JP2614798B2 - Combined heat pump device - Google Patents

Combined heat pump device

Info

Publication number
JP2614798B2
JP2614798B2 JP4028236A JP2823692A JP2614798B2 JP 2614798 B2 JP2614798 B2 JP 2614798B2 JP 4028236 A JP4028236 A JP 4028236A JP 2823692 A JP2823692 A JP 2823692A JP 2614798 B2 JP2614798 B2 JP 2614798B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat
heat exchanger
control valve
refrigerant control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4028236A
Other languages
Japanese (ja)
Other versions
JPH05288426A (en
Inventor
輝雄 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Misawa Homes Co Ltd
Original Assignee
Misawa Homes Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Misawa Homes Co Ltd filed Critical Misawa Homes Co Ltd
Priority to JP4028236A priority Critical patent/JP2614798B2/en
Publication of JPH05288426A publication Critical patent/JPH05288426A/en
Application granted granted Critical
Publication of JP2614798B2 publication Critical patent/JP2614798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、設定温度に差がある複
数の加熱を同時並行的に行えるようにした複合型ヒート
ポンプ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined heat pump device capable of simultaneously performing a plurality of heatings having different set temperatures in parallel.

【0002】[0002]

【従来の技術】近年、居住性向上対策の一環として、冷
暖房,給湯システムが普及しつつあり、これに伴い、ヒ
ートポンプ装置の多機能化したトータルシステムの研究
・開発が進められている。
2. Description of the Related Art In recent years, air conditioning and hot water supply systems have become widespread as part of measures to improve comfort, and accordingly, research and development of a multifunctional heat pump system have been advanced.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
この種のヒートポンプ装置 (例えば特開昭59−138
868号等参照) にあっては、冷暖房・給湯等の機能の
多様化を図ってはいるが、これら各機能は単独に作動す
るものであり、例えば暖房と貯湯槽の加熱とを同時に効
果的に行うといったような複数の機能を同時並行的に行
わせるようなことは実質的に不可能であった。
However, this type of conventional heat pump device (for example, Japanese Patent Application Laid-Open No. 59-138)
868)), various functions such as cooling and heating, hot water supply, etc. are diversified, but each of these functions operates independently, for example, heating and heating of a hot water storage tank are simultaneously effective. It is practically impossible to perform a plurality of functions simultaneously, such as performing the functions in parallel.

【0004】これは、上記の例でいえば、暖房機能を果
たす熱交換器と貯湯機能を果たす熱交換器 (どちらも凝
縮器として作動している) への冷媒流量と温度とを適切
に制御することができないためである。したがって、従
来方式では多数の熱交換器を要する住宅用ヒートポンプ
装置等においては、多機能化に限界があり、その効果も
十分期待できるものではなかった。
[0004] In the above example, this means that the flow rate and temperature of the refrigerant to the heat exchanger performing the heating function and the heat exchanger performing the hot water storage function (both operating as a condenser) are appropriately controlled. Because they cannot do it. Therefore, in a conventional heat pump device or the like that requires a large number of heat exchangers, there is a limit to multifunctionality, and the effect has not been sufficiently expected.

【0005】本発明は、このような従来の実状に鑑みな
されたもので、凝縮器として使用される複数の熱交換器
への冷媒流量割合を可変に制御することにより、該熱交
換器周辺の温度状態に応じた制御や設定温度の異なる加
熱を行えるようにした複合型ヒートポンプ装置を提供す
ることを目的とする。
The present invention has been made in view of such a conventional situation, and variably controls the ratio of the flow rate of refrigerant to a plurality of heat exchangers used as a condenser to thereby control the flow rate around the heat exchanger. It is an object of the present invention to provide a combined heat pump device capable of performing control according to a temperature state and heating with a different set temperature.

【0006】[0006]

【課題を解決するための手段】このため、本発明に係る
複合型ヒートポンプ装置は、3個以上の熱交換器を含ん
でヒートポンプサイクルをなすように循環接続された複
合型ヒートポンプ装置において、少なくとも凝縮器とし
て同時に使用される複数の熱交換器を相互に並列接続し
て配設し、圧縮器の吐出側から分岐して前記複数の熱交
換器のうち少なくとも2個の熱交換器の凝縮作動時にお
ける冷媒入口側に至る冷媒通路と、これら熱交換器の凝
縮作動時に下流側に接続されて蒸発作動する熱交換器の
該蒸発作動時における冷媒入口側及び冷媒出口側の冷媒
通路と、に夫々全閉から全開まで連続的に開度調整自由
な冷媒制御弁を介装した構成とした。
SUMMARY OF THE INVENTION Therefore, a composite heat pump apparatus according to the present invention includes at least a condenser in a composite heat pump apparatus including three or more heat exchangers and connected in a circulating manner to form a heat pump cycle. A plurality of heat exchangers used simultaneously as a heat exchanger are connected in parallel with each other, and are branched from the discharge side of the compressor when at least two of the plurality of heat exchangers are condensing. a refrigerant passage leading to the refrigerant inlet side of, coagulation of heat exchanger
The heat exchanger connected to the downstream side during evacuation
Refrigerant on the refrigerant inlet side and refrigerant outlet side during the evaporation operation
A passage and a refrigerant control valve whose opening can be freely adjusted continuously from fully closed to fully open are respectively provided.

【0007】[0007]

【作用】凝縮器として作動する複数の並列接続された熱
交換器に圧縮器から吐出された冷媒が冷媒制御弁を介し
て供給される。ここで、冷媒制御弁の開度を調整するこ
とにより、圧縮器の吐出圧力を可変に制御できる。例え
ば、一方の冷媒制御弁を他方の冷媒制御弁の開度より絞
ることで、圧縮器の吐出圧力を高められ、前記他方の冷
媒制御弁に接続される熱交換器の凝縮点を、一方の冷媒
制御弁に接続される凝縮点より相対的に高められる。こ
のようにして設定温度の異なる加温制御が可能となる。
また、このとき、前記凝縮器として作動する熱交換器の
下流側に接続されて蒸発器として作動する熱交換器の冷
媒入口側及び冷媒出口側の冷媒通路に介装された冷媒制
御弁の開度も周辺の温度状況に応じて調整することがで
き、これによってより極め細かく温度状況に応じた制御
を行うことができる。
The refrigerant discharged from the compressor is supplied to a plurality of heat exchangers connected in parallel that operate as a condenser via a refrigerant control valve. Here, the discharge pressure of the compressor can be variably controlled by adjusting the opening of the refrigerant control valve. For example, by narrowing one refrigerant control valve from the opening degree of the other refrigerant control valve, the discharge pressure of the compressor can be increased, and the condensation point of the heat exchanger connected to the other refrigerant control valve can be reduced by one. It is relatively higher than the condensation point connected to the refrigerant control valve. In this way, heating control with different set temperatures can be performed.
Also, at this time, the heat exchanger operating as the condenser
Cooling of the heat exchanger connected downstream and operating as an evaporator
Refrigerant control installed in the refrigerant passage on the medium inlet side and the refrigerant outlet side
The opening of the valve can be adjusted according to the surrounding temperature.
This allows for more precise control according to temperature conditions
It can be performed.

