JP2612302B2 - Method for producing crystal structure of syndiotactic polystyrene - Google Patents

Method for producing crystal structure of syndiotactic polystyrene

Info

Publication number
JP2612302B2
JP2612302B2 JP10017588A JP10017588A JP2612302B2 JP 2612302 B2 JP2612302 B2 JP 2612302B2 JP 10017588 A JP10017588 A JP 10017588A JP 10017588 A JP10017588 A JP 10017588A JP 2612302 B2 JP2612302 B2 JP 2612302B2
Authority
JP
Japan
Prior art keywords
crystal
degrees
peak
syndiotactic polystyrene
crystal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10017588A
Other languages
Japanese (ja)
Other versions
JPH01271405A (en
Inventor
憲和 宮下
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Priority to JP10017588A priority Critical patent/JP2612302B2/en
Publication of JPH01271405A publication Critical patent/JPH01271405A/en
Application granted granted Critical
Publication of JP2612302B2 publication Critical patent/JP2612302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は,高い結晶性または結晶完全性,大きな微結
晶サイズを有し,かつ結晶構造的に熱安定性を有するシ
ンジオタクチックポリスチレン結晶構造体α晶の製法に
関するものである。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a syndiotactic polystyrene crystal structure having high crystallinity or crystal perfection, large crystallite size, and crystal structure having thermal stability. The present invention relates to a method for producing an α crystal.

[従来の技術と問題点] シンジオタクチックポリスチレン重合体は,スチレン
を重合するにあたり触媒成分として,(A)チタン化合
物及び(B)有機アルミニウム化合物と水との縮合生成
物を用いることで知られることが特開昭62−104818号公
報,特開昭62−187708号公報に記載されている。第1図
に特開昭62−187708号公報の第2図(a)に例示された
シンジオタクチックポリスチレンのX線回折チャートを
挙げる。同X線チャートによれば公知のシンジオタクチ
ックポリスチレンは,散乱角6.9度,11.9度,15.6度,18.0
度,20.5度に回折ピークを有するものと読取れるので、
本発明でいう結晶構造体α晶と同じ結晶構造を有するも
のと理解される。同様な結晶構造を有するシンジオタク
チックポリスチレンがMacromolecules 19,2465−2466
(1986)に報告されている。また,シンジオタクチック
ポリスチレンの結晶構造体β晶の製造法については,特
開平1−215808号公報に記載されている。
[Prior art and problems] Syndiotactic polystyrene polymers are known to use a condensation product of (A) a titanium compound and (B) an organoaluminum compound with water as a catalyst component in the polymerization of styrene. This is described in JP-A-62-104818 and JP-A-62-187708. FIG. 1 shows an X-ray diffraction chart of the syndiotactic polystyrene exemplified in FIG. 2 (a) of JP-A-62-187708. According to the X-ray chart, known syndiotactic polystyrene has scattering angles of 6.9 degrees, 11.9 degrees, 15.6 degrees, and 18.0 degrees.
Degrees, 20.5 degrees can be read as having a diffraction peak,
It is understood that the crystal structure has the same crystal structure as the α-crystal of the present invention. Syndiotactic polystyrene having a similar crystal structure is described in Macromolecules 19,2465-2466.
(1986). A method for producing a β-crystal of a syndiotactic polystyrene crystal structure is described in JP-A-1-215808.

第2図は,本発明者等が特開昭62−187708号公報の開
示に従って合成したままの粉末状のシンジオタクチック
ポリスチレンのX線回折パターンである。また,第3図
は同公報に従って合成したままの粉末状のシンジオタク
チックポリスチレンを一旦融解させ,この状態から液体
窒素に急激に接触(クエンチ)させて得た構造体のX線
回折パターンである。この方法は高分子の非晶体を得る
方法として通常行われる方法である。従って,第3図は
シンジオタクチックポリスチレンの非晶体のX線回折パ
ターンを示す。
FIG. 2 is an X-ray diffraction pattern of powdery syndiotactic polystyrene as synthesized by the present inventors in accordance with the disclosure of JP-A-62-187708. FIG. 3 is an X-ray diffraction pattern of a structure obtained by melting powdery syndiotactic polystyrene as-synthesized according to the publication and then rapidly contacting (quench) with liquid nitrogen from this state. . This method is a method usually performed as a method for obtaining an amorphous substance of a polymer. Accordingly, FIG. 3 shows the X-ray diffraction pattern of the amorphous form of syndiotactic polystyrene.

第2図の回折パターンについて,アイソタクチックポ
リスチレンで知られた結晶部と非晶部の分割解析手法
(J.Appl.Phys.,37,4003(1966))を適用すると,合成
したままの粉末状のシンジオタクチックポリスチレン
は,非晶部の占める割合が大きい重合体である。即ち,
第2図の回折パターンは,破線の上側の結晶部に基づく
回折パターンの領域Cと,破線の下側の非晶部に基づく
回折パターンの領域Aを含むことを示し,両者の面積比
C/(A+C)×100の値から,結晶性がかなり低い構造
体の回折パターンであることがわかる。
By applying the analysis method of the crystal part and the amorphous part known from isotactic polystyrene (J. Appl. Phys., 37, 4003 (1966)) to the diffraction pattern in Fig. 2, the powder as synthesized Syndiotactic polystyrene is a polymer with a large proportion of amorphous parts. That is,
The diffraction pattern shown in FIG. 2 shows that it includes a region C of the diffraction pattern based on the crystal part above the broken line and a region A of the diffraction pattern based on the amorphous part below the broken line.
From the value of C / (A + C) × 100, it can be seen that the diffraction pattern is of a structure having very low crystallinity.

