JP2571254B2 - Syndiotactic polystyrene - Google Patents

Syndiotactic polystyrene

Info

Publication number
JP2571254B2
JP2571254B2 JP63039562A JP3956288A JP2571254B2 JP 2571254 B2 JP2571254 B2 JP 2571254B2 JP 63039562 A JP63039562 A JP 63039562A JP 3956288 A JP3956288 A JP 3956288A JP 2571254 B2 JP2571254 B2 JP 2571254B2
Authority
JP
Japan
Prior art keywords
peak
degrees
syndiotactic polystyrene
intensity
baseline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63039562A
Other languages
Japanese (ja)
Other versions
JPH01215808A (en
Inventor
憲和 宮下
正暢 今吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP63039562A priority Critical patent/JP2571254B2/en
Publication of JPH01215808A publication Critical patent/JPH01215808A/en
Application granted granted Critical
Publication of JP2571254B2 publication Critical patent/JP2571254B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、新規なシンジオタクチツクポリスチレンに
関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a novel syndiotactic polystyrene.

〔従来の技術〕[Conventional technology]

シンジオタクチツクポリスチレン重合体は、スチレン
を重合するにあたり触媒成分として、(A)チタン化合
物及び(B)有機アルミニウム化合物と水との縮合生成
物を用いることで得られる(特開昭62−104818号公報、
特開昭62−187708号公報)第1図に特開昭62−187708号
公報の第2図(a)に例示されたシンジオタクチツクポ
リスチレンのX線回折チヤートを挙げる。同X線チャー
トによれば公知のシンジオタクチツクポリスチレンは結
晶構造を有するものと理解される。同様の結晶構造を有
するシンジオタクチツクポリスチレンがMacromolecules
1986,19,2465−2466に報告されている。
The syndiotactic polystyrene polymer is obtained by using a condensation product of (A) a titanium compound and (B) an organoaluminum compound with water as a catalyst component in the polymerization of styrene (Japanese Patent Application Laid-Open No. Sho 62-104818). Gazette,
FIG. 1 shows an X-ray diffraction chart of the syndiotactic polystyrene exemplified in FIG. 2 (a) of JP-A-62-187708. According to the X-ray chart, it is understood that the known syndiotactic polystyrene has a crystal structure. Syndiotactic polystyrene with similar crystal structure
1986, 19, 2465-2466.

〔発明の解決すべき問題点〕[Problems to be solved by the invention]

第2図は、本発明者等が特開昭62−187708号公報に記
載された方法に従つて合成したシンジオタクチツクポリ
スチレンのX線回折パターンである。これより、特開昭
62−187708号公報に従つて得られる構造体は、立体規則
性こそシンジオタクチツクポリスチレンではあるが、そ
の結晶構造は非晶領域が多く含まれることが分かる。
FIG. 2 is an X-ray diffraction pattern of syndiotactic polystyrene synthesized by the present inventors according to the method described in JP-A-62-187708. From this,
The structure obtained according to Japanese Patent Application Laid-Open No. 62-187708 is syndiotactic polystyrene because of its stereoregularity, but it can be seen that its crystal structure contains many amorphous regions.

この様に非晶領域を多く含むシンジオタクチツクポリ
スチレン構造体は、溶融(融解)と冷却という熱的変化
を伴う成形加工下で再結晶させると、複数の結晶構造が
混ざつた不均一な構造体を生成するため、機械的特性の
劣る成形体が得られる。
A syndiotactic polystyrene structure containing many amorphous regions in this way, when recrystallized under a molding process involving thermal changes such as melting (melting) and cooling, a heterogeneous structure in which multiple crystal structures are mixed Since a body is formed, a molded body having poor mechanical properties is obtained.

本発明は、公知のシンジオタクチツクポリスチレンと
は異なる均一な結晶構造を有し、機械的特性の優れた成
形体を得ることのできるシンジオタクチツクポリスチレ
ンを提供する。
The present invention provides a syndiotactic polystyrene having a uniform crystal structure different from known syndiotactic polystyrene and capable of obtaining a molded article having excellent mechanical properties.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明は、入射X線として、CuKα線(波長0.15418n
m)を用いたとき、散乱角2θ=11.8〜13.0度、2θ=1
8.1〜19.3度に、2θ=19.6〜21.2度に現れる回折ピー
クに対する相対強度が、夫々20%、5%以上の回折ピー
クを持ち、かつ2θ=5.5〜6.6度、2θ=15.0〜16.2度
に、2θ=19.6〜21.2度に現れる回折ピークに対する相
対強度が、夫々20%、5%未満の回折ピークを持つシン
ジオタクチツクポリスチレンである。本発明のシンジオ
タクチツクポリスチレンは成形樹脂材料、樹脂の加工成
形体として利用できる。
In the present invention, CuKα rays (wavelength 0.15418 n
m), scattering angle 2θ = 11.8 to 13.0 degrees, 2θ = 1
At 8.1 to 19.3 degrees, relative intensities to diffraction peaks appearing at 2θ = 19.6 to 21.2 degrees have diffraction peaks of 20% and 5% or more, respectively, and 2θ = 5.5 to 6.6 degrees and 2θ = 15.0 to 16.2 degrees, It is a syndiotactic polystyrene having a relative intensity with respect to a diffraction peak appearing at 2θ = 19.6 to 21.2 degrees of less than 20% and 5%, respectively. The syndiotactic polystyrene of the present invention can be used as a molded resin material or a resin molded product.