【0008】[0008]

【実施例】以下に本発明の実施例を図に基づいて説明す
る。一実施例の全体構成を示す図1において、冷媒圧縮
用の圧縮器1に吐出側冷媒通路の途中から4方に分岐す
る4本の第1冷媒分岐路3A〜3D (以下に特に区別し
ない場合は総称番号3を用いる。その他の番号4〜9に
ついても同様) の各部が夫々熱交換器4A〜4Dの一端
側に接続される。前記各第1冷媒分岐路3A〜3Dに
は、後述する構造,機能を有した冷媒制御弁5A〜5D
が介装される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1 showing the overall configuration of one embodiment, four first refrigerant branch passages 3A to 3D branching to a compressor 1 for refrigerant compression from the middle of a discharge side refrigerant passage in four directions (when not particularly distinguished below). Use the generic number 3. The same applies to the other numbers 4 to 9) are connected to one ends of the heat exchangers 4A to 4D, respectively. Each of the first refrigerant branch passages 3A to 3D has a refrigerant control valve 5A to 5D having a structure and function described later.
Is interposed.

【0009】前記各熱交換器4A〜4Dの他端側には、
夫々第2冷媒分岐路6A〜6Dが接続され、これらは他
端が相互に連通して接続される。前記各第2冷媒分岐路
6A〜6Dにも前記同様の構造,機能を有した冷媒制御
弁7A〜7Dが介装される。また、前記各第1冷媒分岐
路3A〜3Dの冷媒制御弁5A〜5Dと熱交換器4A〜
4Dとの間から分岐する第3冷媒分岐路8A〜8Dの他
端が圧縮器1の吸入側冷媒通路10に接続される。各第3
冷媒分岐路8A〜8Dにも前記同様の構造,機能を有し
た冷媒制御弁9A〜9Dが介装される。また、吸入側冷
媒通路10にはアキュームレータ11が介装される。
At the other end of each of the heat exchangers 4A to 4D,
The second refrigerant branch passages 6A to 6D are connected to each other, and the other ends are connected to each other and connected. Refrigerant control valves 7A to 7D having the same structure and function as described above are also interposed in the second refrigerant branch passages 6A to 6D. In addition, the refrigerant control valves 5A to 5D of the first refrigerant branch passages 3A to 3D and the heat exchangers 4A to 4D.
The other end of each of the third refrigerant branch passages 8A to 8D branched from between the first refrigerant passage 4D and the fourth refrigerant branch 4D is connected to the suction-side refrigerant passage 10 of the compressor 1. Each third
The refrigerant branch passages 8A to 8D are also provided with refrigerant control valves 9A to 9D having the same structure and function as described above. An accumulator 11 is interposed in the suction-side refrigerant passage 10.

【0010】図2は、前記冷媒制御弁の構造及び各種開
度位置を示す。但し、第2冷媒分岐路6に介装されてい
る冷媒制御弁7について示すが、他の冷媒制御弁5,9
についても同様である。図において、冷媒制御弁7は冷
媒の流入側と流出側の第2冷媒分岐路6を互いに対向こ
せて周壁に開口させた筒状のハウジング7aと該ハウジ
ング7aの内周壁を軸回り摺動自由 (360°を含む)
に嵌挿された円柱状の弁体7bとで構成される。弁体7
bには、ハウジング7aの両側開口に所定の回転位置で
重合するように弁体7bの回転軸と直交する方向に貫通
する弁孔7cが形成される。
FIG. 2 shows the structure and various opening positions of the refrigerant control valve. However, the refrigerant control valve 7 interposed in the second refrigerant branch passage 6 is shown, but other refrigerant control valves 5, 9
The same applies to. In the drawing, a refrigerant control valve 7 has a cylindrical housing 7a in which the second refrigerant branch passages 6 on the inflow side and the outflow side of the refrigerant oppose each other and is opened on the peripheral wall, and is free to slide around an inner peripheral wall of the housing 7a. (Including 360 °)
And a cylindrical valve element 7b fitted into the valve body. Valve element 7
A valve hole 7c penetrating in a direction orthogonal to the rotation axis of the valve body 7b is formed in the opening b on both sides of the housing 7a so as to overlap at a predetermined rotation position.

【0011】前記弁孔7cの一方の開口端部は、弁体7
bの周方向の一方の側を弁体7bの径方向に削って形成
したスリット7dにより開口面積を拡げられ、また、他
方の開口端部も周方向の同一側を径方向に削って形成し
たスリット7eにより開口面積を拡げられるが、スリッ
ト7dの方がスリット7eに較べてより大きく形成され
ている。
One open end of the valve hole 7c is provided with a valve body 7
The opening area is increased by a slit 7d formed by cutting one side in the circumferential direction of b in the radial direction of the valve body 7b, and the other open end is also formed by cutting the same side in the circumferential direction in the radial direction. Although the opening area can be increased by the slit 7e, the slit 7d is formed larger than the slit 7e.

【0012】そして、弁体7cを図2 (A) の位置にセ
ットした時は、弁孔7c軸が第2冷媒分岐路6の軸と一
致して全開となる。図2 (B) に示すように、弁体7b
を中間開度にセットした時は、開度に応じて冷媒の流量
を接続できる。図2 (C) に示す弁体7b位置では、微
小開度に絞られ、これにより、スリット7e部分から流
出した冷媒は膨張する。
When the valve body 7c is set at the position shown in FIG. 2A, the axis of the valve hole 7c coincides with the axis of the second refrigerant branch passage 6, and is fully opened. As shown in FIG. 2 (B), the valve element 7b
Is set to the intermediate opening, the flow rate of the refrigerant can be connected according to the opening. At the position of the valve element 7b shown in FIG. 2 (C), the opening degree is reduced to a very small degree, whereby the refrigerant flowing out of the slit 7e expands.

