JP2614278B2 - How to protect superconducting energy storage systems. - Google Patents

How to protect superconducting energy storage systems.

Info

Publication number
JP2614278B2
JP2614278B2 JP63198373A JP19837388A JP2614278B2 JP 2614278 B2 JP2614278 B2 JP 2614278B2 JP 63198373 A JP63198373 A JP 63198373A JP 19837388 A JP19837388 A JP 19837388A JP 2614278 B2 JP2614278 B2 JP 2614278B2
Authority
JP
Japan
Prior art keywords
converter
circuit
short
overvoltage
energy storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63198373A
Other languages
Japanese (ja)
Other versions
JPH0251315A (en
Inventor
紀子 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63198373A priority Critical patent/JP2614278B2/en
Publication of JPH0251315A publication Critical patent/JPH0251315A/en
Application granted granted Critical
Publication of JP2614278B2 publication Critical patent/JP2614278B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は超電導エネルギー貯蔵システムに関し、特に
変換器が複数台つながるシステムにおいて、故障が発生
した際の保護方法に関する。
The present invention relates to a superconducting energy storage system, and more particularly to a method for protecting a system in which a plurality of converters are connected when a failure occurs.

(従来の技術) 超電導コイルの抵抗分はほとんどゼロに近いため、コ
イルの時定数が非常に大きい。そのため超電導コイルに
直流電流を還流させてエネルギーを貯蔵し、核融合など
のパルス負荷や、電力のピーク負荷対策に用いる超電導
エネルギー貯蔵システム(以下SMESと略す。)の研究が
進められている。SMESは長時間にわたる電力調整の他、
電力系統とつなぐ変換装置を自己消弧可能な素子(例え
ばゲートターンオフサイリスタ、以下GTOと略す。)で
構成すれば、系統安定化及び系統無効電力補償等の機能
を有することが出来る。しかし、その様な機能を有効に
発揮するためには、超電導コイルに流す電流は数KAから
数百KAの容量が必要になる。従って、変換装置もGTOを
数個から数百個並列接続して構成することになる。
(Prior Art) Since the resistance of a superconducting coil is almost zero, the time constant of the coil is very large. For this reason, research has been conducted on a superconducting energy storage system (hereinafter abbreviated as SMES) for storing energy by circulating a direct current in a superconducting coil to prevent pulse loads such as nuclear fusion and peak loads of electric power. SMES has a long-term power adjustment,
If the converter connected to the power system is constituted by a self-extinguishing element (for example, gate turn-off thyristor, hereinafter abbreviated as GTO), it can have functions such as system stabilization and system reactive power compensation. However, in order to effectively perform such a function, the current flowing through the superconducting coil requires a capacity of several KA to several hundred KA. Therefore, the conversion device is also configured by connecting several to several hundred GTOs in parallel.

第4図に従来のSMESを示す。第4図において1は交流
母線、2は変圧器、3はGTOにより構成される自励式変
換装置、4は超電導コイル、5は過電圧が発生した際に
短絡スイッチ6を点弧する過電圧点弧回路、7は故障時
コイルエネルギーを消費するための抵抗である。
FIG. 4 shows a conventional SMES. In FIG. 4, 1 is an AC bus, 2 is a transformer, 3 is a self-excited converter constituted by a GTO, 4 is a superconducting coil, and 5 is an overvoltage ignition circuit for igniting a short-circuit switch 6 when an overvoltage occurs. , 7 are resistors for consuming coil energy at the time of failure.

第4図に示すようなSMESにおいて、自励式変換器3
は、コイルを流れる電流によってエネルギーを貯蔵する
というSMESの性格上、電流型の変換器となる。電流型の
変換器においては、回路が開放になると過電圧が発生す
る。通常運転時は開放状態にならないように制御を行っ
ているが、GTOが誤消弧、あるいは誤不点弧した場合
や、電線が切断した場合には、超電導コイル4を流れる
電流のエネルギーによって急峻な立ち上がりの過電圧が
発生する。その際に、第4図に示す回路では過電圧点弧
回路5が動作し、短絡スイッチ6が閉となり、コイルエ
ネルギーを抵抗7で消費して保護をする。
In the SMES as shown in FIG.
Is a current-type converter due to the nature of SMES, which stores energy by the current flowing through the coil. In a current type converter, an overvoltage occurs when the circuit is opened. During normal operation, control is performed so as not to be in the open state. However, when the GTO is erroneously extinguished or erroneously fired, or when the wire is disconnected, the energy of the current flowing through the superconducting coil 4 sharply increases. An excessive rising voltage occurs. At this time, in the circuit shown in FIG. 4, the overvoltage ignition circuit 5 operates, the short-circuit switch 6 is closed, and the coil energy is consumed by the resistor 7 for protection.

