材、C材、
D材である。
The present inventor conducted an abrasion test on the aluminum alloy-ceramic composite material thus produced. The materials measured were A material as an invention product and B material and C material as comparative products.
D material.

A材:12%Si−3%Cu−1%Mg−5%Fe残部がAlの粉末
合金に球状アルミナ(平均粒子径10μ)を5%混入した
粉末押出材 B材:A材のうち球状アルミナを含まない単なるアルミニ
ウム粉末合金押出材 C材:A材の球状アルミナの代りに研磨用アルミナ(平均
粒子径10μ)を5%混入した粉末押出材 D材:A材の球状アルミナの代りにジルコン(平均粒子径
10μ)を5%混入した粉末押出材 E材:JIS G4105に規定するSCM 430のクロムモリブデン
鋼 試験は第2図で示す方法で実施した。試験片13を試験
片ホルダ14で保持し、相手方回転円板15の外周面に一定
圧力で圧接させ、潤滑油供給管16から潤滑油を供給しな
がら摺動させる。試験片は5×5×20mmの角柱状を呈
し、先端摺動面には半径6mmの丸みが付せられ、研磨仕
上げが施されている。相手円板15はAA規格390番のアル
ミニウム合金(Si17%、Cu4.5%、Mg0.55%残部がAl)
のTb処理(480℃焼入れ後120℃×24時間焼もどし)した
ものでHRB 80の硬さを有し、外径44.2mmで、摺動外周面
は表面粗さ約1.5μmに研磨仕上げが施されている。こ
のような装置によって相手円板15を3m/秒の周速で回転
させ、80±1℃に加熱されたコンプレッサオイル(スニ
ソ5GS)を500ml/minの割合で供給管から給油しながら試
験片13を相手円板15の外周面に3kg/mm2の押圧力で押付
け、摩擦距離を150kmとして試験片13と相手円板15とを
摺動させた。
Material A: 12% Si-3% Cu-1% Mg-5% Fe powder extruded material in which 5% of spherical alumina (average particle diameter 10μ) is mixed into Al powder alloy 5% B material: A material of spherical alumina Extruded aluminum powder alloy that does not contain C material: Powder extruded material containing 5% abrasive alumina (average particle diameter 10μ) in place of spherical alumina of material A Material D: zircon (in place of spherical alumina of material A) Average particle size
Extruded powder mixed with 5% of 10μ) E material: Chromium molybdenum steel of SCM430 specified in JIS G4105 The test was carried out by the method shown in FIG. The test piece 13 is held by a test piece holder 14 and pressed against the outer peripheral surface of the counterpart rotating disk 15 at a constant pressure, and slid while supplying lubricating oil from a lubricating oil supply pipe 16. The test piece has a prism shape of 5 × 5 × 20 mm, and the sliding surface at the tip is rounded with a radius of 6 mm and polished. The counterpart disk 15 is AA standard No. 390 aluminum alloy (Si17%, Cu4.5%, Mg0.55%, the balance is Al)
Tb treated (tempered at 480 ° C and then tempered at 120 ° C for 24 hours), has the hardness of HRB 80, outer diameter of 44.2mm, and the outer peripheral surface of the sliding is polished to a surface roughness of about 1.5μm. Have been. By rotating the counterpart disk 15 at a peripheral speed of 3 m / sec by such a device, the test piece 13 was supplied while supplying compressor oil (Sniso 5GS) heated to 80 ± 1 ° C. from the supply pipe at a rate of 500 ml / min. Was pressed against the outer peripheral surface of the counterpart disk 15 with a pressing force of 3 kg / mm 2 , and the friction distance was set to 150 km to slide the test piece 13 and the counterpart disk 15.

この試験の摩耗特性の結果を第1表に示す。 Table 1 shows the results of the wear characteristics of this test.

第1表より明らかなように発明品であるA材はスプリ
ングリテーナとしての現用材であるD材に近い特性を有
する。B材は耐摩耗性が悪いし、C材は相手材を摩耗さ
せてしまう。
As is clear from Table 1, the material A, which is an invention product, has characteristics close to those of the material D, which is an active material as a spring retainer. Material B has poor wear resistance, and material C wears the mating material.