【0013】図2 (D) の弁体7b位置では、弁孔7c
は完全に遮断され全閉となる。そして、かかる構造,機
能を有した各冷媒制御弁5,7,9は、弁体端部に図示
しないステッピングモータが連結され、該モータによっ
て弁体が回転駆動されるようになっている。また、各熱
交換器4A〜4D周辺の温度を検出する温度センサ12A
〜12Dが設けられ、これら温度センサ12A〜12Dからの
温度信号は制御ユニット13に入力され、制御ユニット13
は居住者による図示しない切換スイッチの切換操作によ
り用途に応じて4個の熱交換器4A〜4Dの中から所定
の熱交換器を凝縮器として作動させ、所定の熱交換器を
蒸発器として作動させると共に、これら熱交換器4A〜
4Dの熱交換能力を前記温度センサ12A〜12Dからの検
出温度に応じて調整するように各冷媒制御弁5,7,9
のステッピングモータに制御信号を出力して、これら各
冷媒制御弁5,7,9の開度を制御する。
At the position of the valve body 7b in FIG.
Is completely shut off and fully closed. In each of the refrigerant control valves 5, 7, and 9 having such a structure and function, a stepping motor (not shown) is connected to an end of the valve body, and the valve body is driven to rotate by the motor. Further, a temperature sensor 12A for detecting a temperature around each of the heat exchangers 4A to 4D.
To 12D are provided, and temperature signals from these temperature sensors 12A to 12D are input to the control unit 13,
Operates a predetermined heat exchanger from among the four heat exchangers 4A to 4D as a condenser and operates a predetermined heat exchanger as an evaporator according to the application by a resident operating a changeover switch (not shown). As well as these heat exchangers 4A-
Refrigerant control valves 5, 7, 9 so that the heat exchange capacity of 4D is adjusted according to the temperature detected by the temperature sensors 12A to 12D.
Of the refrigerant control valves 5, 7, and 9 are controlled.

【0014】かかる4個の熱交換器を使用したヒートポ
ンプサイクルの作動形態の総数は50通りあるが、以下、
代表的な作動形態 (用途) について列挙して説明する。
尚、図3にこれら各種形態における熱交換器と各冷媒制
御弁の開度を示す。 〔A〕:2つの熱交換器例えば熱交換器4A,4Bを室
内冷暖房ユニットに用い、1個の熱交換器4Cを室外熱
源ユニットに用いたもの (熱交換器4Dは非作動) 。
The total number of operating modes of the heat pump cycle using the four heat exchangers is 50.
Representative operating modes (applications) are listed and described.
FIG. 3 shows the degree of opening of the heat exchanger and each refrigerant control valve in these various embodiments. [A]: One in which two heat exchangers, for example, the heat exchangers 4A and 4B are used for an indoor cooling / heating unit and one heat exchanger 4C is used for an outdoor heat source unit (the heat exchanger 4D is not operated).

【0015】A−1:2室同時に暖房を行う場合 (暖房
能力全開時) 第1冷媒分岐路3の冷媒制御弁5A,5Bが全開 (図2
(A) 位置) 、冷媒制御弁5C,5Dが全閉 (図2
(D) 位置) 、第2冷媒分岐路6の冷媒制御弁7A,7
Bが膨張位置 (図2 (C) 位置) 、冷媒制御弁7Cが全
開、冷媒制御弁7Dが全閉、第3冷媒分岐路8の冷媒制
御弁9A,9Bが全閉、冷媒制御弁9C,9Dが全開と
なるように制御される。
A-1: Heating in Two Rooms Simultaneously (When Heating Capacity is Fully Opened) The refrigerant control valves 5A and 5B of the first refrigerant branch 3 are fully opened (FIG. 2).
(A) position), and the refrigerant control valves 5C and 5D are fully closed (FIG. 2).
(D) position), the refrigerant control valves 7A, 7 of the second refrigerant branch 6
B is in the expansion position (FIG. 2 (C) position), the refrigerant control valve 7C is fully opened, the refrigerant control valve 7D is fully closed, the refrigerant control valves 9A and 9B of the third refrigerant branch 8 are fully closed, and the refrigerant control valves 9C and 9C 9D is controlled to be fully open.

【0016】このとき、図4 (A) に矢印で示すよう
に、圧縮器1からの吐出冷媒は吐出側冷媒通路2から冷
媒制御弁5A,5Bが開かれた第1冷媒分岐路3A,3
Bに分流して室内側の熱交換器4A,4Bに流入し、熱
交換器4A,4B内で放熱して凝縮し各室の暖房を行
う。その後、第2冷媒分岐路6A,6Bに流出し、夫々
冷媒制御弁7A,7Bによって膨張気化されてから一旦
合流して第2冷媒分岐路6Cに流入して、熱交換器4C
に至り、該熱交換器4C内で外気から吸熱して蒸発す
る。さらに、第1冷媒分岐路3Cから第3冷媒分岐路8
Cを経て吸入側冷媒通路10に流入し、アキュームレータ
11を介して圧縮器1に戻される。
At this time, as shown by arrows in FIG. 4A, the refrigerant discharged from the compressor 1 is supplied from the discharge side refrigerant passage 2 to the first refrigerant branch passages 3A, 3A with the refrigerant control valves 5A, 5B opened.
B flows into the heat exchangers 4A and 4B on the indoor side, radiates heat in the heat exchangers 4A and 4B, condenses, and heats each room. After that, the refrigerant flows out into the second refrigerant branch passages 6A and 6B, is expanded and vaporized by the refrigerant control valves 7A and 7B, respectively, then merges once and flows into the second refrigerant branch passage 6C, where the heat exchanger 4C
And heat is absorbed from outside air in the heat exchanger 4C to evaporate. Further, the first refrigerant branch 3C to the third refrigerant branch 8
C, flows into the suction-side refrigerant passage 10, and accumulators
It is returned to the compressor 1 via 11.

【0017】A−2:各熱交換器の機能についてはA−
1と同一であるが、第1冷媒分岐路3の冷媒制御弁5
A,5Bを中間開度 (図2 (B) 位置) にセットして適
正な暖房能力に制御する場合 冷媒の循環回路はA−1と同一であるが、冷媒制御弁5
A,5Bを中間開度としたことにより冷媒流量が制御さ
れ、各熱交換器4A,4Bの熱交換能力が制御されて適
正な暖房が行われる。
A-2: Regarding the function of each heat exchanger, A-
1 but the refrigerant control valve 5 in the first refrigerant branch 3
When A and 5B are set at an intermediate opening (position (FIG. 2B)) to control the heating capacity to an appropriate level, the refrigerant circulation circuit is the same as A-1, but the refrigerant control valve 5
By setting A and 5B to the intermediate opening degree, the flow rate of the refrigerant is controlled, and the heat exchange capacity of each of the heat exchangers 4A and 4B is controlled to perform appropriate heating.