(発明が解決しようとする課題) しかし、コイルエネルギーは実用規模のSMESでは数メ
ガワット時から、数ギガワット時にものぼり、故障発生
時に全てのエネルギーを抵抗で消費するのは不経済であ
る。
(Problems to be Solved by the Invention) However, in the SMES on a practical scale, coil energy ranges from several megawatt hours to several gigawatts, and it is uneconomical to consume all energy by resistance when a failure occurs.

本発明の目的は、故障発生時もコイルのエネルギーを
有効に利用できる超電導エネルギー貯蔵システムの保護
方法を提供することにある。
An object of the present invention is to provide a method for protecting a superconducting energy storage system that can effectively use the energy of a coil even when a failure occurs.

[発明の構成] (課題を解決するための手段) 本発明は、自己消弧可能な素子から構成される複数台
の変換器と超電導コイルからなる超電導エネルギー貯蔵
システムにおいて、変換器両端に発生する過電圧によっ
て点弧して変換器両端を短絡するスイッチと前記スイッ
チの動作信号によって故障した変換器を判別する手段と
を具備し、故障した変換器には停止信号を与え、健全な
変換器にはバイパスペア信号を与え、しかる後に順変換
運転を行い、故障した変換器の短絡スイッチを流れる電
流が零であることを検出した後に、健全な変換器だけで
システムを再起動することにより、コイルに蓄積された
エネルギーを有効に利用できる超電導エネルギー蓄積シ
ステムを提供できる。
[Constitution of the Invention] (Means for Solving the Problems) The present invention is directed to a superconducting energy storage system including a plurality of converters each including a self-extinguishing element and a superconducting coil, which are generated at both ends of the converter. A switch for short-circuiting both ends of the converter by being ignited by an overvoltage; and a means for determining a failed converter based on an operation signal of the switch, a stop signal is given to the failed converter, and a healthy converter is provided. A bypass pair signal is given, and then a forward conversion operation is performed.After detecting that the current flowing through the short-circuit switch of the failed converter is zero, the system is restarted only with a healthy converter, so that the coil is turned on. A superconducting energy storage system that can effectively use stored energy can be provided.

(作 用) 本発明によれば複数台の変換器の内の1台が故障し過
電圧が発生しても、変換器両端に発生する過電圧によっ
て短絡スイッチが点弧して保護できる。また故障した変
換器を判別する手段を具備することにより、故障した変
換器には停止信号を与え、健全な変換器にはバイパスペ
ア信号を与え、しかる後に健全な変換器を順変換運転し
て、故障した変換器の短絡スイッチの電流を十分小さく
して故障した変換器を切り離し、健全な変換器だけで再
運転することができ、コイルのエネルギーを有効に利用
できる保護を行える。
(Operation) According to the present invention, even if one of the plurality of converters fails and an overvoltage occurs, the short-circuit switch can be fired and protected by the overvoltage generated at both ends of the converter. Further, by providing a means for determining a failed converter, a stop signal is given to the failed converter, a bypass pair signal is given to the healthy converter, and thereafter, the healthy converter is operated by performing the forward conversion operation. In addition, the current of the short-circuit switch of the failed converter is made sufficiently small, the failed converter can be disconnected, and the operation can be restarted only with a healthy converter, thereby providing protection that can effectively use the energy of the coil.