本発明者の知見によれば,シンジオタクチックポリス
チレンは,更に第4図の回折パターンで示されるように
他の結晶変態が熱加工条件によって生成する。前記第2
図のシンジオタクチックポリスチレンを一旦融解させ,
結晶構造体β晶調製例1の熱加工条件の下で生成された
構造体のX線回折パターンであり,散乱角度6.1度に回
折ピークを持ち,散乱角15.6度に回折ピークを持たない
という特徴的なX線回折パターンとなっている。従っ
て,この結晶構造体は,特開昭62−187708号公報の第2
図(a)の結晶構造体α晶とは異なり,特開平1−2158
08号公報に記載されたβ晶である。
According to the inventor's findings, syndiotactic polystyrene further undergoes other crystal transformations under thermal processing conditions, as shown by the diffraction pattern in FIG. The second
Once the syndiotactic polystyrene in the figure is melted,
FIG. 3 is an X-ray diffraction pattern of a structure generated under the thermal processing conditions in Preparation Example 1 of β-crystal structure, which has a diffraction peak at a scattering angle of 6.1 degrees and no diffraction peak at a scattering angle of 15.6 degrees. X-ray diffraction pattern. Therefore, this crystal structure is disclosed in Japanese Patent Application Laid-Open No. 62-187708.
Unlike the crystal structure α-crystal of FIG.
It is a β crystal described in Japanese Patent Publication No. 08-08.

同様に,第5図は,前記第2図のシンジオタクチック
ポリスチレンを一旦融解させ,結晶構造体β晶調製例2
の熱加工条件の下で生成された構造体のX線回折パター
ンである。散乱角2θ=5.5〜7.5度の範囲に生じた6.2
度と6.7度の2本の回折ピークの存在により,これは,
α晶とβ晶が混在した構造体である。
Similarly, FIG. 5 shows that the syndiotactic polystyrene of FIG.
5 is an X-ray diffraction pattern of a structure generated under the thermal processing conditions of FIG. Scattering angle 2θ = 6.2 generated in the range of 5.5 to 7.5 degrees
This is due to the presence of two diffraction peaks at 6.7 and 6.7 degrees.
It is a structure in which α crystals and β crystals are mixed.

[発明の解決すべき課題] 前述した通り,種々の結晶構造体が存在するので,シ
ンジオタクチックポリスチレンの成形にあたっては,熱
的安定性等使用性能上必要とされる適切な熱加工条件を
用いることが望まれる。
[Problems to be Solved by the Invention] As described above, since there are various crystal structures, when molding syndiotactic polystyrene, use appropriate thermal processing conditions required for performance such as thermal stability. It is desired.

本発明は,シンジオタクチックポリスチレンにおい
て,公知な製造法によって作成された結晶構造体と同
等,もしくはそれよりも高い結晶性,結晶構造的に熱安
定性を有するシンジオタクチックポリスチレン結晶構造
体α晶の製法に関するものである。
The present invention relates to a syndiotactic polystyrene crystal structure having a crystallinity equal to or higher than that of a crystal structure prepared by a known production method, and a crystal structure having a crystal structure having thermal stability. It relates to the manufacturing method.

[課題を解決するための手段] 本発明のシンジオタクチックポリスチレンの結晶構造
体β晶を含む構造体において,その構造体の分解を引き
起こさない雰囲気下,そのβ晶の融点より2℃低い温度
以上で,構造体に熱を30秒以上加え,シンジオタクチッ
クポリスチレンの結晶構造体をβ晶とα晶へと相転移さ
せることを特徴とするシンジオタクチックポリスチレン
の結晶構造体α晶の構造法である。
[Means for Solving the Problems] In the structure containing the crystal structure β crystal of the syndiotactic polystyrene of the present invention, the temperature is at least 2 ° C. lower than the melting point of the β crystal under an atmosphere that does not cause decomposition of the structure. Then, heat is applied to the structure for at least 30 seconds to cause a phase transition of the syndiotactic polystyrene crystal structure into β and α crystals. is there.

以下,本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

シンジオタクチックポリスチレンの構造体の原料は,
例えば,特開昭62−187708号公報に記載された重合方法
により調製されたシンジオタクチックポリスチレンであ
り,ポリマーのシンジオタクティシティー及び数平均分
子量は夫々,99%,1.0×104以上で成形体において少なく
とも有用な機械的物性を示すものが選ばれる。
The raw material of the structure of syndiotactic polystyrene is
For example, it is a syndiotactic polystyrene prepared by the polymerization method described in JP-A-62-187708. The polymer has a syndiotacticity and a number average molecular weight of 99%, 1.0 × 10 4 or more, respectively. Those exhibiting at least useful mechanical properties in the body are selected.

シンジオタクチックポリスチレンの結晶構造体β晶を
含む構造体は, (1) ポリマーの分解を起こさない雰囲気下,溶解
(融解)ポリマーを240〜270℃の温度域で5〜3000時
間,等温結晶化させる方法。
Crystal structure of syndiotactic polystyrene The structure containing β crystal is as follows: (1) Isothermal crystallization of dissolved (melted) polymer in a temperature range of 240 to 270 ° C for 5 to 3000 hours in an atmosphere that does not cause polymer decomposition How to let.

(2) ポリマーの分解を起こさない雰囲気下,溶解
(融解)ポリマーを冷却速度1.25℃/分以下で,200℃以
下まで冷却する方法。
(2) A method in which the dissolved (melted) polymer is cooled to 200 ° C or less at a cooling rate of 1.25 ° C / minute or less in an atmosphere in which the polymer does not decompose.

等によって調製することができる。このような調製法
は,特開平1−215808号公報に記載されている。
And the like. Such a preparation method is described in JP-A-1-215808.