【0018】尚、A−1とA−2との切換は人為的に行
うことができるが、本実施例の場合、温度センサ12A,
12Bからの信号に基づき、例えば室温が低い間はA−1
にセットして暖房の立ち上がりを良くし、室温が上昇し
た後は、A−2にして冷媒制御弁5A,5Bを開度調整
して適温に保つように自動制御することができる。 A−3:2室同時に冷房を行う場合 (冷房能力全開時) 第1冷媒分岐路3の冷媒制御弁5A〜5C,9A〜9C
の開閉がA−1の場合と全く逆となり、冷媒制御弁7C
が膨張位置、冷媒制御弁5D,7D,9Dは全閉とされ
ている。
The switching between A-1 and A-2 can be performed artificially. In this embodiment, however, the temperature sensors 12A,
Based on the signal from 12B, for example, while the room temperature is low, A-1
After the room temperature has risen, the refrigerant control valves 5A and 5B can be automatically controlled so as to maintain the appropriate temperature by adjusting the opening of the valves 5A and 5B. A-3: When cooling two rooms simultaneously (when the cooling capacity is fully opened) Refrigerant control valves 5A to 5C, 9A to 9C of first refrigerant branch 3
Opening and closing of the refrigerant control valve 7C
Is in the expansion position, and the refrigerant control valves 5D, 7D, 9D are fully closed.

【0019】冷媒の循環回路は、図4 (B) に矢印で示
すようになり、室内側の熱交換器4A,4Bが蒸発器と
して作動して室内の冷房を行い、室外側の凝縮器として
作動する熱交換器4Cから放熱する。 A−4:A−3の場合で、冷媒制御弁5Cを中間開度と
して冷房能力を適正にセットする場合 〔B〕:図7に示すように、1個の熱交換器4Aを室内
冷暖房ユニット21に用い、1個の熱交換器4Bを貯湯槽
22内に取り付け、1個の熱交換器4Cを外気を熱源とす
る外気熱源ユニット23に用い、1個の熱交換器4Dを地
下水 (井戸水) を熱源とする地下水熱源ユニット24に用
いたもの B−1:外気と地下水を熱源として室内暖房と貯湯槽加
温を行う場合 (室内と貯湯槽22内の水温との差が小さい
とき) 第1冷媒分岐路3の冷媒制御弁5A,5Bが全開、冷媒
制御弁5C,5Dは閉とされ、第2冷媒分岐路6の冷媒
制御弁7A,7Bは膨張位置、冷媒制御弁7C,7Dは
全開、第3冷媒分岐路8の冷媒制御弁9A,9Bは閉,
冷媒制御弁9C,9Dは全開とされる。
The circulation circuit of the refrigerant is as shown by an arrow in FIG. 4 (B), and the indoor heat exchangers 4A and 4B operate as evaporators to cool the interior of the room, and as an outdoor condenser. The heat is radiated from the activated heat exchanger 4C. A-4: In the case of A-3, when the cooling capacity is appropriately set with the refrigerant control valve 5C at the intermediate opening [B]: As shown in FIG. 7, one heat exchanger 4A is connected to the indoor cooling / heating unit. Use one heat exchanger 4B for hot water tank
A heat exchanger 4C installed in the inside 22 and one heat exchanger 4C used for an outside air heat source unit 23 using outside air as a heat source, and one heat exchanger 4D used for a groundwater heat source unit 24 using groundwater (well water) as a heat source B -1: When performing indoor heating and hot water tank heating using outside air and groundwater as heat sources (when the difference between the indoor temperature and the water temperature in the hot water tank 22 is small) The refrigerant control valves 5A and 5B of the first refrigerant branch 3 are fully opened. The refrigerant control valves 5C and 5D are closed, the refrigerant control valves 7A and 7B of the second refrigerant branch 6 are in the expansion position, the refrigerant control valves 7C and 7D are fully open, and the refrigerant control valves 9A and 9A of the third refrigerant branch 8 are open. 9B is closed,
The refrigerant control valves 9C and 9D are fully opened.

【0020】冷媒循環回路は、図5 (C) の矢印で示す
ようになり、蒸発器として作動する熱交換器4C,4D
により外気と地下水とから夫々吸熱を行い、凝縮器とし
て作動する熱交換器4A,4Bにより室内暖房と貯湯槽
22の加温が行われる。 B−2:室内暖房と貯湯槽加温とを行うが、室温が貯湯
槽22に対して高い時 (例えば、最初暖房を行って室内を
20°C程度に維持している時に貯湯槽22を冷水状態から
加温を開始するような時) B−1に対して異なるのは、貯湯槽22の熱交換器4Bに
至る第1冷媒分岐路3Bの冷媒制御弁5Cと、蒸発器と
して機能する熱交換器4C,4Dに至る第2冷媒分岐路
6C,6Dの冷媒制御弁7C,7Dを中間開度にした点
である。
The refrigerant circulation circuit is as shown by the arrow in FIG. 5C, and the heat exchangers 4C and 4D which operate as evaporators.
To absorb heat from the outside air and the groundwater, respectively, and to heat the indoor and hot water storage tanks using heat exchangers 4A and 4B that operate as condensers.
22 heatings are performed. B-2: Indoor heating and hot water tank heating are performed, but when the room temperature is higher than the hot water tank 22 (for example, heating is performed first to
When heating the hot water storage tank 22 from a cold water state while maintaining the temperature at about 20 ° C.) The difference from B-1 is that the first refrigerant branching to the heat exchanger 4B of the hot water storage tank 22 The point is that the refrigerant control valves 5C and 7D of the second refrigerant branch paths 6C and 6D leading to the heat exchangers 4C and 4D functioning as evaporators have the intermediate opening degrees.

【0021】冷媒循環回路は、B−1の場合と同一であ
るが、貯湯槽22内の熱交換器4Bへの冷媒流量が増加す
る。即ち、貯湯槽22内は低温のため、熱交換器4Bに流
入した冷媒は凝縮し易くなり、その凝縮圧力はB−1の
条件での室内側の熱交換器4Aの凝縮圧力より低下する
ことになる (図8 (A) 参照) 。このため、B−1条件
時の冷媒制御弁開度のままでは貯湯槽22内の熱交換器4
Bへの冷媒流量の増加に反して室内側熱交換器4Aへの
冷媒流量が減少し、かつ、熱交換器4Bの低い冷媒凝縮
圧力の影響により圧縮器1からの吐出冷媒 (ガス) の圧
力,温度が低下することと相まって、熱交換器4Aによ
る暖房能力が急減する結果となる。
The refrigerant circuit is the same as in the case of B-1, but the flow rate of the refrigerant to the heat exchanger 4B in the hot water storage tank 22 increases. That is, since the temperature in the hot water storage tank 22 is low, the refrigerant flowing into the heat exchanger 4B is easily condensed, and the condensing pressure is lower than the condensing pressure of the indoor side heat exchanger 4A under the condition of B-1. (See FIG. 8A). For this reason, the heat exchanger 4 in the hot water storage tank 22 remains open with the refrigerant control valve at the B-1 condition.
The refrigerant flow to the indoor heat exchanger 4A decreases in contrast to the increase in the refrigerant flow to B, and the pressure of the refrigerant (gas) discharged from the compressor 1 due to the low refrigerant condensation pressure of the heat exchanger 4B. Combined with the temperature drop, the heating capacity of the heat exchanger 4A is sharply reduced.