(実施例) 本発明の一実施例を第1図に示す。第1図において、
既に説明した第4図と同一の要素は同一の符号として説
明を省略する。8A,8Bは複数台の変換器の間の電流バラ
ンスを取るためのリアクトル、9A,9Bは短絡スイッチの
電流を検出する電流検出器、10は9A,9Bの出力から故障
した変換器を判別する故障群判別回路、11は故障群判別
回路10から健全群に出力された故障発生信号51を遅延さ
せる遅延回路、12A,12Bは論理積回路、13は反転回路、1
4A,14Bはバイパスペア指令52、順変換運転指令53、再起
動指令54、ゲートブロック指令55、等や図示されていな
い電源制御回路からの指令で自励式変換装置3A,3Bのオ
ンオフを制御する点弧制御回路である。56は、故障群の
短絡スイッチの電流が零であることを表す故障群切り離
し完了信号である。
(Embodiment) An embodiment of the present invention is shown in FIG. In FIG.
The same elements as those in FIG. 4 already described are denoted by the same reference numerals, and description thereof will be omitted. 8A and 8B are reactors for balancing the current between multiple converters, 9A and 9B are current detectors that detect the current of the short-circuit switch, and 10 is a converter that has failed from the outputs of 9A and 9B. A failure group determination circuit, 11 is a delay circuit for delaying the failure occurrence signal 51 output from the failure group determination circuit 10 to the healthy group, 12A and 12B are AND circuits, 13 is an inversion circuit, 1
4A and 14B control on / off of the self-excited converters 3A and 3B by a bypass pair command 52, a forward conversion operation command 53, a restart command 54, a gate block command 55, etc., and a command from a power supply control circuit (not shown). It is a firing control circuit. Reference numeral 56 denotes a failure group separation completion signal indicating that the current of the short-circuit switch of the failure group is zero.

第1図をもちいて本発明の作用を説明する。前述の通
り、電流型の変換器においては回路が開放になると過電
圧が発生する。例えば、第1図において変換器3Aの素子
が誤消弧したとする。すると変換器3Aの両端に過電圧が
発生し、過電圧点弧回路5Aが動作し、短絡スイッチ6Aが
オンする。すると電流検出器9Aが半導体スイッチ6Aを流
れる電流を検出する。故障群検出回路10では電流検出器
からの信号で、故障及び故障群を判別し、故障群にはゲ
ートブロック指令55を出力して停止させ、健全群には故
障発生信号を出力する。すると、故障発生後遅延回路11
で設定した時間まではバイパスペア指令52が出力され
る。その時、負荷電流は健全な変換器3Bと半導体スイッ
チ6Aを経由して流れる。遅延回路11で決定される時間が
経過すると、健全群には順変換運転指令53が出力され、
健全群変換器3Bは適当な直流電圧を出力する。すると短
絡スイッチに逆向きの電圧がかかり、電流が減少し、電
流が零になったところでオフする。これで故障群変換器
はシステムから切り離される。故障群判別回路で故障群
の短絡スイッチの電流が零になったことを検出したら再
起動指令54が出力され、健全群のみで運転が再開され
る。
The operation of the present invention will be described with reference to FIG. As described above, in a current-type converter, an overvoltage occurs when the circuit is opened. For example, suppose that the element of the converter 3A is erroneously extinguished in FIG. Then, an overvoltage occurs at both ends of the converter 3A, the overvoltage firing circuit 5A operates, and the short-circuit switch 6A turns on. Then, the current detector 9A detects the current flowing through the semiconductor switch 6A. The failure group detection circuit 10 determines a failure and a failure group based on a signal from the current detector, outputs a gate block command 55 to the failure group and stops the operation, and outputs a failure occurrence signal to the healthy group. Then, after the occurrence of the failure, the delay circuit 11
The bypass pair command 52 is output until the time set in. At that time, the load current flows via the healthy converter 3B and the semiconductor switch 6A. When the time determined by the delay circuit 11 has elapsed, a forward conversion operation command 53 is output to the healthy group,
Healthy group converter 3B outputs an appropriate DC voltage. Then, a reverse voltage is applied to the short-circuit switch, the current decreases, and the switch turns off when the current becomes zero. The fault converter is now disconnected from the system. When the failure group determination circuit detects that the current of the short-circuit switch of the failure group has become zero, a restart command 54 is output, and the operation is resumed only with the healthy group.

第2図は故障時の保護動作をフローチャートで表した
ものである。故障群検出回路10は、電流検出器からの信
号で故障及び故障群を判別し、故障群にはゲートブロッ
ク信号を出力し、健全群にはバイパスペア信号を出力す
る。一定時間経過後、健全群を順変換運転する。故障群
の短絡スイッチの電流が零であることを検出し、健全群
は再起動する。
FIG. 2 is a flowchart showing the protection operation in the event of a failure. The failure group detection circuit 10 determines a failure and a failure group based on a signal from the current detector, outputs a gate block signal to the failure group, and outputs a bypass pair signal to the healthy group. After a certain period of time, the healthy group is operated in the forward conversion mode. The normal group is restarted by detecting that the current of the short-circuit switch of the fault group is zero.

以上は自励式変換器3Aが故障した場合について述べた
が、変換器3Bが故障した場合も同様である。また2台以
上の変換器から構成される場合も同様である。
The case where the self-excited converter 3A has failed has been described above. The same applies to the case where the converter 3B has failed. The same applies to a case where two or more converters are used.