ここに,β晶とは,以下の条件を満たすシンジオタク
チックポリスチレンの結晶構造体を指す。
Here, the β crystal refers to a syndiotactic polystyrene crystal structure satisfying the following conditions.

入射X線として,CuKα線(波長0.15418nm)を用いた
とき,大まかに,散乱角2θ=6.1度に回折ピークを持
ち,散乱角2θ=15.6度に回折ピークを持たないという
大きな特徴を持つX線回折パターンを与える結晶構造体
である。詳細には,散乱角2θ=11.8〜13.0度,2θ=1
8.1〜19.3度に現われる回折ピークの、2θ=19.6〜21.
2度に現れる回折ピークに対する相対強度が,夫々20%,
5%以上の回折ピークを持ち,かつ2θ=5.5〜6.6度,2
θ=15.0〜16.2度に現われる回折ピークの,2θ=19.6〜
21.2度現れる回折ピークに対する相対強度が,夫々20
%,5%未満の回折ピークを持つシンジオタクチックポリ
スチレンの結晶構造体である。
When CuKα rays (wavelength 0.15418 nm) are used as incident X-rays, X has a large characteristic that it has a diffraction peak roughly at a scattering angle 2θ = 6.1 degrees and no diffraction peak at a scattering angle 2θ = 15.6 degrees. A crystal structure giving a line diffraction pattern. Specifically, scattering angle 2θ = 11.8-13.0 degrees, 2θ = 1
2θ of the diffraction peak appearing at 8.1 to 19.3 degrees = 19.6 to 21.
The relative intensity to the diffraction peak that appears twice is 20%,
Has a diffraction peak of 5% or more, and 2θ = 5.5 to 6.6 degrees, 2
2θ = 19.6 ~ of the diffraction peak appearing at θ = 15.0-16.2 degrees
The relative intensity to the diffraction peak that appears at 21.2 degrees is 20
%, A crystal structure of syndiotactic polystyrene having a diffraction peak of less than 5%.

また,シンジオタクチックポリスチレンのα晶とは,
以下の条件を満たすシンジオタクチックポリスチレンの
結晶構造体を指す。
The α-crystal of syndiotactic polystyrene is
Refers to a syndiotactic polystyrene crystal structure satisfying the following conditions.

入線X線として,CuKα線(波長0.15418nm)を用いた
とき,大まかには,散乱角度6.7度と15.6度に回折ピー
クを持つという特徴を持つX線回折パターンを与える結
晶構造体である。詳細には,散乱角2θ=6.3〜7.5度,2
θ=11.0〜13.0度,2θ=14.8〜16.2度に現われる回折ピ
ークの,2θ=19.5〜21.3度に現れる回折ピークに対する
相対強度が,夫々18%,8%,3%以上の回折ピークを持つ
シンジオタクチックポリスチレンの結晶構造体である。
When a CuKα ray (wavelength: 0.15418 nm) is used as the incident X-ray, it is a crystal structure that gives an X-ray diffraction pattern having the characteristic of having diffraction peaks at scattering angles of 6.7 degrees and 15.6 degrees. Specifically, the scattering angle 2θ = 6.3 to 7.5 degrees, 2
Shinji having diffraction peaks of 18%, 8%, and 3% or more in relative intensity of the diffraction peaks appearing at θ = 11.0-13.0 degrees and 2θ = 14.8-16.2 degrees with respect to the diffraction peaks appearing at 2θ = 19.5-21.3 degrees, respectively. It is a crystal structure of tactic polystyrene.

以上の方法において,原料ポリマー中に何等かの方法
で無機物等の結晶核を入れておき,結晶化させること
で,結晶化速度を増減させたり,結晶化温度領域をずら
したり,または広げたり,狭めたりする事も可能であ
る。例えば,触媒を数百ppm,残存させると,数十ppm,の
時に比べ、冷却時の結晶化温度は2〜10℃高くなり,そ
の構造体の融点は1〜5℃低くなる。
In the above method, a crystal nucleus such as an inorganic substance is put into the raw material polymer by any method and crystallized, thereby increasing or decreasing the crystallization speed, shifting or expanding the crystallization temperature range, It is also possible to narrow it. For example, if the catalyst is left for several hundred ppm, the crystallization temperature during cooling is higher by 2 to 10 ° C. and the melting point of the structure is lower by 1 to 5 ° C. than when the catalyst is several tens ppm.

測定法及び同定法 本発明において,シンジオタクチックポリスチレンの
物性値の測定法及び構造体の同定法は以下の方法によ
る。
Measuring Method and Identification Method In the present invention, a method for measuring physical property values of syndiotactic polystyrene and a method for identifying a structure are as follows.

1)立体規則性及び数平均分子量測定 立体規則性は,Nakromol.Chem.,176,3051(1975)に従
13C−NMRスペクトル(同位体炭素による核磁気共鳴ス
ペクトル)におけるベンゼン環のC1炭素スペクトルから
求め,数平均分子量は,ゲルパーミネーションクロマト
グラフィー(1,2,4−トリクロルベンゼン中,130℃で測
定)より求めた。
1) Measurement of stereoregularity and number average molecular weight Stereoregularity was determined from the C1 carbon spectrum of the benzene ring in a 13 C-NMR spectrum (nuclear magnetic resonance spectrum using isotope carbon) according to Nakromol. Chem., 176, 3051 (1975). The number average molecular weight was determined by gel permeation chromatography (measured in 1,2,4-trichlorobenzene at 130 ° C.).

2)結晶構造の融点測定 結晶構造の融点を示差走査熱量計(DSCと略す)を用
いて,試料を一定速度(10℃/分)で昇温したときに得
られるチャートのピークから求めた。その際の測定条件
は以下のように設定した。
2) Measurement of melting point of crystal structure The melting point of the crystal structure was determined from the peak of a chart obtained when a sample was heated at a constant rate (10 ° C./min) using a differential scanning calorimeter (abbreviated as DSC). The measurement conditions at that time were set as follows.