【0022】したがって、冷媒制御弁5Bを中間開度に
絞って貯湯槽22内熱交換器4Bの凝縮圧力低下を防止し
て圧縮器1の吐出圧力の低下を防止する。これにより、
室内側熱交換器4Aへの冷媒流量,圧力の低下が抑制さ
れ、暖房能力の低下を抑制しつつ貯湯槽22の加温と暖房
との同時作動を有効に行うことができる。 B−3:B−2とは逆に、貯湯槽22加温中での槽内の水
温が50°C以上と高い時に低い室温 (例えば5°C) で
暖房を開始する場合 B−2とは逆に、室内側熱交換器4Aに至る第1冷媒分
岐路3Aの冷媒制御弁5Aを中間開度とし、貯湯槽22内
熱交換器4Bに至る冷媒制御弁5Bは全開とする。
Accordingly, the refrigerant control valve 5B is throttled to an intermediate opening to prevent a decrease in the condensing pressure of the heat exchanger 4B in the hot water tank 22, thereby preventing a decrease in the discharge pressure of the compressor 1. This allows
A decrease in the flow rate and pressure of the refrigerant to the indoor side heat exchanger 4A is suppressed, and a simultaneous operation of heating and heating of the hot water storage tank 22 can be effectively performed while suppressing a decrease in the heating capacity. B-3: Contrary to B-2, when heating is started at a low room temperature (for example, 5 ° C) when the water temperature in the tank during heating the hot water storage tank 22 is as high as 50 ° C or more, Conversely, the refrigerant control valve 5A of the first refrigerant branch 3A leading to the indoor heat exchanger 4A is set to an intermediate opening degree, and the refrigerant control valve 5B reaching the heat exchanger 4B in the hot water storage tank 22 is fully opened.

【0023】B−2で説明したのと同一の理由で、暖房
と貯湯槽加温との同時作動を有効に行える。尚、以上示
した各実施例では、冷媒制御弁5Dを常に閉じる場合に
ついてのみ示しており、かかる形態でのみ使用するので
あれば、冷媒制御弁5D及びこれを介装した通路 (圧縮
器1の吐出側と第1冷媒分岐路3Dと第3冷媒分岐路8
Dとの接続点とを結ぶ通路部分) を省略できる。また、
冷媒制御弁9A〜9Dについても、開閉作動する場合に
ついてのみ示しており、かかる形態でのみ使用するので
あれば、開度制御できる冷媒制御弁の代わりに開閉機能
のみを持つ開閉弁を用いれば済む。
For the same reason as described in B-2, simultaneous operation of heating and hot water tank heating can be effectively performed. In each of the embodiments described above, only the case where the refrigerant control valve 5D is always closed is shown. If the refrigerant control valve 5D is used only in such a mode, the refrigerant control valve 5D and the passage (the compressor 1) Discharge side, first refrigerant branch 3D and third refrigerant branch 8
A passage portion connecting the connection point with D) can be omitted. Also,
The refrigerant control valves 9A to 9D are also shown only for the case of opening / closing operation. If the refrigerant control valves 9A to 9D are used only in such a mode, an on / off valve having only an opening / closing function may be used instead of the refrigerant control valve capable of controlling the opening degree. .

【0024】〔C〕:2個の熱交換器4A,4Bを夫々
室内冷暖房ユニットに用い、1個の熱交換器4Cを貯湯
槽内に用い、1個の熱交換器4Dを外気熱源ユニットに
用いたもの C−1:冬期の夜間に暖房を行う場合、外気のみを熱源
とすると暖房能力が不足する場合に、貯湯槽内の湯温を
熱源として使用し暖房能力不足を補う時、各冷媒制御弁
の開度は図3Cで示した通りであり、冷媒循環回路は図
5 (D) の矢印で示すようになる。
[C]: Two heat exchangers 4A and 4B are each used for an indoor cooling and heating unit, one heat exchanger 4C is used in a hot water tank, and one heat exchanger 4D is used for an outside air heat source unit. C-1: When heating is performed at night in winter, when only outside air is used as a heat source and the heating capacity is insufficient, when the heating temperature in the hot water tank is used as a heat source to supplement the heating capacity, each refrigerant is used. The opening of the control valve is as shown in FIG. 3C, and the refrigerant circulation circuit is as shown by the arrow in FIG. 5 (D).

【0025】この場合、貯湯槽内の熱交換器4Cに至る
第2冷媒分岐路6Cの冷媒制御弁7C及び熱交換器4C
から流出する第3冷媒分岐路8Cの冷媒制御弁9Cの開
度を中間開度とする。即ち、熱交換器4C前後の前記各
冷媒制御弁7C,9Cを全開とすると、湯温は外気に比
べて高いため、熱交換器4Cの蒸発能力の方が外気熱源
用の熱交換器4Dに比べて大きい (図8 (B) 参照) た
め、貯湯槽からの吸熱が主体となってしまい貯湯槽内湯
温の低下が著しくなる。
In this case, the refrigerant control valve 7C and the heat exchanger 4C in the second refrigerant branch 6C reaching the heat exchanger 4C in the hot water tank.
The opening degree of the refrigerant control valve 9C of the third refrigerant branch passage 8C flowing out of the outlet is defined as an intermediate opening degree. That is, when the refrigerant control valves 7C and 9C before and after the heat exchanger 4C are fully opened, the temperature of the hot water is higher than that of the outside air, so that the evaporation capacity of the heat exchanger 4C is higher than that of the heat exchanger 4D for the outside air heat source. Since it is larger than that (see FIG. 8 (B)), heat is mainly absorbed by the hot water storage tank, and the temperature of the hot water in the hot water storage tank is significantly reduced.