本発明のシンジオタクチツクポリスチレンの構造体
は、特開昭62−187708号公報に記載された公知の重合方
法により調製されたシンジオタクチツクポリスチレンを
原料として用い、以下の方法によつて製造することがで
きる。原料として用いられるポリマーのシンジオタクテ
イシテイー及び数平均分子量は夫々、99%、1.0×104
上で成形体においても少なくとも有用な機械的物性を示
すものが選ばれる。なお、シンジオタクテイシテイー及
び数平均分子量は下記の製造方法下において実質的に変
化することがない。
The structure of the syndiotactic polystyrene of the present invention can be produced by the following method using the syndiotactic polystyrene prepared by a known polymerization method described in JP-A-62-187708 as a raw material. Can be. The polymer used as a raw material has a syndiotacticity and a number average molecular weight of 99% or more and 1.0 × 10 4 or more, respectively, and those exhibiting at least useful mechanical properties even in a molded product are selected. The syndiotacticity and the number average molecular weight do not substantially change under the following production method.

(1) 原料ポリマーを溶融(融解)し、1気圧、窒
素、アルゴン等の不活性ガス雰囲気の存在下240℃〜270
℃の温度域で5〜3000時間、等温結晶化させる方法。
(1) The raw material polymer is melted (melted) at 240 ° C. to 270 ° C. in the presence of an atmosphere of an inert gas such as 1 atm, nitrogen or argon.
A method of isothermal crystallization in a temperature range of 5 ° C. for 5 to 3000 hours.

以下特に断らない限り、1気圧、窒素雰囲気下で得ら
れた構造体の値で示す。
Hereinafter, unless otherwise specified, the values are shown for structures obtained at 1 atm under a nitrogen atmosphere.

(2) 原料ポリマーを溶融(融解)し、これを冷却速
度1.25℃/分以下で200℃まで、不活性ガス雰囲気下で
冷却する方法。
(2) A method in which a raw material polymer is melted (melted) and cooled to 200 ° C. at a cooling rate of 1.25 ° C./min or less under an inert gas atmosphere.

以上の方法において、融液状態で無機物等の結晶核を
入れておき、結晶化させることで、結晶化速度を増減さ
せたり、結晶化温度領域をずらしたり、または広げた
り、狭めたりする事も可能である。
In the above method, a crystal nucleus such as an inorganic substance is put in a melt state and crystallized, thereby increasing or decreasing the crystallization speed, shifting the crystallization temperature region, or expanding or narrowing. It is possible.

本発明において、シンジオタクチツクポリスチレンの
物性値の測定法及び構造体の同定法は以下の方法によ
る。
In the present invention, the method for measuring the physical properties of the syndiotactic polystyrene and the method for identifying the structure are as follows.

1)立体規則性及び数平均分子量測定立体規則性は、 Makromol.Chem.,176.3051(1975)に従い13C−NMRス
ペクトル(同位体炭素による核磁気共鳴スペクトル)に
おけるベンゼン環のC1炭素スペクトルから求め、 数平均分子量は、ゲルパーミネーシヨンクロマトグラ
フイー(1,2,4−トリクロルベンゼン中、130℃で測定)
より求めた。
1) Stereoregularity and number average molecular weight measurement The stereoregularity was determined from the C1 carbon spectrum of the benzene ring in a 13 C-NMR spectrum (nuclear magnetic resonance spectrum by isotope carbon) according to Makromol. Chem., 176.3051 (1975). Number average molecular weight is determined by gel permeation chromatography (measured in 1,2,4-trichlorobenzene at 130 ° C.)
I asked more.

2)結晶構造の融点測定 結晶構造の融点を示差走査熱量計(DSCと略す)を用
いて、試料を一定速度(10℃/分)で昇温したときに得
られるチャートのピークから求めた。その際の測定条件
は以下のように設定した。
2) Measurement of melting point of crystal structure The melting point of the crystal structure was determined from the peak of a chart obtained when a sample was heated at a constant rate (10 ° C./min) using a differential scanning calorimeter (abbreviated as DSC). The measurement conditions at that time were set as follows.