装置:パーキンエルマー製:DSC−2C 測定雰囲気:窒素雰囲気(22cc/分の流量下) 溶融チャート測定時の昇温速度:10℃/分 装置の冷媒:氷水 また,第6図は「結晶構造の融点測定」に従って測定
したもので,横軸は温度〔℃〕であり,縦軸は単位時間
当りの吸熱量〔mcal/sec〕を示す。
Apparatus: Perkin Elmer: DSC-2C Measurement atmosphere: Nitrogen atmosphere (under a flow rate of 22 cc / min) Temperature rise rate at the time of melting chart measurement: 10 ° C / min Refrigerant of the apparatus: ice water The horizontal axis indicates temperature [° C.] and the vertical axis indicates endothermic amount per unit time [mcal / sec].

3)結晶構造の同定法 結晶構造の同定には結晶構造解析に常用されるX線回
折法を用いる。
3) Crystal structure identification method The X-ray diffraction method commonly used for crystal structure analysis is used to identify the crystal structure.

第2図〜第5図,及び第7図は,入射X線として,CuK
α線(波長0.15418nm)を用いたとき,無配向のシンジ
オタクチックポリスチレン構造体のX線回折パターンで
ある。また,頭痛の数字は,対応した数字の回折ピーク
を表し,破線はベースラインの取り方を示している(第
2図では非晶部と結晶部の境界線の取り方を示す)。横
軸は散乱角度(θはブラッグ核〔゜〕)であり,縦軸は
散乱角度を示す。
2 to 5 and 7 show CuK as incident X-rays.
5 is an X-ray diffraction pattern of a non-oriented syndiotactic polystyrene structure when α rays (wavelength: 0.15418 nm) are used. The number of headache indicates the diffraction peak of the corresponding number, and the broken line indicates how to set the baseline (FIG. 2 shows how to set the boundary between the amorphous part and the crystalline part). The horizontal axis is the scattering angle (θ is the Bragg kernel [核]), and the vertical axis is the scattering angle.

第7図は,本発明のシンジオタクチックポリスチレン
結晶構造体α晶の代表的なX線回析パターンである。
(結晶構造体α晶製造例)。この構造体は,散乱角2θ
=6.6度,2θ=11.6度,2θ=15.5度,2θ=17.9度,2θ=2
0.3度,2θ=35.3度に回析ピーク1,ピーク2,ピーク3,ピ
ーク4,ピーク0,ピーク5が認められ,特に散乱角6.6度
と15.5度に回析ピークを持つという特徴を持つ(結晶構
造体β晶のX線回析パターンと対比)。
FIG. 7 is a representative X-ray diffraction pattern of the α-crystal of the syndiotactic polystyrene crystal structure of the present invention.
(Example of manufacturing crystalline structure α-crystal). This structure has a scattering angle of 2θ
= 6.6 degrees, 2θ = 11.6 degrees, 2θ = 15.5 degrees, 2θ = 17.9 degrees, 2θ = 2
Diffraction peak 1, peak 2, peak 3, peak 4, peak 0, and peak 5 are observed at 0.3 degrees and 2θ = 35.3 degrees, and they have the characteristic that they have diffraction peaks at scattering angles of 6.6 degrees and 15.5 degrees, respectively ( X-ray diffraction pattern of crystal structure β crystal).

回折強度の読取 a.第7図に示すように,ピーク4(ピーク4が見にくい
時はピーク0を利用)とピーク3がつくる谷間fと,ピ
ーク0とピーク5がつくる谷間iを結ぶ接線をベースラ
インfiとしたとき,散乱角2θ=19.5〜21.3度の回折ピ
ーク0の,ベースラインfiからの強度をI0とする。
Reading the diffraction intensity a. As shown in FIG. 7, the tangent line connecting peak 4 (when peak 4 is difficult to see, use peak 0) and valley f formed by peak 3 and valley i formed by peak 0 and peak 5 When the baseline fi is set, the intensity of the diffraction peak 0 at a scattering angle 2θ = 19.5 to 21.3 degrees from the baseline fi is defined as I 0 .

b.第7図に示すように,ピーク1の両側の裾野a,bを結
ぶ接線をベースラインabとしたとき,ピーク1の,ベー
スラインabからの強度をI1とする。
b. Connect Figure 7, when both sides of the foot a peak 1, the tangent line connecting the b is the baseline ab, peak 1, the intensity from baseline ab and I 1.

c.第7図に示すように,ピーク2の両側の裾野c,dを結
ぶ接線をベースラインcdとしたとき,ピーク2の,ベー
スラインcdからの強度をI2とする。
c. As shown in FIG. 7, when both sides of the skirt c Peak 2, the tangent connecting the d and baseline cd, peak 2, the intensity from baseline cd and I 2.

d.第7図に示すように,ピーク3の両側の裾野e,fを結
ぶ接線をベースラインefとしたとき,ピーク3の,ベー
スラインefからの強度をI3とする。
d. As shown in FIG. 7, when both sides of the skirt e peaks 3, a tangential connecting f and baseline ef, peak 3, the intensity from baseline ef and I 3.

e.第7図に示すように,ピーク4の両側の裾野g,hを結
ぶ接線をベースラインghとしたとき,ピーク4の,ベー
スラインghからの強度をI4とする。
e. As shown in FIG. 7, when the tangent connecting the tails g and h on both sides of the peak 4 is defined as the baseline gh, the intensity of the peak 4 from the baseline gh is defined as I 4 .