以上説明したように本実施例によれば、故障時もコイ
ルに蓄積されたエネルギーを有効に利用できる保護装置
を提供できる。
As described above, according to the present embodiment, it is possible to provide a protection device that can effectively use the energy stored in the coil even when a failure occurs.

また、本発明において、自己消弧可能な素子として、
GTO以外の素子、例えばトランジスタや、静電誘導サイ
リスタ等を使用しても同一の効果が得られることは言う
までもない。
Further, in the present invention, as a self-extinguishing element,
It goes without saying that the same effect can be obtained by using an element other than the GTO, for example, a transistor or an electrostatic induction thyristor.

本発明の他の実施例を第3図に示す。第3図において
既に説明した第1図、第2図と同一の要素は同一の符号
で表し説明を省略する。第3図において15A,15Bは短絡
スイッチの両端の電圧を検出する回路である。第3図は
第1図において電流検出器9A,9Bで検出した短絡スイッ
チ6A,6Bの動作を電圧検出器15A,15Bで検出する。6A,6B
の動作で電圧で検出しても同一の効果が得られることは
いうまでもない。また、短絡スイッチ6A,6Bの動作を過
電圧点弧回路5A,5Bの動作電流によって検出しても同様
である。
Another embodiment of the present invention is shown in FIG. In FIG. 3, the same elements as those in FIGS. 1 and 2 described above are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 3, 15A and 15B are circuits for detecting the voltage across the short-circuit switch. FIG. 3 shows the operation of the short-circuit switches 6A, 6B detected by the current detectors 9A, 9B in FIG. 1 detected by the voltage detectors 15A, 15B. 6A, 6B
Needless to say, the same effect can be obtained even if the voltage is detected in the above operation. The same applies to the case where the operation of the short-circuit switches 6A and 6B is detected by the operation current of the overvoltage firing circuits 5A and 5B.

[発明の効果] 本発明のごとく、自己消弧可能な素子から構成される
複数台の変換器と超電導コイルからなる超電導エネルギ
ー貯蔵システムにおいて、変換器両端に発生する過電圧
によって点弧して変換器両端を短絡するスイッチと前記
スイッチの動作信号によって故障した変換器を判別する
手段とを具備し、故障した変換器には停止信号を与え、
健全な変換器にはバイパスペア信号を与え、しかる後に
順変換運転を行い、故障した変換器の短絡スイッチを流
れる電流が零であることを検出した後に、健全な変換器
だけでシステムを再起動すれば、コイルに蓄積されたエ
ネルギーを有効に利用できる超電導エネルギー貯蔵シス
テムの保護方法を提供できる。
[Effect of the Invention] As in the present invention, in a superconducting energy storage system including a plurality of converters each including a self-extinguishing element and a superconducting coil, the converter is ignited by an overvoltage generated at both ends of the converter. A switch for short-circuiting both ends, and means for determining a failed converter based on an operation signal of the switch, and providing a stop signal to the failed converter;
Apply a bypass pair signal to a healthy converter, then perform forward conversion operation, and after detecting that the current flowing through the short-circuit switch of the failed converter is zero, restart the system with only the healthy converter. Then, it is possible to provide a method for protecting the superconducting energy storage system that can effectively use the energy stored in the coil.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の1実施例を示す構成図、第2図は本
発明の保護動作を説明するフローチャート、第3図は本
発明の他の実施例を示す構成図、第4図は従来の超電導
エネルギー貯蔵システムを示す図である。 1……交流母線、2A,2B……整流器用変圧器、3A,3B……
自励式変換器、4……超電導コイル、5A,5B……過電圧
点弧回路、6A,6B……短絡スイッチ、7……保護用抵
抗、8A,8B……バランサリアクトル、9A,9B……電流検出
器、10……故障群判別回路、11……遅延回路、12A,12B
……論理積回路、13……反転回路、14A,14B……点弧制
御回路、15A,15B……過電圧検出回路、51……故障発生
信号、52……バイパスペア指令、53……順変換運転指
令、54……再起動指令、55……ゲートブロック信号、56
……故障群切り離し完了信号。
FIG. 1 is a block diagram showing one embodiment of the present invention, FIG. 2 is a flowchart for explaining a protection operation of the present invention, FIG. 3 is a block diagram showing another embodiment of the present invention, and FIG. 1 is a diagram showing a superconducting energy storage system of FIG. 1. AC bus, 2A, 2B ... Rectifier transformer, 3A, 3B ...
Self-excited converter, 4 ... superconducting coil, 5A, 5B ... overvoltage ignition circuit, 6A, 6B ... short circuit switch, 7 ... protection resistor, 8A, 8B ... balancer reactor, 9A, 9B ... current Detector, 10: Failure group determination circuit, 11: Delay circuit, 12A, 12B
... AND circuit, 13 ... inversion circuit, 14A, 14B ... ignition control circuit, 15A, 15B ... overvoltage detection circuit, 51 ... fault occurrence signal, 52 ... bypass pair command, 53 ... forward conversion Run command, 54 ... Restart command, 55 ... Gate block signal, 56
...... A failure group separation completion signal.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】自己消弧可能な素子から構成される複数台
の変換器を並列接続して超電導コイルを付勢する超電導
エネルギー貯蔵システムにおいて、それぞれの変換器は
変換器両端に発生する過電圧によって点弧して変換器を
短絡する短絡スイッチを有し、該スイッチの動作信号を
受け過電圧となった変換器を判別し、過電圧となった変
換器には停止信号を与え、健全な変換器にはバイパスペ
ア信号を与え、しかる後に順変換運転に移行させ、過電
圧となった変換器の短絡スイッチに流れている電流が零
であることを検出した後に、健全な変換器だけを再起動
することを特徴とした超電導エネルギー貯蔵システムの
保護方法。
In a superconducting energy storage system for energizing a superconducting coil by connecting a plurality of converters each composed of a self-extinguishing element in parallel, each converter is activated by an overvoltage generated across the converter. It has a short-circuit switch that ignites and short-circuits the converter, determines the converter that has received an operation signal of the switch and has become overvoltage, gives a stop signal to the converter that has become overvoltage, and provides a sound converter. Gives the bypass pair signal, then shifts to the forward conversion operation, and restarts only the healthy converter after detecting that the current flowing to the overvoltage converter short-circuit switch is zero. A method for protecting a superconducting energy storage system, characterized in that:
JP63198373A 1988-08-09 1988-08-09 How to protect superconducting energy storage systems. Expired - Lifetime JP2614278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63198373A JP2614278B2 (en) 1988-08-09 1988-08-09 How to protect superconducting energy storage systems.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63198373A JP2614278B2 (en) 1988-08-09 1988-08-09 How to protect superconducting energy storage systems.