〔実施例〕〔Example〕

Si20.0%、Cu3.0%、Mg1.2%、Ni7.5%、残部がAlで
ある合金組成を有する高Siアルミニウム合金溶湯を空気
アトマイズして急冷凝固粉末とし、得られた粉末を−60
meshとなるようにフルイ分けを行った。次いで平均粒径
10μの球状アルミナ微粒子又はジルコン粒子を5重量%
になるように前記急冷凝固粉末に配合し、V型コーンミ
キサーにて窒素ガス封入下で均一に混合した。これらの
混合粉を250℃に1時間加熱し、同温度に加熱された金
型中に充填し上下パンチに圧縮成形してビレットとし
た。次に該ビレッドをArガス中で450℃で30分間加熱し
た後、約430℃に加熱されたスプリングリテーナ成形用
金型に配置し、上下より加圧することにより熱間鍛造に
てスプリングリテーナ素材を形成した。このスプリング
リテーナ素材に対して研削などの機械加工を行って第1
図に示されているスプリングリテーナ1を製作した。こ
のスプリングリテーナ1は長さ9mm、外径32mm、筒状部1
7の外径15mm、円錐面18の大径端部の直径11mm、円錐面1
8の傾斜角15゜、フランジ部19の厚さ4mmである。このス
プリングリテーナについての性能を評価すべく、実際の
ガソリンエンジンに組込み試験を行ったところ十分な耐
久性を有するものであることが確認された。又スプリン
グリテーナおよびバルブスプリングにも実質的な摩耗は
生じなかった。さらにこのスプリングリテーナの重量は
10.1gであり、従来のクロムモリブデン鋼製のスプリン
グリテーナは約20〜30gであるのに対して1/2〜1/3の軽
量化がはかられた。
A high Si aluminum alloy melt having an alloy composition of 20.0% Si, 3.0% Cu, 1.2% Mg, 7.5% Ni and the balance being Al is atomized into a rapidly solidified powder by air atomization. 60
Sieving was performed so as to form a mesh. Then average particle size
5% by weight of 10μ spherical alumina or zircon particles
And rapidly mixed with a rapidly solidified powder by a V-shaped cone mixer under nitrogen gas charging. These mixed powders were heated to 250 ° C. for 1 hour, filled in a mold heated to the same temperature, and compression-molded into upper and lower punches to form billets. Next, after heating the billet in Ar gas at 450 ° C. for 30 minutes, the billet is placed in a spring retainer molding die heated to about 430 ° C., and the spring retainer material is hot forged by pressing from above and below. Formed. This spring retainer material is subjected to machining such as grinding to
The spring retainer 1 shown in the figure was manufactured. This spring retainer 1 has a length of 9 mm, an outer diameter of 32 mm,
7 outer diameter 15mm, conical surface 18 large diameter end diameter 11mm, conical surface 1
The inclination angle of 8 is 15 °, and the thickness of the flange portion 19 is 4 mm. In order to evaluate the performance of the spring retainer, an incorporation test was performed on an actual gasoline engine, and it was confirmed that the spring retainer had sufficient durability. Also, no substantial wear occurred on the spring retainer and the valve spring. Furthermore, the weight of this spring retainer
The weight is 10.1 g, while the conventional spring retainer made of chromium molybdenum steel weighs about 20 to 30 g, but the weight is reduced by 1/2 to 1/3.