なお,各ピークについての次の点に注意する。結晶構
造体β晶を含む場合,各ピークに次の様な傾向が見られ
る。ピーク1は低角度側の裾が,ピーク2は高角度側の
裾がショルダー若しくは,夫々対応するピーク1,2より
も小さいピークをもつことがある。この時のベースライ
ンの取り方は,そのショルダー若しくは,夫々対応する
ピーク1,2よりも小さいピークを,ピーク1では低角度
側に越えたところの再隣接した谷をbとして,ピーク2
では高角度側に越えたところの再隣接した谷をcとして
ベースラインをとる。また,ピーク4はβ晶を含む場
合,高角度側に大きなピークをもつことがある。
Note the following about each peak. When the crystal structure β crystal is included, the following tendency is observed in each peak. Peak 1 may have a low-angle skirt and peak 2 may have a high-angle skirt with shoulders or smaller peaks than the corresponding peaks 1 and 2, respectively. At this time, the baseline is set as follows: the shoulder or a peak smaller than the corresponding peaks 1 and 2;
Then, the base line is set with c as the valley immediately adjacent to the position exceeding the high angle side. When the peak 4 contains a β crystal, the peak 4 may have a large peak on the high angle side.

なお,β晶の割合が多くなるに従い,ピーク1は散乱
各2θ=6.0〜6.3度に回析ピークをもつようになり,ま
たピーク3の回析強度は低くなり,ベースラインefが取
りにくくなる。ピーク3がノイズと区別出来なくなった
ときは,ピーク3の強度は0,ベースラインfiのf点はe
点を用いることとする。
As the ratio of β crystals increases, peak 1 has a diffraction peak at each scattering 2θ = 6.0 to 6.3 degrees, and the diffraction intensity of peak 3 decreases, making it difficult to obtain the baseline ef. . When the peak 3 cannot be distinguished from noise, the intensity of the peak 3 is 0 and the point f of the baseline fi is e.
Points will be used.

回析強度の計算 の各ピーク強度の求め方に従い,ピーク1,ピーク2,
ピーク3,ピーク4の相対強度R1,R2,R3,R4は次式より求
められる。
According to the calculation method of each peak intensity in the calculation of diffraction intensity, peak 1, peak 2,
The relative intensities R 1 , R 2 , R 3 , and R 4 of the peaks 3 and 4 are obtained by the following equations.

R1=I1/I0×100(%) ……(1) R2=I2/I0×100(%) ……(2) R3=I3/I0×100(%) ……(3) R4=I4/I0×100(%) ……(4) 4)結晶性,結晶構造的安定製の判断 第2図に示すように,ポリマーの構造体のX線回折パ
ターンを,結晶部に基づくと考えられる回折パターンの
領域Cと,非晶部に基づくと考えられる回折パターンの
領域Aに分離する。この時,両者の面積比C/(A+C)
×100の値の大小から,この値が大きいほど,結晶性が
高いと判断する。非晶部の回折パターンの領域Aが得に
くい時は,通常の簡便法に従い,各回折ピークの裾野を
結び,それを非晶部と結晶部の境界線と考え,領域A及
び領域Cに分離する。
R 1 = I 1 / I 0 × 100 (%)… (1) R 2 = I 2 / I 0 × 100 (%)… (2) R 3 = I 3 / I 0 × 100 (%)… … (3) R 4 = I 4 / I 0 × 100 (%)… (4) 4) Judgment of crystallinity and crystal structure stability As shown in FIG. 2, X-ray diffraction of polymer structure The pattern is separated into a region C of the diffraction pattern considered to be based on the crystal part and a region A of the diffraction pattern considered to be based on the amorphous part. At this time, the area ratio C / (A + C)
From the magnitude of the value of × 100, it is determined that the greater the value, the higher the crystallinity. When it is difficult to obtain the region A of the diffraction pattern of the amorphous part, the base of each diffraction peak is connected according to the usual simple method, and it is considered as the boundary line between the amorphous part and the crystal part. I do.

結晶構造的安定性は,同物質に複数の結晶構造が存在
する場合,どの結晶構造がエネルギー的に安定であるか
を意味するものである。シンジオタクチックポリスチレ
ンの場合,結晶相転移がβ晶からα晶へ起こることか
ら,α晶の方がβ晶よりも結晶構造的安定である。
The crystal structural stability means which crystal structure is energetically stable when a plurality of crystal structures exist in the same substance. In the case of syndiotactic polystyrene, since the crystal phase transition occurs from β-crystal to α-crystal, the α-crystal is more stable in crystal structure than the β-crystal.

[効果] 射出成形等において樹脂が必ずしも温度制御され,均
一に冷やされないことを考慮すると,高い結晶性や均一
な結晶構造が得られないものと考えられる。本発明の製
造法によれば,容易に高結晶性で,かつ結晶構造的に安
定な結晶構造体α晶の成形体が出来る。
[Effect] Considering that the temperature of the resin is not necessarily controlled and is not uniformly cooled in injection molding or the like, it is considered that high crystallinity and a uniform crystal structure cannot be obtained. According to the production method of the present invention, a molded product of crystal structure α-crystal having high crystallinity and stable crystal structure can be easily obtained.

また,本製造法は,異なる構造体を含む際のα晶への
精製法という点から重要なだけでなく,この相転移とい
うメカニズムを利用して,高分子固体センサー等への応
用が期待される。
In addition, this manufacturing method is not only important in terms of the method for refining α-crystals when different structures are included, but is also expected to be applied to polymer solid-state sensors, etc. by utilizing this mechanism of phase transition. You.

[実施例] 以下,本発明のシンジオタクティックポリスチレン結
晶構造体α晶の製造法の具体例を実施例により説明す
る。
EXAMPLES Hereinafter, specific examples of the method for producing the syndiotactic polystyrene crystal structure α-crystal of the present invention will be described with reference to examples.