Publications (2)

Publication Number Publication Date
JPH0251315A JPH0251315A (en) 1990-02-21
JP2614278B2 true JP2614278B2 (en) 1997-05-28

Family

ID=16390035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63198373A Expired - Lifetime JP2614278B2 (en) 1988-08-09 1988-08-09 How to protect superconducting energy storage systems.

Country Status (1)

Country Link
JP (1) JP2614278B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10328759B4 (en) 2003-06-25 2006-11-30 Ovd Kinegram Ag Optical security element and system for visualizing hidden information

Also Published As

Publication number Publication date
JPH0251315A (en) 1990-02-21

Similar Documents

Publication Publication Date Title
JPS5843993B2 (en) Control circuit for high voltage thyristor rectifier
JPS644376B2 (en)
JP2614278B2 (en) How to protect superconducting energy storage systems.
JPS5858834A (en) Stationary reactive power compensator
JPH05344736A (en) Power regenerative control device
JP2793264B2 (en) Uninterruptible power system
JPH08317694A (en) Overvoltage protective device
US4442480A (en) Protective circuit for thyristor controlled systems and thyristor converter embodying such protective circuit
JPS5892015A (en) Switching regulator
JPH0440926B2 (en)
JPH0343837Y2 (en)
JP2998213B2 (en) How to operate the power supply
RU1774427C (en) Device for protection of uninterrrupted power supply unit
JPH053667A (en) Protective unit for thyristor circuit
JPH0710182B2 (en) Power supply protection circuit
JPS609430B2 (en) Inverter device
JP2829684B2 (en) Gate pulse abnormality detection circuit of power converter
JPH02114821A (en) Protection of snubber energy regenerative circuit
JPS6210714A (en) Capacitor controlled thyristor
JPH03297218A (en) Method for detecting fault of semiconductor switching element of pulsed power supply
JPH0537676Y2 (en)
JPH05207758A (en) Power supply
JP2776559B2 (en) Inrush current supply circuit
JPH06303762A (en) Protection device of thyristor conversion device
JPH0678561A (en) Power converter and controlling thereof