装置:パーキンエルマー製 TSC−2C 測定雰囲気:窒素雰囲気(20cc/分の流量下) 融解チヤート測定時の昇温速度:10℃/分 装置の冷媒:氷水 3)結晶構造の同定法 結晶構造の同定には結晶構造解析に常用されるX線回
折法を用いる。
Apparatus: PerkinElmer TSC-2C Measurement atmosphere: Nitrogen atmosphere (at a flow rate of 20 cc / min) Temperature rise rate during melting chart measurement: 10 ° C / min Refrigerant of the apparatus: ice water 3) Identification method of crystal structure Identification of crystal structure The X-ray diffraction method commonly used for crystal structure analysis is used.

第3図は、本発明のシンジオタクチツクポリスチレン
構造体の代表的なX線回折パターンである(実施例
2)。この構造体は散乱角2θが5.5〜6.6度、11.8〜1
3.0度、18.1〜19.3度、19.6〜21.2度、34.0〜36.0度に
回折ピーク1、ピーク2、ピーク4、ピーク0、ピーク
5が顕著に認められるが、散乱角2θが15.0〜16.2度の
回折ピーク3の回折強度は極めて小さい。本発明のシン
ジオタクチツクポリスチレン構造体は散乱角が15.0〜1
6.2度に回折ピークが殆ど認められないか、回折ピーク
があつてもその回折強度は極めて小さいものである。
FIG. 3 is a representative X-ray diffraction pattern of the syndiotactic polystyrene structure of the present invention (Example 2). This structure has a scattering angle 2θ of 5.5 to 6.6 degrees, 11.8 to 1
Diffraction peak 1, peak 2, peak 4, peak 0, and peak 5 are remarkably observed at 3.0 degrees, 18.1 to 19.3 degrees, 19.6 to 21.2 degrees, and 34.0 to 36.0 degrees, but diffraction at a scattering angle 2θ of 15.0 to 16.2 degrees. The diffraction intensity of peak 3 is extremely small. The syndiotactic polystyrene structure of the present invention has a scattering angle of 15.0 to 1
A diffraction peak is hardly recognized at 6.2 °, or the diffraction intensity is extremely small even if there is a diffraction peak.

回折強度の読取 a.第3図に示すように、ピーク0とピーク3がつくる谷
間fと、ピーク0とピーク5がつくる谷間iを結ぶ接線
をベースラインfiとしたとき、散乱角2θ=19.5〜21.3
度の回折ピーク0の、ベースラインfiからの強度をI0
する。
Reading of Diffraction Intensity a. As shown in FIG. 3, when a tangent connecting a valley f formed by peaks 0 and 3 and a valley i formed by peaks 0 and 5 is defined as a baseline fi, a scattering angle 2θ = 19.5 ~ 21.3
Let the intensity of the diffraction peak 0 from the baseline fi be I 0 .

b.第3図に示すように、ピーク1の両側の裾野a,bを結
ぶ接線をベースラインabとしたとき、ピーク1の、ベー
スラインabからの強度をI1とする。
b. Connect Figure 3, when both sides of the foot a peak 1, the tangent line connecting the b is the baseline ab, peak 1, the intensity from baseline ab and I 1.

c.第3図に示すように、ピーク2の両側の裾野c,dを結
ぶ接線をベースラインcdとしたとき、ピーク2の、ベー
スラインcdからの強度をI2とする。
c. As shown in FIG. 3, when a tangent connecting the tails c and d on both sides of the peak 2 is defined as a baseline cd, the intensity of the peak 2 from the baseline cd is defined as I 2 .

d.第3図に示すように、ピーク3の両側の裾野e,fを結
ぶ接線をベースラインefとしたとき、ピーク3の、ベー
スラインefからの強度をI3とする。
d. As shown in FIG. 3, when both sides of the skirt e peaks 3, a tangential connecting f and baseline ef, peak 3, the intensity from baseline ef and I 3.

e.第3図に示すように、ピーク4の両側の裾野g,hを結
ぶ接線をベースラインghとしたとき、ピーク4の、ベー
スラインghからの強度をI4とする。
e. If you shown in FIG. 3, both sides of the foot g peak 4, when the tangent line connecting the h a baseline gh, peak 4, the intensity from baseline gh and I 4.

なお、各ピークについて次の点に注意する。特開昭62
−087708号公報図面第2図(a)に記載された結晶構造
を僅かに含む場合、本発明と異なる結晶構造体からの回
折ピークが生じるため、各ピークに次の様な傾向が見ら
れる。ピーク1は高角度の裾が、ピーク2は低角度側の
裾がシヨルダー若しくは、夫々対応するピーク1,2より
も小さいピークをもつことがある。この時のベースライ
ンの取り方は、そのシヨルダー若しくは、夫々対応する
ピーク1,2よりも小さいピークを、ピーク1では高角度
側に越えたところの再隣接した谷をbとして、ピーク2
では低角度側に越えたところの再隣接した谷をcとして
ベースラインをとる。
Note the following points for each peak. JP 62
In the case where the crystal structure described in FIG. 2 (a) of JP-A-087708 is slightly contained, diffraction peaks from a crystal structure different from that of the present invention are generated, and the following tendency is observed in each peak. The peak 1 may have a high-angle tail, and the peak 2 may have a shoulder at the low-angle side or a peak smaller than the corresponding peaks 1 and 2, respectively. At this time, the baseline is set as follows: the shoulder or a peak smaller than the corresponding peaks 1 and 2;
Then, the base line is set with c as the valley immediately adjacent to the lower angle side.