(原料ポリマーの調製例) 不活性ガスで置換した容器中に,トルエン600mlとメ
チルアルミノキサン(東洋ストウファー製)120mmol
と,テトラエトキシチタン0.6mmolを加え,次いでスチ
レン600mlを加えて50℃で2時間重合反応を行なった。
反応終了後,塩酸・メタノールにより反応を停止し,生
成ポリマーをろ別後,乾燥した。この結果得られたポリ
スチレン(以下,シンジオタクティックポリスチレンA
と呼ぶ)は92gであった。このポリスチレンのメチルエ
チルケトン不溶部の含有率は96%であって,この不溶部
の立体規則性は13C−NMRスペクトル解析の結果,99%以
上シンジオタクチック構造であった。また,プラズマ誘
導発光分析法(ICP)で波長336.121nmのTi II(+1価
イオン線)を用いて,この不溶部中の残留触媒濃度の定
量を行った結果は13ppmであり,ゲルパーミネーション
クロマトグラフィー(1,2,4−トリクロルベンゼン中,13
0℃で測定)より求めた数平均分子量Mnは2.47×104であ
った。ここで得られたシンジオタクチックポリスチレン
AのX線回折パターンを第2図に示す。
(Preparation example of raw polymer) In a container purged with an inert gas, 600 ml of toluene and 120 mmol of methylaluminoxane (manufactured by Toyo Stouffer)
And 0.6 mmol of tetraethoxytitanium, and then 600 ml of styrene, followed by a polymerization reaction at 50 ° C. for 2 hours.
After completion of the reaction, the reaction was stopped with hydrochloric acid / methanol, and the produced polymer was separated by filtration and dried. The resulting polystyrene (hereinafter syndiotactic polystyrene A)
Was 92 g. The content of the methyl ethyl ketone insoluble portion of this polystyrene was 96%, and the stereoregularity of the insoluble portion was a syndiotactic structure of 99% or more as a result of 13C-NMR spectrum analysis. The residual catalyst concentration in the insoluble part was determined by plasma-induced emission spectrometry (ICP) using Ti II (+ 1-valent ion beam) with a wavelength of 336.121 nm, and the result was 13 ppm. The result was gel permeation chromatography. Chromatography (in 1,2,4-trichlorobenzene, 13
(Measured at 0 ° C.), the number average molecular weight Mn was 2.47 × 10 4 . The X-ray diffraction pattern of the syndiotactic polystyrene A obtained here is shown in FIG.

結晶構造体βの調製例1 シンジオタクチックポリスチレンA5mgを窒素雰囲気
下,290℃で溶解させ,その後,同雰囲気下で冷却速度0.
31℃/分で150℃まで冷却し,厚さ1mm,直径約8mmの円盤
状の構造体Bを得た。この構造体のX線回折パターンを
第4図に示す。ピーク1,ピーク2,ピーク3,ピーク4,ピー
ク0,ピーク5は夫々散乱角2θが,6.1度,12.3度,15.7
度,18.5度,20.3度,35.0度に現れ,各ピークの相対強度
は以下の値を持った。これにより,この構造体が本発明
が特定するα晶と異なる構造体β晶であることがわか
る。なお,この構造体の融点は263.3℃であり,ゲルパ
ーミネーションクロマトグラフィー(1,2,4−トリクロ
ルベンゼン中,130℃で測定)より求めた数平均分子量Mn
はシンジオタクチックポリスチレンAと実質的に変らな
かった。
Preparation Example 1 of Crystalline Structure β 1 mg of syndiotactic polystyrene A was dissolved at 290 ° C in a nitrogen atmosphere, and then cooled at a cooling rate of 0,0 in the same atmosphere.
It was cooled to 150 ° C. at a rate of 31 ° C./min to obtain a disc-shaped structure B having a thickness of 1 mm and a diameter of about 8 mm. The X-ray diffraction pattern of this structure is shown in FIG. Peak 1, peak 2, peak 3, peak 4, peak 0, and peak 5 have scattering angles 2θ of 6.1 degrees, 12.3 degrees, and 15.7, respectively.
Degrees, 18.5 degrees, 20.3 degrees, and 35.0 degrees, and the relative intensity of each peak had the following values. This shows that this structure is a structure β crystal different from the α crystal specified in the present invention. The melting point of this structure was 263.3 ° C, and the number average molecular weight Mn determined by gel permeation chromatography (measured in 1,2,4-trichlorobenzene at 130 ° C)
Was not substantially different from syndiotactic polystyrene A.

R1=14%,R2=35%, R3=1.4%,R4=11% β晶とα晶のX線回折パターン上の特徴は,次のよう
な点が挙げられる。
R 1 = 14%, R 2 = 35%, R 3 = 1.4%, R 4 = 11% The characteristics of the β-crystal and α-crystal on the X-ray diffraction pattern are as follows.

結晶構造体β晶の調製例2 シンジオタクチックポリスチレンA5mgを窒素雰囲気
下,290℃で融解させ,その後,冷却速度320℃/minで237
℃まで冷却し,その温度に20分間保って結晶化させ,構
造体Bを得た。この構造体BのX線回折パターンを第5
図に示す。ピーク3,ピーク4,ピーク0は夫々散乱角2θ
が,15.6度,18.6度,20.4度に現れ,また,ピーク1は6.2
度と6.7度に,ピーク2は11.7度と12.4度に分れた。こ
の構造体BのDSCによる融解チャートを第6図に示す。2
58℃と266℃に融解ピークを持った。これらのことによ
り,本発明者の知見によれば,構造体Bはα晶とβ晶の
混合した構造であると推測される。
Preparation Example 2 of Crystalline Crystalline β Crystals 5 mg of syndiotactic polystyrene A was melted at 290 ° C under a nitrogen atmosphere, and then cooled at a cooling rate of 320 ° C / min.
After cooling to ℃, the temperature was maintained for 20 minutes for crystallization to obtain a structure B. The X-ray diffraction pattern of this structure B
Shown in the figure. Peak 3, Peak 4, and Peak 0 are scattering angles 2θ respectively
Appeared at 15.6, 18.6, and 20.4 degrees, and peak 1 was 6.2.
The peak 2 was divided into 11.7 degrees and 12.4 degrees. FIG. 6 shows a melting chart of this structure B by DSC. Two
It had melting peaks at 58 ° C and 266 ° C. From these facts, according to the findings of the present inventors, it is assumed that the structure B has a mixed structure of α-crystal and β-crystal.