【0026】したがって、本例の如く、冷媒制御弁7
C,9Cを中間開度とすることにより、室外側熱交換器
4Dへの冷媒流量を相対的に増大させ、外気からの吸熱
を主体とし、湯水からの吸熱を補助的に行うようにして
湯温の大きな低下を抑制する。 C−2:室同時に冷房を行う場合で、貯湯槽の加熱は停
止する場合、冷媒制御弁5A,5B,5Cは全閉、冷媒
制御弁7A,7Bは膨張位置、冷媒制御弁7Cは全閉,
冷媒制御弁7Dは全開、冷媒制御弁9A,9Bは全開、
冷媒制御弁9C,9Dは全閉とされる。
Therefore, as in the present embodiment, the refrigerant control valve 7
By setting C and 9C to the intermediate opening, the flow rate of the refrigerant to the outdoor heat exchanger 4D is relatively increased, and the heat absorption from the outside air is mainly performed, and the heat absorption from the hot water is supplementarily performed. Suppress large temperature drop. C-2: When simultaneous cooling is performed in the chambers and heating of the hot water tank is stopped, the refrigerant control valves 5A, 5B and 5C are fully closed, the refrigerant control valves 7A and 7B are in the expansion position, and the refrigerant control valve 7C is fully closed. ,
The refrigerant control valve 7D is fully open, the refrigerant control valves 9A and 9B are fully open,
The refrigerant control valves 9C and 9D are fully closed.

【0027】冷媒循環回路は、図6 (E) の矢印で示す
ようになり、室内側の熱交換器4A, 4Bが蒸発器とし
て作動して各室の冷房を行い、室外側の凝縮器として作
動する熱交換器4Dから放熱する。 C−3: 一方の室には例えばコンピューターが設置さ
れ、冬期であってもコンピューターからの発熱による温
度上昇を抑制すべく冷房が行われ、他方の室は事務室等
であって暖房が行われ、貯湯槽の加熱は停止する場合
で、コンピューターからの吸収熱量が大きく、室外にも
放熱する必要があるが、暖房能力は可及的に高めたいよ
うな場合、冷媒制御弁5Aは全閉、冷媒制御弁5Bは全
開、冷媒制御弁5Cは全閉、冷媒制御弁5Dは中間開
度、冷媒制御弁7A,7Bは膨張位置、冷媒制御弁7C
は全閉,冷媒制御弁7Dは全開、第3冷媒分岐路9Aは
全開、冷媒制御弁9Bは全閉、冷媒制御弁9Cは全閉、
冷媒制御弁9Dは全閉とされる。
The refrigerant circulation circuit is as shown by an arrow in FIG. 6 (E). The indoor heat exchangers 4A and 4B operate as evaporators to cool each room, and as a condenser outside the room. The heat is released from the operating heat exchanger 4D. C-3: One of the rooms is equipped with a computer, for example. Even in winter, air conditioning is performed to suppress the temperature rise due to the heat generated by the computer, and the other room is an office room or the like and is heated. When the heating of the hot water tank is stopped, the heat absorption from the computer is large and it is necessary to radiate the heat outside the room. However, when the heating capacity is to be increased as much as possible, the refrigerant control valve 5A is completely closed, The control valve 5B is fully open, the refrigerant control valve 5C is fully closed, the refrigerant control valve 5D is at an intermediate opening, the refrigerant control valves 7A and 7B are in the expansion position, and the refrigerant control valve 7C
Is fully closed, the refrigerant control valve 7D is fully open, the third refrigerant branch 9A is fully open, the refrigerant control valve 9B is fully closed, the refrigerant control valve 9C is fully closed,
The refrigerant control valve 9D is fully closed.

【0028】冷媒循環回路は、図6 (F) の矢印ので示
すようになり、コンピューターの設置された室内側の熱
交換器4Aが蒸発器として作動し、事務室側の熱交換器
4Bが凝縮器として作動して暖房を行うと同時に室外側
の凝縮器として作動する熱交換器4Dから放熱する。次
に、3個の熱交換器を用いた冷蔵・温蔵装置に適用した
実施例について説明する。
The refrigerant circuit is as shown by the arrow in FIG. 6 (F). The heat exchanger 4A in the room where the computer is installed operates as an evaporator, and the heat exchanger 4B in the office room condenses. The heat exchanger 4D operates as a condenser and performs heating, and at the same time, radiates heat from the heat exchanger 4D that operates as an outdoor condenser. Next, an embodiment applied to a refrigerating / warming apparatus using three heat exchangers will be described.

【0029】ヒートポンプ装置の回路構成は、図9に示
すように、図1に示したものにおいて番号にDが付され
たものを除いたもので構成される。熱交換器4A,4B
を、図10に示すように、熱的に隔離された2つの冷蔵・
温蔵室31,32内に夫々配設し、熱交換器4Cは外界と吸
熱又は放熱を行うために外部に配設する。
As shown in FIG. 9, the circuit configuration of the heat pump device is the same as that shown in FIG. Heat exchanger 4A, 4B
As shown in FIG. 10, two thermally refrigerated storage
The heat exchangers 4C are provided inside the storage chambers 31 and 32, respectively, and the heat exchanger 4C is provided outside to absorb heat or release heat from the outside.

【0030】33は圧縮器や各冷媒制御弁等を含むユニッ
トである。このものの作用を説明する。 2つの冷蔵・温蔵室31,32を共に冷蔵 (冷源を含む)
作動させる場合 冷媒制御弁5C,7A,7B,9A,9Bを開、冷媒制
御弁7Cを膨張位置、冷媒制御弁5A,5B,9Cを閉
とする。
Reference numeral 33 denotes a unit including a compressor, each refrigerant control valve, and the like. The operation of this will be described. Refrigeration of both refrigeration and warming rooms 31, 32 (including cold source)
When operating: The refrigerant control valves 5C, 7A, 7B, 9A, 9B are opened, the refrigerant control valve 7C is in the expansion position, and the refrigerant control valves 5A, 5B, 9C are closed.

【0031】この場合の冷媒循環回路は、図7に矢印で
示すようになり、蒸発器として作動する熱交換器4A,
4Bにより冷蔵・温蔵室31,32内を冷却して吸熱しつ
つ、凝縮器として作動する熱交換器4Cにより外部へ放
熱する。この場合、両室31,32に夫々温度センサ34,35
を設け、検出温度に基づいて冷媒制御弁の開度を調整す
ることにより、冷媒流量を制御して冷却能力を制御でき
る。例えば、両室31,32の温度差を無くすように制御す
ることもでき、或いは積極的に温度差を有する (例えば
一方は冷凍) ように制御することもできる。
The refrigerant circulation circuit in this case is as shown by an arrow in FIG. 7, and the heat exchangers 4A, 4A,
The inside of the refrigeration / warming chambers 31 and 32 is cooled by 4B to absorb heat, and is radiated to the outside by the heat exchanger 4C operating as a condenser. In this case, the temperature sensors 34, 35 are provided in both chambers 31, 32, respectively.
By adjusting the opening of the refrigerant control valve based on the detected temperature, the cooling capacity can be controlled by controlling the flow rate of the refrigerant. For example, control can be performed so as to eliminate the temperature difference between the two chambers 31, 32, or it can be controlled so as to positively have a temperature difference (for example, one of them is frozen).