本発明の構造体の量が多くなるに従い、ピーク3の強
度は低くなり、ベースラインが取りにくくなる。ピーク
がノイズと区別出来なくなり、ベースラインが取れない
場合、夫々のピーク強度は0とみなす。また、その時ベ
ースラインfiのf点として、e点を用いることとする。
As the amount of the structure of the present invention increases, the intensity of peak 3 decreases, and it becomes difficult to obtain a baseline. If a peak cannot be distinguished from noise and a baseline cannot be obtained, the intensity of each peak is regarded as 0. At this time, the point e is used as the point f of the baseline fi.

回折強度の計算 の各ピーク強度の求め方に従い、ピーク1、ピーク
2、ピーク3、ピーク4の相対強度R1、R2、R3、R4は次
式より求められる。
The relative intensities R 1 , R 2 , R 3 , and R 4 of the peak 1, peak 2, peak 3, and peak 4 can be obtained from the following formulas in accordance with the method of calculating each peak intensity in the calculation of diffraction intensity.

R1=I1/I0×100(%) ………(1) R2=I2/I0×100(%) ………(2) R3=I3/I0×100(%) ………(3) R4=I4/I0×100(%) ………(4) 〔実施例〕 以下、本発明のシンジオタクチツクポリスチレン構造
体の具体例を実施例により説明する。
R 1 = I 1 / I 0 × 100 (%) …… (1) R 2 = I 2 / I 0 × 100 (%) ……… (2) R 3 = I 3 / I 0 × 100 (%) (3) R 4 = I 4 / I 0 × 100 (%) (4) Examples Hereinafter, specific examples of the syndiotactic polystyrene structure of the present invention will be described with reference to examples. .

(原料シンジオタクチツクポリスチレンの調製) 不活性ガスで置換した容器中に、トルエン600mlとメ
チルアルミノキサン(東洋ストウフアー製)120mmol
と、テトロエトキシチタン0.6mmolを加え、次いでスチ
レン600mlを加えて50℃で2時間重合反応を行なつた。
反応終了後、塩酸・メタノールにより反応を停止し、生
成ポリマーを濾別後、乾燥した。この結果得られたポリ
スチレン(以下、シンジオタクチツクポリスチレンAと
呼ぶ)は92gであつた。このポリスチレンのメチルエチ
ルケトン不溶部の含有率は96%であつて、この不溶部の
立体規則性は13C−NMRスペクトル解析の結果、99%以上
シンジオタクチツク構造であつた。また、ゲルパーミネ
ーシヨンクロマトグラフイー(1,2,4−トリクロルベン
ゼン中、130℃で測定)より求めた数平均分子量Mnは2.4
7×104であつた。ここで得られたシンジオタクチツクポ
リスチレンAのX線回折パターンを第2図に示す。
(Preparation of raw material syndiotactic polystyrene) In a container purged with an inert gas, 600 ml of toluene and 120 mmol of methylaluminoxane (manufactured by Toyo Stouffer) were added.
And 0.6 mmol of tetroethoxytitanium, and then 600 ml of styrene, and a polymerization reaction was performed at 50 ° C. for 2 hours.
After completion of the reaction, the reaction was stopped with hydrochloric acid / methanol, and the produced polymer was separated by filtration and dried. The resulting polystyrene (hereinafter referred to as syndiotactic polystyrene A) weighed 92 g. The content of the methyl ethyl ketone insoluble portion of this polystyrene was 96%, and the stereoregularity of the insoluble portion was 99% or more in syndiotactic structure as a result of 13 C-NMR spectrum analysis. The number average molecular weight Mn determined by gel permeation chromatography (measured in 1,2,4-trichlorobenzene at 130 ° C.) is 2.4.
7 × 10 4 The X-ray diffraction pattern of the obtained syndiotactic polystyrene A is shown in FIG.