結晶構造体α晶の製造例 結晶構造体β晶の調製例2に従って得られた構造体B
を窒素雰囲気下,264℃まで320℃/分で昇温し,この温
度で48時間保った後,室温まで下げ,厚さ1mm,直径約8m
mの円盤状の構造体Cを得た。この構造体のX線回折パ
ターンを第7図に示す。ピーク1,ピーク2,ピーク3,ピー
ク0は夫々散乱角2θが6.6度,11.6度,15.5度,20.3度に
現れ,各ピークの相対強度は以下の値を持った。これに
より,この構造体が本発明が特定するα晶であることが
分かる。この構造体の融点は271.5℃であり,ゲルパー
ミネーションクロマトグラフィー(1,2,4−トリクロル
ベンゼン中,130℃で測定)より求めた数平均分子量Mnは
シンジオタクチックポリスチレンAと実質的に変らなか
った。
Production Example of Crystalline Structure α Crystal Structure B Obtained According to Preparation Example 2 of Crystalline Structure β Crystal
In a nitrogen atmosphere, the temperature was raised to 264 ° C at a rate of 320 ° C / min., Kept at this temperature for 48 hours, then lowered to room temperature, thickness 1 mm, diameter about 8 m.
Thus, a disk-shaped structure C of m was obtained. The X-ray diffraction pattern of this structure is shown in FIG. Peak 1, peak 2, peak 3, and peak 0 have scattering angles 2θ of 6.6, 11.6, 15.5, and 20.3 degrees, respectively, and the relative intensity of each peak has the following value. This shows that this structure is the α crystal specified by the present invention. The melting point of this structure is 271.5 ° C, and the number average molecular weight Mn determined by gel permeation chromatography (measured in 1,2,4-trichlorobenzene at 130 ° C) is substantially different from that of syndiotactic polystyrene A. Did not.

R1=48%,R2=29%,R3=15%R 1 = 48%, R 2 = 29%, R 3 = 15%

【図面の簡単な説明】[Brief description of the drawings]

第1図は特開昭62−187708号公報図面第2図(a)のシ
ンジオタクチックポリスチレンのX線回折パターンを転
記したものである。 第2図は,原料シンジオタクティックポリスチレンの調
製法に従って合成したシンジオタクチックポリスチレン
AのX線回折パターンである。 第3図は,原料シンジオタクチックポリスチレンAを一
旦融解させ,この状態から液体窒素に急激に接触させて
得られた構造体のX線回折パターンである。 第4図は,結晶構造体β晶の調製例1に従って得られた
構造体のX線の構造体のX線回折パターンである。 第5図は,結晶構造体β晶の調製例2に従って得られた
構造体BのX線回折パターンである。 第6図は,結晶構造体β晶の調製例2に従って得られた
構造体BのDSCによる融解チャートである。 第7図は,結晶構造体α晶の製造例に従って得られた構
造体CのX線回折パターンである。
FIG. 1 is a transcript of the X-ray diffraction pattern of syndiotactic polystyrene shown in FIG. 2 (a) of JP-A-62-187708. FIG. 2 is an X-ray diffraction pattern of syndiotactic polystyrene A synthesized according to the method for preparing a raw material syndiotactic polystyrene. FIG. 3 is an X-ray diffraction pattern of a structure obtained by once melting the raw material syndiotactic polystyrene A and rapidly bringing it into contact with liquid nitrogen from this state. FIG. 4 is an X-ray diffraction pattern of the X-ray structure of the structure obtained according to Preparation Example 1 of the crystal structure β crystal. FIG. 5 is an X-ray diffraction pattern of structure B obtained according to Preparation Example 2 of crystal structure β crystal. FIG. 6 is a DSC melting chart of structure B obtained according to Preparation Example 2 of crystal structure β crystal. FIG. 7 is an X-ray diffraction pattern of the structure C obtained according to the production example of the crystal structure α-crystal.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シンジオタクチックポリスチレンの結晶構
造体β晶(入射X線として、CuKα線(波長0.15418nm)
を用いたとき、錯乱角2θ=11.8〜13.0度、2θ=18.1
〜19.3度に現われる回折ピークの、2θ=19.6〜21.2度
に現われる回折ピークに対する相対強度が、夫々20%、
5%以上の回折ピークを持ち、かつ2θ=5.5〜6.6度、
15.0〜16.2度に現われる回折ピークの、2θ=19.6〜2
1.2度に現われる回折ピークに対する相対強度が夫々20
%、5%未満の回折ピークを持つシンジオタクチックポ
リスチレンの結晶構造体)を含む構造体において、その
構造体の分析を引き起こさない雰囲気下、β晶の融点よ
り2℃低い温度以上で、構造体に熱を30秒以上加え、シ
ンジオタクチックポリスチレンの結晶構造体晶α晶(入
射X線として、CuKα線(波長0.15418nm)を用いたと
き、錯乱角2θ=6.3〜7.5度、2θ=11.0〜13.0度、2
θ=14.8〜16.2度に現われる回折ピークの2θ=19.5〜
21.3度に現われる回折ピークに対する相対強度が、夫々
18%、8%、3%以上の回折ピークを持つシンジオタク
チックポリスチレンの結晶構造体)へと相転移させるこ
とを特徴とするシンジオタクチックポリスチレンの結晶
構造体製造法。
1. A crystal structure β crystal of syndiotactic polystyrene (CuKα ray (wavelength 0.15418 nm) as incident X-ray)
, The angle of confusion 2θ = 11.8-13.0 degrees, 2θ = 18.1
The relative intensity of the diffraction peaks appearing at ~ 19.3 degrees with respect to the diffraction peaks appearing at 2θ = 19.6-21.2 degrees is 20%, respectively.
Having a diffraction peak of 5% or more, and 2θ = 5.5 to 6.6 degrees,
2θ of the diffraction peak appearing at 15.0 to 16.2 degrees = 19.6 to 2
The relative intensity to the diffraction peak that appears at 1.2 degrees is 20 each.
% Of a crystal structure of a syndiotactic polystyrene having a diffraction peak of less than 5%) in an atmosphere that does not cause analysis of the structure, at a temperature not lower than the melting point of the β crystal by 2 ° C. or higher. Is applied to the crystal for at least 30 seconds, and using a crystal structure crystal α of syndiotactic polystyrene (CuKα ray (wavelength: 0.15418 nm) as incident X-ray, the angle of confusion 2θ = 6.3 to 7.5 degrees, 2θ = 11.0 to 13.0 degrees, 2
2θ of the diffraction peak appearing at θ = 14.8 to 16.2 degrees = 19.5 to
The relative intensity to the diffraction peak that appears at 21.3 degrees is
A syndiotactic polystyrene crystal structure having diffraction peaks of 18%, 8% and 3% or more).
JP10017588A 1988-04-25 1988-04-25 Method for producing crystal structure of syndiotactic polystyrene Expired - Lifetime JP2612302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10017588A JP2612302B2 (en) 1988-04-25 1988-04-25 Method for producing crystal structure of syndiotactic polystyrene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10017588A JP2612302B2 (en) 1988-04-25 1988-04-25 Method for producing crystal structure of syndiotactic polystyrene