【0032】一方の冷蔵・温蔵室31を冷蔵作動し、他
方の冷蔵・温蔵室32を温蔵作動させる場合 特に、温蔵能力を高く確保したい場合は、熱交換器4C
による外部への放熱を防止すべく、冷媒制御弁5B,7
A,9Aを全開、冷媒制御弁7Bを膨張位置、冷媒制御
弁5A,5C,7C,9B,9Cを閉位置とする。
When one of the refrigeration / warming chambers 31 is refrigerated and the other refrigeration / warming chamber 32 is refrigerated, especially when it is desired to ensure a high refrigeration capacity, the heat exchanger 4C
The refrigerant control valves 5B, 7
A, 9A are fully opened, the refrigerant control valve 7B is in the expansion position, and the refrigerant control valves 5A, 5C, 7C, 9B, 9C are in the closed position.

【0033】冷蔵能力を相対的に高くしたい場合 (冷凍
作動時等) 冷媒制御弁5B,5C,7A,9Aを開、冷
媒制御弁7B,7Cを膨張位置、冷媒制御弁5A,9
B,9Cを閉とする。即ち、2つの熱交換器4B,4C
を凝縮器として作動させて、一方の冷蔵・温蔵室32と外
部とに放熱して放熱能力を高め、他方の冷蔵・温蔵室31
の冷却能力を高める。尚、この場合でも冷媒制御弁の開
度調整により冷却能力を制御できる。
When it is desired to increase the refrigerating capacity relatively (for example, during a freezing operation), the refrigerant control valves 5B, 5C, 7A, 9A are opened, the refrigerant control valves 7B, 7C are in the expansion positions, and the refrigerant control valves 5A, 9
B and 9C are closed. That is, the two heat exchangers 4B and 4C
Is operated as a condenser, heat is radiated to one of the refrigeration / warming chambers 32 and the outside to enhance the heat radiation capacity, and the other refrigeration / warming chamber 31 is operated.
Increase the cooling capacity of the. In this case, the cooling capacity can be controlled by adjusting the opening of the refrigerant control valve.

【0034】2つの冷蔵・温蔵室31,32を温蔵作動さ
せる場合、冷媒制御弁5A,5B,7A,7C,9Cを
膨張位置、冷媒制御弁5C,9A,9Bを閉とする。熱
交換器4A,4Bにより2つの冷蔵・温蔵室31,32を吸
熱冷却し、熱交換器4Cにより外部へ放熱する。この場
合も、冷媒制御弁を両室31,32に応じて開度制御するこ
とにより、両室31,32の温度を均一化したり、積極的に
温度差を有するように制御できることはの場合と同様
である。
When the two refrigerating / warming chambers 31, 32 are operated for warming, the refrigerant control valves 5A, 5B, 7A, 7C, 9C are in the expansion position, and the refrigerant control valves 5C, 9A, 9B are closed. The two refrigerating / warming chambers 31 and 32 are absorbed and cooled by the heat exchangers 4A and 4B, and radiated to the outside by the heat exchanger 4C. Also in this case, by controlling the opening degree of the refrigerant control valve in accordance with the two chambers 31, 32, it is possible to equalize the temperatures of the two chambers 31, 32 or to control the temperature so as to have a positive temperature difference. The same is true.

【0035】以上、熱交換器を4個使用する場合と3個
使用する場合について示したが、用途に応じてさらに熱
交換器を増設できることは勿論である。図11は、冷媒制
御弁の別の実施例を示す。即ち、該冷媒制御弁41は、冷
媒分岐路例えば第1冷媒分岐路3に介装されたハウジン
グ41aと、該ハウジング41a内を第1冷媒分岐路3の軸
方向と直交してスライドする弁体41bとで構成され、弁
体41bの一端縁中央部分に切込み41cを形成してある。
同図 (A) は全開、 (B) は中間開度、 (C) は膨張位
置、 (D) は全閉位置を示し、これら位置において、前
記第1実施例の冷媒制御弁と同様の機能を有する。
Although the case where four heat exchangers are used and the case where three heat exchangers are used have been described above, it is needless to say that more heat exchangers can be added depending on the application. FIG. 11 shows another embodiment of the refrigerant control valve. That is, the refrigerant control valve 41 includes a housing 41a interposed in the refrigerant branch passage, for example, the first refrigerant branch passage 3, and a valve body that slides in the housing 41a perpendicular to the axial direction of the first refrigerant branch passage 3. A cut 41c is formed at the center of one end edge of the valve element 41b.
2A shows a fully open position, FIG. 2B shows an intermediate opening degree, FIG. 2C shows an expanded position, and FIG. 2D shows a fully closed position. In these positions, functions similar to those of the refrigerant control valve of the first embodiment are shown. Having.

【0036】以上示した2種類の冷媒制御弁は、共に冷
媒流れに解する抵抗が小さくこれによって作動効率を向
上でき、稼動コスト低減を図れる。
The two types of refrigerant control valves described above have low resistance to the flow of the refrigerant, thereby improving the operation efficiency and reducing the operating cost.

【0037】[0037]

【発明の効果】以上説明したように、本発明によれば、
複合型ヒートポンプ装置において、凝縮器として機能す
る複数の並列接続された熱交換器に至る冷媒通路に開度
調整自由な冷媒制御弁を介装した構成としたため、加温
制御を同時並行的に行うことができ、しかも各冷媒制御
弁の開度調整により、熱交換器の作動を周辺の温度状況
に応じて最もバランスのとれた良好な形態で作動させた
り、異なる設定温度に制御したりすることができる。
As described above, according to the present invention,
In the combined heat pump device, a refrigerant control valve whose opening degree can be freely adjusted is interposed in a refrigerant passage leading to a plurality of parallel-connected heat exchangers functioning as a condenser, so that heating control is performed simultaneously and in parallel. By controlling the degree of opening of each refrigerant control valve, the operation of the heat exchanger can be operated in the most balanced and favorable mode according to the surrounding temperature condition, or controlled to a different set temperature. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の全体構成を示す冷媒回
路図
FIG. 1 is a refrigerant circuit diagram showing the entire configuration of a first embodiment of the present invention.