〔発明の効果〕〔The invention's effect〕

本発明に係るスプリングリテーナは (イ)従来の1/2〜1/3と軽量になること (ロ)熱伝導率が大きくバルブ−スプリング系統より発
生する熱の放散が容易であること (ハ)スプリングリテーナの摩耗がないこと (ニ)相手材であるバルブスプリングを摩耗させないこ
と などの効果がある。
The spring retainer according to the present invention has the following advantages. (A) The weight is reduced to 1/2 to 1/3 of the conventional one. (B) The thermal conductivity is large and the heat generated from the valve-spring system is easily dissipated. There is no wear of the spring retainer. (D) It has the effect of not wearing out the valve spring which is the mating material.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す概略図。第2図は摩耗
試験機を示す概略図。第3図はスプリングリテーナの作
用を示す概略図。 1……スプリングリテーナ、2……バルブガイド、3…
…バルブステム、4……バルブフェース、5……バルブ
シート、6……シリンダヘッド、7……コッター、8…
…バルブスプリング、11……ロッカアーム、13……試験
片、14……試験片ホルダ、15……回転円板、17……筒状
部、18……円錐面、19……フランジ部。
FIG. 1 is a schematic diagram showing one embodiment of the present invention. FIG. 2 is a schematic diagram showing a wear tester. FIG. 3 is a schematic view showing the operation of a spring retainer. 1 ... Spring retainer, 2 ... Valve guide, 3 ...
... valve stem, 4 ... valve face, 5 ... valve seat, 6 ... cylinder head, 7 ... cotter, 8 ...
... valve spring, 11 ... rocker arm, 13 ... specimen, 14 ... specimen holder, 15 ... rotating disk, 17 ... cylindrical part, 18 ... conical surface, 19 ... flange part.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−13040(JP,A) 特開 昭59−13041(JP,A) 特開 昭61−153255(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-59-13040 (JP, A) JP-A-59-13041 (JP, A) JP-A-61-153255 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量比でSi10.0〜30.0%と、Fe3.0〜15.0
%、Mn5.0〜15.0%またはNi5.0〜15.0%のうち1種また
は2種以上を合計で6.0〜15.0%含有するアルミニウム
合金に球状セラミックス粒子を1〜20重量%分散させて
なるスプリングリテーナ。
(1) 10.0 to 30.0% of Si and 3.0 to 15.0% of Fe by weight.
%, Mn 5.0-15.0% or Ni 5.0-15.0% A spring retainer in which spherical ceramic particles are dispersed by 1-20% by weight in an aluminum alloy containing one or two or more kinds in total of 6.0-15.0%. .
【請求項2】重量比でSi10.0〜30.0%と、Fe3.0〜15.0
%、Mn5.0〜15.0%またはNi5.0〜15.0%のうち1種また
は2種以上を合計で6.0〜15.0%含み、さらにCu0.5〜5.
0%およびMg0.3〜3.0%とを含有するアルミニウム合金
に球状セラミックス粒子を1〜20重量%分散させてなる
スプリングリテーナ。
2. The composition according to claim 1, wherein the weight ratio of Si is 10.0 to 30.0% and that of Fe is 3.0 to 15.0%.
%, Mn 5.0 to 15.0% or Ni 5.0 to 15.0%, and contains a total of 6.0 to 15.0% of one or more of them, and further contains Cu 0.5 to 5.
A spring retainer obtained by dispersing 1 to 20% by weight of spherical ceramic particles in an aluminum alloy containing 0% and 0.3 to 3.0% of Mg.
【請求項3】重量比でSi10.0〜30.0%と、Fe3.0〜15.0
%、Mn5.0〜15.0%またはNi5.0〜15.0%のうち1種また
は2種以上を合計で6.0〜15.0%含有するアルミニウム
合金にジルコン粒子を1〜20重量%分散させてなるスプ
リングリテーナ。
3. The composition according to claim 1, wherein the weight ratio of Si is 10.0 to 30.0% and that of Fe is 3.0 to 15.0%.
%, Mn 5.0 to 15.0% or Ni 5.0 to 15.0%. A spring retainer in which zircon particles are dispersed in an amount of 1 to 20% by weight in an aluminum alloy containing a total of 6.0 to 15.0%.
【請求項4】重量比でSi10.0〜30.0%と、Fe3.0〜15.0
%、Mn5.0〜15.0%またはNi5.0〜15.0%のうち1種また
は2種以上を合計で6.0〜15.0%含み、さらにCu0.5〜5.
0%およびMg0.3〜3.0%とを含有するアルミニウム合金
にジルコン粒子を1〜20重量%分散させてなるスプリン
グリテーナ。
4. The composition according to claim 4, wherein the weight ratio of Si is 10.0 to 30.0% and that of Fe is 3.0 to 15.0%.
%, Mn 5.0 to 15.0% or Ni 5.0 to 15.0%, and contains a total of 6.0 to 15.0% of one or more of them, and further contains Cu 0.5 to 5.
A spring retainer obtained by dispersing 1 to 20% by weight of zircon particles in an aluminum alloy containing 0% and 0.3 to 3.0% of Mg.
JP63086842A 1987-04-13 1988-04-07 Spring retainer Expired - Lifetime JP2619469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63086842A JP2619469B2 (en) 1987-04-13 1988-04-07 Spring retainer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-54794 1987-03-10
JP5479487 1987-04-13
JP63086842A JP2619469B2 (en) 1987-04-13 1988-04-07 Spring retainer