実施例1 このようにして得られたシンジオタクチツクポリスチ
レンA5mgを窒素雰囲気下、290℃で融解させ、その後、
同雰囲気下で冷却速度0.31℃/分で200℃まで冷却し、
目的の構造体を得た。この構造体のX線回折パターンを
第3図に示す。ピーク1、ピーク2、ピーク3、ピーク
4、ピーク0、ピーク5は夫々散乱角2θがまた、6.1
度、12.3度、15.7度、18.5度、20.3度、35.0度に現れ、
各ピークの相対強度は以下の値を持つた。これにより、
この構造体が、本発明が特定するものであることが分か
る。なお、この構造体の融点は263.3℃であり、ゲルパ
ーミネーシヨンクロマトグラフイー(1,2,4−トリクロ
ルベンゼン中、130℃で測定)より求めた数平均分子量M
nはシンジオタクチツクポリスチレンAと実質的に変わ
らなかつた。
Example 1 5 mg of the syndiotactic polystyrene A thus obtained was melted at 290 ° C. under a nitrogen atmosphere.
Under the same atmosphere, cool to 200 ° C at a cooling rate of 0.31 ° C / min.
The desired structure was obtained. The X-ray diffraction pattern of this structure is shown in FIG. Peak 1, peak 2, peak 3, peak 4, peak 0, and peak 5 each have a scattering angle 2θ of 6.1.
Degrees, 12.3 degrees, 15.7 degrees, 18.5 degrees, 20.3 degrees, 35.0 degrees,
The relative intensity of each peak had the following values. This allows
It can be seen that this structure is what the invention specifies. The melting point of this structure was 263.3 ° C., and the number average molecular weight M determined by gel permeation chromatography (measured in 1,2,4-trichlorobenzene at 130 ° C.)
n was not substantially different from syndiotactic polystyrene A.

R1=14%,R2=35% R3=1.4%,R4=11% 比較例1 シンジオタクチツクポリスチレンA5mgを窒素雰囲気
下、290℃で融解させ、その後、同雰囲気下で冷却速度8
0℃/分で200℃まで冷却し、構造体をBを得た。この構
造体のX線回折パターンを第4図に示す。ピーク1、ピ
ーク2、ピーク3、ピーク4、ピーク0、ピーク5は夫
々散乱角2θが、6.7度、11.7度(シヨルダーとして12.
2度にもピークがある。相対強度の計算では11.6度を使
用した。)、15.5度、17.9度、20.3度、35.3度に現れ、
各ピークの相対強度は以下の値を持つた。なお、この構
造体の融点は、263.8℃であり、ゲルパーミネーシヨン
クロマトグラフイー(1,2,4−トリクロルベンゼン中、1
30℃で測定)より求めた数平均分子量Mnはシンジオタク
チツクポリスチレンAと実質的に変わらなかつた。
R 1 = 14%, R 2 = 35% R 3 = 1.4%, R 4 = 11% Comparative Example 1 5 mg of syndiotactic polystyrene A was melted at 290 ° C. in a nitrogen atmosphere, and then the cooling rate was 8 in the same atmosphere.
The structure was cooled to 200 ° C. at 0 ° C./min to obtain B. The X-ray diffraction pattern of this structure is shown in FIG. The peak 1, peak 2, peak 3, peak 4, peak 0, and peak 5 have a scattering angle 2θ of 6.7 degrees and 11.7 degrees (12.
There is a peak twice. In calculating the relative intensity, 11.6 degrees was used. ), 15.5 degrees, 17.9 degrees, 20.3 degrees, 35.3 degrees,
The relative intensity of each peak had the following values. The melting point of this structure was 263.8 ° C., and gel permeation chromatography (1,2,4-trichlorobenzene contained 1
(Measured at 30 ° C.) and the number average molecular weight Mn was not substantially different from that of syndiotactic polystyrene A.

R1=30%,R2=18% R3=7.1%,R4=3.2% 構造体Bに対する、本発明の構造体のX線回折パター
ン上の特徴は、次のような点が挙げられる。
R 1 = 30%, R 2 = 18% R 3 = 7.1%, R 4 = 3.2% The features of the structure of the present invention with respect to the structure B on the X-ray diffraction pattern are as follows. .

ピーク1の散乱角度が構造体Bの散乱角度に対し、
本発明の構造体では低角度側に回折ピークを持つ。実施
例1ではピーク1の散乱角度は6.2度であつたのに対
し、比較例1の構造体Bのピーク1の散乱角度は6.7度
であつた。
The scattering angle of the peak 1 is relative to the scattering angle of the structure B.
The structure of the present invention has a diffraction peak on the low angle side. In Example 1, the scattering angle of peak 1 was 6.2 degrees, whereas the scattering angle of peak 1 of structure B of comparative example 1 was 6.7 degrees.

ピーク2の散乱角度が構造体Bの散乱角度に対し、
本発明の構造体では高角度側に回折ピークを持つ。実施
例1ではピーク2の散乱角度は12.3度であつたのに対
し、比較例1の構造体Bのピーク2の散乱角度は11.6度
であつた。
The scattering angle of peak 2 is relative to the scattering angle of structure B.
The structure of the present invention has a diffraction peak on the high angle side. In Example 1, the scattering angle of peak 2 was 12.3 degrees, whereas the scattering angle of peak 2 of structure B of comparative example 1 was 11.6 degrees.