【図2】同上実施例に適用される冷媒制御弁の各切換位
置を示す断面図
FIG. 2 is a sectional view showing each switching position of the refrigerant control valve applied to the embodiment.

【図3】同上実施例装置を利用したシステムの各作動例
と熱交換器機能,冷媒制御弁開度を示す図
FIG. 3 is a diagram showing each operation example of a system using the apparatus of the embodiment, a heat exchanger function, and an opening degree of a refrigerant control valve.

【図4】同上の各作動例における冷媒循環回路を示す図FIG. 4 is a diagram showing a refrigerant circuit in each operation example of the above.

【図5】同上の各作動例における冷媒循環回路を示す図FIG. 5 is a diagram showing a refrigerant circuit in each operation example of the above.

【図6】同上の各作動例における冷媒循環回路を示す図FIG. 6 is a diagram showing a refrigerant circuit in each operation example of the above.

【図7】同上実施例装置を利用したシステムの一例を示
す断面図
FIG. 7 is a sectional view showing an example of a system using the apparatus of the embodiment.

【図8】温度差が大きい場合の凝縮作動熱交換器と蒸発
作動熱交換器のモリエール線図
FIG. 8 is a Mollier diagram of a condensation operation heat exchanger and an evaporation operation heat exchanger when the temperature difference is large.

【図9】本発明の第2の実施例の冷媒回路図FIG. 9 is a refrigerant circuit diagram according to a second embodiment of the present invention.

【図10】同上実施例のシステム図FIG. 10 is a system diagram of the embodiment.

【図11】 冷媒制御弁の別の実施例の各種切換位置を示
す断面図
FIG. 11 is a cross-sectional view showing various switching positions of another embodiment of the refrigerant control valve.

【符号の説明】[Explanation of symbols]

1 圧縮器 2 吐出側冷媒通路 3A〜3D 第1冷媒分岐路 4A〜4D 熱交換器 5A〜5D,7A〜7D,9A〜9D,41 冷媒制御弁 6A〜6D 第2冷媒分岐路 8A〜8D 第3冷媒分岐路 10 吸入側冷媒通路 DESCRIPTION OF SYMBOLS 1 Compressor 2 Discharge side refrigerant passage 3A-3D 1st refrigerant branch 4A-4D Heat exchanger 5A-5D, 7A-7D, 9A-9D, 41 Refrigerant control valve 6A-6D 2nd refrigerant branch 8A-8D 3 refrigerant branch passage 10 suction side refrigerant passage

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】3個以上の熱交換器を含んでヒートポンプ
サイクルをなすように循環接続された複合型ヒートポン
プ装置において、少なくとも凝縮器として同時に使用さ
れる複数の熱交換器を相互に並列接続して配設し、圧縮
器の吐出側から分岐して前記複数の熱交換器のうち少な
くとも2個の熱交換器の凝縮作動時における冷媒入口側
に至る冷媒通路と、これら熱交換器の凝縮作動時に下流
側に接続されて蒸発作動する熱交換器の該蒸発作動時に
おける冷媒入口側及び冷媒出口側の冷媒通路と、に夫々
全閉から全開まで連続的に開度調整自由な冷媒制御弁を
介装した構成としたことを特徴とする複合型ヒートポン
プ装置。
In a combined heat pump apparatus including three or more heat exchangers and circulated to form a heat pump cycle, at least a plurality of heat exchangers simultaneously used as a condenser are connected in parallel to each other. disposed Te, a refrigerant passage leading to the refrigerant inlet side branches from the discharge side of the compressor when the condensation operation of at least two heat exchangers of said plurality of heat exchangers, condensing operation of these heat exchangers Sometimes downstream
Of the heat exchanger which is connected to
A composite heat pump device characterized in that the refrigerant passages on the refrigerant inlet side and on the refrigerant outlet side are provided with a refrigerant control valve whose opening degree can be continuously adjusted from fully closed to fully open.
JP4028236A 1992-02-14 1992-02-14 Combined heat pump device Expired - Lifetime JP2614798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4028236A JP2614798B2 (en) 1992-02-14 1992-02-14 Combined heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4028236A JP2614798B2 (en) 1992-02-14 1992-02-14 Combined heat pump device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP29037585A Division JPS62153666A (en) 1985-12-25 1985-12-25 Composite type heat pump device

Publications (2)

Publication Number Publication Date
JPH05288426A JPH05288426A (en) 1993-11-02
JP2614798B2 true JP2614798B2 (en) 1997-05-28

Family

ID=12242962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4028236A Expired - Lifetime JP2614798B2 (en) 1992-02-14 1992-02-14 Combined heat pump device

Country Status (1)

Country Link
JP (1) JP2614798B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134347Y2 (en) * 1980-08-29 1986-10-07
JPS60121165U (en) * 1984-01-25 1985-08-15 サンデン株式会社 Cooling/heating cold storage heat system

Also Published As

Publication number Publication date
JPH05288426A (en) 1993-11-02

Similar Documents

Publication Publication Date Title
JP4803199B2 (en) Refrigeration cycle equipment
JP4771721B2 (en) Air conditioner
KR101387541B1 (en) Air conditioner and Defrosting driving method of the same
JP6910210B2 (en) Air conditioner
JP2005016858A (en) Heat pump type air conditioning system and its operating method
JP2018136063A (en) Refrigerator and method for operating the same
JP3998024B2 (en) Heat pump floor heating air conditioner
JP6880204B2 (en) Air conditioner
JP3702855B2 (en) Heat pump floor heating air conditioner
WO2020067189A1 (en) Air-conditioning system
JP6267952B2 (en) Refrigeration cycle equipment
JP6742200B2 (en) Air conditioning hot water supply system
JP2001317831A (en) Air conditioner
JP3633997B2 (en) Refrigerated refrigerator and control method thereof
JP2006220332A (en) Composite type air conditioner
JP4468888B2 (en) Air conditioner
JP2614798B2 (en) Combined heat pump device
JP2006220335A (en) Composite type air conditioner
WO2021014520A1 (en) Air-conditioning device
WO2019167822A1 (en) Refrigeration cycle, drive method for refrigeration cycle, accumulator used in refrigeration cycle, and, air conditioning apparatus for vehicle having installed refrigeration cycle
JPH04236062A (en) Air conditioner
JPH07132729A (en) Air conditioner
WO2021171401A1 (en) Air conditioning apparatus
JPH06213531A (en) Heat pump air conditioner for car
JP3297105B2 (en) Air conditioner