Publications (2)

Publication Number Publication Date
JPH01271405A JPH01271405A (en) 1989-10-30
JP2612302B2 true JP2612302B2 (en) 1997-05-21

Family

ID=14266983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10017588A Expired - Lifetime JP2612302B2 (en) 1988-04-25 1988-04-25 Method for producing crystal structure of syndiotactic polystyrene

Country Status (1)

Country Link
JP (1) JP2612302B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1228915B (en) * 1989-02-28 1991-07-09 Himont Inc MANUFACTURED IN A NEW CRYSTALLINE FORM OF SYNDIOTACTIC POLYSTYRENE.

Also Published As

Publication number Publication date
JPH01271405A (en) 1989-10-30

Similar Documents

Publication Publication Date Title
Buchner et al. Kinetics of crystallization and melting behaviour of poly (ethylene naphthalene-2, 6-dicarboxylate)
Janimak et al. Isotacticity effect on crystallization and melting in polypropylene fractions: 3. Overall crystallization and melting behaviour
KR100511238B1 (en) Polymorphic Clopidogrel Hydrogenesulphate Form
Burger et al. Dimer and cluster formation in C 60 photoreaction
Ibrahim et al. Polymorphism of phenylbutazone: properties and compressional behavior of crystals
CA2019546A1 (en) Process for crystallization of polyethylene naphthalate
JPS62502477A (en) High strength polyolefin
Calleja et al. Physical transitions and crystallization phenomena in poly (ethylene terephthalate) studied by microhardness
Cheng et al. Relaxation processes and molecular motion in a new semicrystalline polyimide
JP2612302B2 (en) Method for producing crystal structure of syndiotactic polystyrene
Marchetti et al. Effect of chain defects on the morphology and thermal behavior of solution‐grown single crystals of syndiotactic polypropylene
Anandakumaran et al. Crystallization of trans‐1, 4‐polyisoprene
JP2000503060A (en) Manufacture of poly (ethylene 2,6-naphthalate)
JP2612304B2 (en) Method for producing syndiotactic polystyrene structure
JP2612303B2 (en) Method for producing syndiotactic polystyrene crystal structure
Surendran et al. Polymerization of para‐xylylene derivatives (parylene polymerization). IV. Effects of the sublimation rate of di‐p‐xylylene on the morphology and crystallinity of parylene N deposited at different temperatures
JPH01168709A (en) Syndiotactic polystyrene film
JP2571254B2 (en) Syndiotactic polystyrene
Frey et al. Structure and chiroptical properties of Bis [(S)-methylbutyl] silylene-dipentylsilylene copolymers
Macchi Crystallization and polymerization of 6‐aminocaproic acid as simultaneous processes
Sandstedt et al. Optical, calorimetric, and mass spectroscopic study of nonthermochromic crystalline forms of the polydiacetylene bis (ethylurethane)-5, 7-dodecadiyne-1, 12-diol (ETCD)
Chruściel et al. Study of the Phase Situation in 4-n-pentylphenyl-4′-n-heptyloxythiobenzoate (7S5)
Wieder et al. Alternating copolymers of butadiene and propylene: Properties and characterization
Čižmek et al. The influence of gel properties on the kinetics of crystallization and particulate properties of MFI-type zeolities. I. The influence of time and temperature of gel ageing on the particulate properties of silicalite-1 microcrystals
Chuang et al. Temperature Dependence of Positron Lifetimes in Linear Polyethylene

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080227

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12