ピーク4の散乱角度が構造体Bの散乱角度に対し、
本発明の構造体では高角度側に回折ピークを持つ。実施
例1ではピーク4の散乱角度は18.5度であつたのに対
し、比較例1の構造体Bのピーク2の散乱角度は17.9度
であつた。
The scattering angle of the peak 4 is relative to the scattering angle of the structure B.
The structure of the present invention has a diffraction peak on the high angle side. In Example 1, the scattering angle of peak 4 was 18.5 degrees, whereas the scattering angle of peak 2 of structure B of comparative example 1 was 17.9 degrees.

ピーク3のベースラインefに対する散乱強度が、構
造体Bの散乱強度に対し、本発明の構造体ではほぼ0と
なる(R3=5%未満)。実施例1ではピーク3のR3は1.
4%であつたのに対し、比較例1の構造体BのR3は7.1%
であつた。
The scattering intensity of the peak 3 with respect to the baseline ef is almost 0 in the structure of the present invention with respect to the scattering intensity of the structure B (R 3 = less than 5%). In Example 1, R 3 of peak 3 is 1.
Whereas been made in 4%, R 3 of structure B of Comparative Example 1 is 7.1%
It was.

ピーク4のベースラインghに対する散乱強度が、構
造体Bの散乱強度に対し、本発明の構造体では大きな値
を持つ(R4=5%以上)。実施例1ではピーク3のR4
11%であつたのに対し、比較例1の構造体BのR4は3.2
%であつた。
The scattering intensity of the peak 4 relative to the baseline gh has a larger value in the structure of the present invention than the scattering intensity of the structure B (R 4 = 5% or more). In Example 1, R 4 of peak 3 is
Compared to 11%, R 4 of Structure B of Comparative Example 1 was 3.2%.
%.

比較例2 特開昭62−187708号公報図面第2図(a)に与えられ
ているシンジオタクチツクポリスチレン重合体のX線回
折パターンを第1図に挙げる。各ピークの相対強度は以
下の値を持つた。ピーク1、ピーク2、ピーク3、ピー
ク4、ピーク0は夫々散乱角2θが、6.9度、11.9度、1
5.6度、18.0度、20.5度に現れた。なお、特開昭62−187
708の実施例1のシンジオタクチツクポリスチレン重合
体は、270℃の融点を有すると記載されている。
Comparative Example 2 FIG. 1 shows an X-ray diffraction pattern of a syndiotactic polystyrene polymer given in FIG. 2 (a) of JP-A-62-187708. The relative intensity of each peak had the following values. Peak 1, peak 2, peak 3, peak 4, and peak 0 have scattering angles 2θ of 6.9, 11.9, and 1 respectively.
Appeared at 5.6, 18.0, and 20.5 degrees. Incidentally, JP-A-62-187
The syndiotactic polystyrene polymer of Example 1 of 708 is described as having a melting point of 270 ° C.

R1=27%,R2=30% R3=16%,R4=11% これらの値とX線回折パターンを実施例1に挙げた相
対強度とX線回折パターンと比較すると、比較例1の、
本発明の構造体の特徴〜に挙げた点で、実施例1と
は大きく異なつている。従つて、両者は明らかに異なる
結晶構造を有することが分かる。
R 1 = 27%, R 2 = 30% R 3 = 16%, R 4 = 11% When these values are compared with the X-ray diffraction pattern and the relative intensity and X-ray diffraction pattern given in Example 1, a comparative example is obtained. 1,
The features of the structure of the present invention are significantly different from those of the first embodiment in the points described above. Thus, it can be seen that both have distinct crystal structures.

実施例2 シンジオタクチツクポリスチレンA5mgを窒素雰囲気
下、290℃で融解させ、その後、冷却速度320℃/minで26
2℃まで冷却し、その温度に80時間保つて結晶化させ、
目的の構造体を得た。この構造体のX線回折パターンを
第5図に示す。ピーク3はほとんの観測されず、ピーク
1、ピーク2、ピーク4、ピーク0、ピーク5は夫々散
乱角2θが、6.2度、12.4度、18.6度、20.4度、35.1度
に現れ、各ピークの相対強度は以下の値を持つた。ま
た、この構造体の融点は273.2℃であり、ゲルパーミネ
ーシヨンクロマトグラフイー(1,2,4−トリクルベンゼ
ン中、130℃で測定)より求めた数平均分子量Mnはシン
ジオタクチツクポリスチレンAと実質的に変わらなかつ
た。
Example 2 5 mg of syndiotactic polystyrene A was melted at 290 ° C under a nitrogen atmosphere, and then cooled at a cooling rate of 320 ° C / min.
Cool to 2 ° C, keep at that temperature for 80 hours to crystallize,
The desired structure was obtained. The X-ray diffraction pattern of this structure is shown in FIG. The peak 3 is hardly observed, and the peak 1, peak 2, peak 4, peak 0, and peak 5 show scattering angles 2θ at 6.2 degrees, 12.4 degrees, 18.6 degrees, 20.4 degrees, and 35.1 degrees, respectively. The relative intensity has the following values: The melting point of this structure was 273.2 ° C., and the number average molecular weight Mn determined by gel permeation chromatography (measured in 1,2,4-tricklebenzene at 130 ° C.) was equal to that of syndiotactic polystyrene A. Substantially unchanged.