Publications (2)

Publication Number Publication Date
JPS6456844A JPS6456844A (en) 1989-03-03
JP2619469B2 true JP2619469B2 (en) 1997-06-11

Family

ID=26395604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63086842A Expired - Lifetime JP2619469B2 (en) 1987-04-13 1988-04-07 Spring retainer

Country Status (1)

Country Link
JP (1) JP2619469B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989556A (en) * 1988-10-07 1991-02-05 Honda Giken Kogyo Kabushiki Kaisha Valve spring retainer for valve operating mechanism for internal combustion engine
JPH05311302A (en) * 1991-10-22 1993-11-22 Toyota Motor Corp Aluminum alloy excellent in strength at high temperature and wear resistance and reduced in friction
EP0561204B1 (en) * 1992-03-04 1997-06-11 Toyota Jidosha Kabushiki Kaisha Heat-resistant aluminum alloy powder, heat-resistant aluminum alloy and heat- and wear-resistant aluminum alloy-based composite material
US5616192A (en) * 1994-07-21 1997-04-01 Fuji Oozx Inc. Coil retainer for engine valve and preparation of the same
JP4733498B2 (en) * 2005-10-28 2011-07-27 昭和電工株式会社 FORGED MOLDED PRODUCT, ITS MANUFACTURING METHOD, FORGED MOLDING DEVICE AND FORGED PRODUCT MANUFACTURING SYSTEM
JP2007182618A (en) * 2006-01-10 2007-07-19 Taiheiyo Cement Corp Synchronizer ring, method for producing the same, and thermal spray powder used in the production

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913040A (en) * 1982-07-12 1984-01-23 Showa Denko Kk Heat- and wear-resistant high-strength aluminum alloy powder and molded body of said alloy powder and their manufacture
JPS5913041A (en) * 1982-07-12 1984-01-23 Showa Denko Kk Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production
JPS61153255A (en) * 1984-12-27 1986-07-11 N D C Kk Al-sn bearing alloy

Also Published As

Publication number Publication date
JPS6456844A (en) 1989-03-03

Similar Documents

Publication Publication Date Title
EP0100470A2 (en) Heat-resistant, wear-resistant, and high-strength aluminum alloy powder and body shaped therefrom
WO2018101435A1 (en) Sintered friction material for railway vehicles, and method for producing same
JP2619469B2 (en) Spring retainer
EP2207907A1 (en) Metallurgical powder composition and method of production
AU696267B2 (en) Wear-resistant sintered ferrous alloy for valve seat
US4080205A (en) Sintered alloy having wear-resistance at high temperature
JPS61235533A (en) High heat resistant sintered hard alloy
JP2709097B2 (en) Spring retainer
Theisen et al. Hot direct extrusion—A novel method to produce abrasion-resistant metal-matrix composites
JPS63282295A (en) Wear resistant surface layer
JP4516697B2 (en) Hard particle dispersion type iron-based sintered alloy
JP3942136B2 (en) Iron-based sintered alloy
JPH10137920A (en) Production of brake disk composite material for railway vehicle
JPH08219174A (en) Synchronous ring for transmission and its manufacture
JPS6338401B2 (en)
JPS6119762A (en) Abrasion resistant sintered alloy
JPH08269591A (en) Aluminum alloy powder molding partially containing ceramic particles and its production
JP2001295004A (en) Iron base sintered alloy
Saravanan et al. Tribological behaviour of hybrid (Al356+ SiC+ Gr) metal matrix composites
JPH10140275A (en) Composite material for brake disk for railway car
JP4144100B2 (en) Brake disc material manufacturing method for railway vehicles
EP0900856B1 (en) Use of sintered stainless steel containing manganese sulphide in high temperature bearings.
JPS6360253A (en) Warm-and hot-forging tool
JPS6335706B2 (en)
JP2735570B2 (en) High-strength sintered high-speed steel and manufacturing method thereof