R1=15%,R2=32% R3=0%,R4=11% 実施例3 実施例2と同様な方法により、シンジオタクチツクポ
リスチレンA5mgを窒素雰囲気下、290℃で融解させ、そ
の後、冷却速度320℃/minで240℃まで冷却し、その温度
に5時間保って結晶化させ、目的の構造体を得た。この
構造体のX線回折パターンを第5図に示す。ピーク1、
ピーク2、ピーク3、ピーク4、ピーク0、ピーク5は
夫々散乱角度2θがまた、6.3度、12.5度、15.7度、18.
7度、20.5度、35.3度に現れ、各ピークの相対強度は以
下の値を持つた。また、この構造体の融点は259.0℃で
あり、ゲルパーミネーシヨンクロマトグラフイー(1,2,
4−トリクロルベンゼン中、130℃で測定)より求めた数
平均分子量MnはシンジオタクチツクポリスチレンAと実
質的に変わらなかつた。
R 1 = 15%, R 2 = 32% R 3 = 0%, R 4 = 11% Example 3 In the same manner as in Example 2, 5 mg of syndiotactic polystyrene A was melted at 290 ° C. under a nitrogen atmosphere. Then, it was cooled to 240 ° C. at a cooling rate of 320 ° C./min, and was crystallized at that temperature for 5 hours to obtain a target structure. The X-ray diffraction pattern of this structure is shown in FIG. Peak 1,
Peak 2, peak 3, peak 4, peak 0, and peak 5 have scattering angles 2θ of 6.3 degrees, 12.5 degrees, 15.7 degrees, and 18.
Appearing at 7 degrees, 20.5 degrees, and 35.3 degrees, the relative intensity of each peak had the following values. The melting point of this structure was 259.0 ° C., and gel permeation chromatography (1,2,
The number average molecular weight Mn determined from 4-trichlorobenzene at 130 ° C.) was not substantially different from that of syndiotactic polystyrene A.

R1=14%,R2=36% R3=1.4%,R3=11%R 1 = 14%, R 2 = 36% R 3 = 1.4%, R 3 = 11%

【図面の簡単な説明】[Brief description of the drawings]

第1図は特公昭62−104818号公報図面第2図(a)のシ
ンジオタクチツクポリスチレンのX線回折パターンを転
記したものである。第2図は、原料シンジオタクチツク
ポリスチレンの調製法に従つて合成したシンジオタクチ
ツクポリスチレンAのX線回折パターンである。第3図
は、実施例1に従つて得られた構造体のX線の構造体の
X線回折パターンである。第4図は、比較例1に従つて
得られる構造体のX線回折パターンである。第5図は、
実施例2に従つて得られた構造体のX線回折パターンで
ある。第6図は、実施例3に従つて得られた構造体のX
線回折パターンである。 なお、第2図〜第6図は、入射X線として、CuKα線
(波長0.15418nm)を用いたとき、無配向のシンジオタ
クチツクポリスチレン構造体のX線回折パターンであ
る。また、図中の数字は、対応した数字の回折ピークを
表し、破線はベースラインの取り方を示している。横軸
は散乱角度(θはブラツグ角〔゜〕であり、縦軸は散乱
強度を示す。
FIG. 1 is a transcript of the X-ray diffraction pattern of syndiotactic polystyrene shown in FIG. 2 (a) of Japanese Patent Publication No. Sho 62-104818. FIG. 2 is an X-ray diffraction pattern of syndiotactic polystyrene A synthesized according to a method for preparing a raw material syndiotactic polystyrene. FIG. 3 is an X-ray diffraction pattern of an X-ray structure of the structure obtained according to Example 1. FIG. 4 is an X-ray diffraction pattern of the structure obtained according to Comparative Example 1. FIG.
6 is an X-ray diffraction pattern of a structure obtained according to Example 2. FIG. 6 shows the X of the structure obtained according to Example 3.
It is a line diffraction pattern. 2 to 6 show X-ray diffraction patterns of a non-oriented syndiotactic polystyrene structure when CuKα rays (wavelength: 0.15418 nm) are used as incident X-rays. The numbers in the figure represent the diffraction peaks of the corresponding numbers, and the broken lines indicate how to set the baseline. The horizontal axis represents the scattering angle (θ is the Bragg angle [゜], and the vertical axis represents the scattering intensity.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】入射X線として、CuKα線(波長0.15418n
m)を用いたとき、散乱角2θ=11.8〜13.0度、2θ=1
8.1〜19.3度に、2θ=19.6〜21.2度に現れる回折ピー
クに対する相対強度が、夫々20%、5%以上の回折ピー
クを持ち、かつ2θ=5.5〜6.6度、2θ=15.0〜16.2度
に、2θ=19.6〜21.2度に現れる回折ピークに対する相
対強度が、夫々20%、5%未満の回折ピークを持つシン
ジオタクチツクポリスチレン
(1) As an incident X-ray, CuKα ray (wavelength: 0.15418 n
m), scattering angle 2θ = 11.8 to 13.0 degrees, 2θ = 1
At 8.1 to 19.3 degrees, relative intensities to diffraction peaks appearing at 2θ = 19.6 to 21.2 degrees have diffraction peaks of 20% and 5% or more, respectively, and 2θ = 5.5 to 6.6 degrees and 2θ = 15.0 to 16.2 degrees, Syndiotactic polystyrene having 20% and less than 5% diffraction peaks relative to the diffraction peaks appearing at 2θ = 19.6-21.2 degrees, respectively.
JP63039562A 1988-02-24 1988-02-24 Syndiotactic polystyrene Expired - Lifetime JP2571254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63039562A JP2571254B2 (en) 1988-02-24 1988-02-24 Syndiotactic polystyrene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63039562A JP2571254B2 (en) 1988-02-24 1988-02-24 Syndiotactic polystyrene

Publications (2)

Publication Number Publication Date
JPH01215808A JPH01215808A (en) 1989-08-29
JP2571254B2 true JP2571254B2 (en) 1997-01-16

Family

ID=12556521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63039562A Expired - Lifetime JP2571254B2 (en) 1988-02-24 1988-02-24 Syndiotactic polystyrene

Country Status (1)

Country Link
JP (1) JP2571254B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1228915B (en) * 1989-02-28 1991-07-09 Himont Inc MANUFACTURED IN A NEW CRYSTALLINE FORM OF SYNDIOTACTIC POLYSTYRENE.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187708A (en) * 1985-11-11 1987-08-17 Idemitsu Kosan Co Ltd Production of styrene polymer

Also Published As

Publication number Publication date
JPH01215808A (en) 1989-08-29

Similar Documents

Publication Publication Date Title
CA1311581C (en) Process for producing crystalline vinyl aromatic polymers having mainly a syndiotactic structure
Gauthier et al. Elastomeric poly (propylene): influence of catalyst structure and polymerization conditions on polymer structure and properties
JP3088470B2 (en) Method for producing polypropylene molding material
Lovinger Crystallization and morphology of melt‐solidified poly (vinylidene fluoride)
KR100230915B1 (en) Bulk polymerization using specific metallocene catalysts for the preparation of cycloolefin in polymers
Miller et al. Poly (di-n-pentylsilane). The spectral consequences of a helical conformation in the solid state
US5498677A (en) Process for preparation and purification of material of a cycloolefin copolymer
EP0872492B1 (en) Transition metal compound as catalyst component for polymerization, aromatic vinyl compound-olefin copolymer having stereoregularity and method for its preparation by means of the transition metal compound as catalyst component
ES2558256T3 (en) Biaxially oriented polypropylene films
JPH0345612A (en) Manufacture of cycloolefin polymer
JP2000502392A (en) Production of poly (trimethylene terephthalate)
Cebe et al. Melting behavior of high performance composite matrix polymers: Poly (phenylene sulfide)
NZ289111A (en) Ethylene copolymer containing other alpha-olefin(s), cycloolefin(s) and or polyene(s) units
EP0241560A1 (en) Catalyst for olefin polymerization and process for preparing olefin polymer by using the same
JP2000503060A (en) Manufacture of poly (ethylene 2,6-naphthalate)
JP2571254B2 (en) Syndiotactic polystyrene
Marchetti et al. Effect of chain defects on the morphology and thermal behavior of solution‐grown single crystals of syndiotactic polypropylene
Hu et al. Crystallization kinetics and crystalline morphology of poly (ethylene naphthalate) and poly (ethylene terephthalate‐co‐bibenzoate)
JP2612304B2 (en) Method for producing syndiotactic polystyrene structure
US5446117A (en) Process for producing amorphous syndiotactic polystyrene
JP2612302B2 (en) Method for producing crystal structure of syndiotactic polystyrene
US5280000A (en) Catalyst for olefin polymerization and process for producing olefin polymer using the catalyst
JPH10512608A (en) Manufacture of poly (ethylene terephthalate)
JP2612303B2 (en) Method for producing syndiotactic polystyrene crystal structure
JPH0480214A (en) New syndiotactic polypropylene