JPH01215808A - Syndiotactic polystyrene - Google Patents

Syndiotactic polystyrene

Info

Publication number
JPH01215808A
JPH01215808A JP3956288A JP3956288A JPH01215808A JP H01215808 A JPH01215808 A JP H01215808A JP 3956288 A JP3956288 A JP 3956288A JP 3956288 A JP3956288 A JP 3956288A JP H01215808 A JPH01215808 A JP H01215808A
Authority
JP
Japan
Prior art keywords
peak
degrees
syndiotactic polystyrene
2theta
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3956288A
Other languages
Japanese (ja)
Other versions
JP2571254B2 (en
Inventor
Norikazu Miyashita
憲和 宮下
Masanobu Imayoshi
今吉 正暢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP63039562A priority Critical patent/JP2571254B2/en
Publication of JPH01215808A publication Critical patent/JPH01215808A/en
Application granted granted Critical
Publication of JP2571254B2 publication Critical patent/JP2571254B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a syndiotactic polystyrene which exhibits a uniform crystalline constitution, by preparing a syndiotactic polystyrene having a specific X-ray diffraction pattern. CONSTITUTION:A syndiotactic polystyrene having a uniform crystalline structure is provided from a syndiotactic polystyrene having such an X-ray diffraction pattern that, when irradiated with an X-ray CuKalpha rays having a wavelength of 0.15418nm, the relative intensities for the diffraction peaks which appear at scattering angles of 2theta=11.8-13.0 deg., 2theta=18.1-19.3 deg. and 2theta=19.6-21.2 deg. are not lower than 20%, 20% and 5%, respectively, and the relative intensities for the diffraction peaks which appear at 2theta=5.5-6.6 deg., 2theta=15.0-16.2 deg. and 2theta=19.6-21.2 deg. are less than 20% and 5%. This polystyrene is produced, for example, by a process which comprises melting a syndiotactic polystyrene having a syndiotacticity of 99% and a number-average molecular weight of 1.0-10<4> or more, and isothermally crystallizing it under 1atm. in an inert gas atmosphere at 240-270 deg.C for 5-3,000hr.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、新規なシンジオタクチックポリスチレンに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a novel syndiotactic polystyrene.

〔従来の技術〕[Conventional technology]

シンジオタクチックポリスチレン重合体は、スチレンを
重合するにあたり触媒成分として、(A)チタン化合物
及び(B)有機アルミニウム化合物と水との縮合生成物
を用いることで得られる(特公昭62−104818号
公報、特公昭62,187708号公報)第1図に特公
昭62−104818号公報の第2図(a)に例示され
たシンジオタクチックポリスチレンのX線回折チャート
を挙げる。同X線チャートによれば公知のシンジオタク
チックポリスチレンは結晶構造を有するものと理解され
る。同様な結晶構造を有するシンジオタクチックポリス
チレンがMacromolecules 1986.1
9+2465−2466に報告されている。
A syndiotactic polystyrene polymer is obtained by using a condensation product of (A) a titanium compound and (B) an organoaluminum compound with water as a catalyst component in polymerizing styrene (Japanese Patent Publication No. 104818/1982). (Japanese Patent Publication No. 62-187708) FIG. 1 shows an X-ray diffraction chart of the syndiotactic polystyrene illustrated in FIG. 2(a) of Japanese Patent Publication No. 62-104818. According to the X-ray chart, it is understood that known syndiotactic polystyrene has a crystal structure. Syndiotactic polystyrene with a similar crystal structure was published in Macromolecules 1986.1
9+2465-2466.

〔発明の解決すべき問題点〕[Problems to be solved by the invention]

第2図は、本発明者等が特公昭62−187708号公
報に記載された方法に従って合成したシンジオタクチッ
クポリスチレンのX線回折パターンである。
FIG. 2 is an X-ray diffraction pattern of syndiotactic polystyrene synthesized by the present inventors according to the method described in Japanese Patent Publication No. 187708/1983.

これより、特公昭62−187708号公報に従って得
られる構造体は、立体規則性こそシンジオタクチックポ
リスチレンではあるが、その結晶構造は非晶領域が多く
含まれることが分かる。
This shows that the structure obtained according to Japanese Patent Publication No. 62-187708 has stereoregularity of syndiotactic polystyrene, but its crystal structure contains many amorphous regions.

この様に非晶領域を多く含むシンジオタクチックポリス
チレン構造体は、溶融(融解)と冷却という熱的変化を
伴う成形加工下で再結晶させると、複数の結晶構造が混
ざった不均一な構造体を生成する。
When a syndiotactic polystyrene structure containing many amorphous regions is recrystallized under a molding process that involves thermal changes such as melting (melting) and cooling, it becomes a non-uniform structure in which multiple crystal structures are mixed. generate.

本発明は、公知のシンジオタクチックポリスチ・レンと
は異なる結晶構造を有し、かつ均一な結晶構造を有する
シンジオタクチックポリスチレンを提供する。
The present invention provides syndiotactic polystyrene having a crystal structure different from that of known syndiotactic polystyrene and having a uniform crystal structure.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、入射X線として、CuKα線(波長0、15
418nm)を用いたとき、散乱角2θ=11.8〜1
3.0度、2θ= 18.1〜19.3度に、2θ=1
9.6〜21.2度に現れる回折ビークに対する相対強
度が、夫々20%、5%以上の回折ピークを持ち、かつ
2θ=5,5〜6.6度、2θ=15,0〜16.2度
に、2θ=19,6〜21.2度に現れる回折ピークに
対する相対強度が、夫々20%、5%未満の回折ピーク
を持つシンジオタクチックポリスチレンである。本発明
のシンジオタクチックポリスチレンは成形樹脂材料、樹
脂の加工成形体として利用できる。
The present invention uses CuKα rays (wavelengths 0, 15
418 nm), scattering angle 2θ = 11.8 ~ 1
3.0 degrees, 2θ = 18.1 to 19.3 degrees, 2θ = 1
The relative intensity to the diffraction peak appearing at 9.6 to 21.2 degrees has a diffraction peak of 20% or more and 5% or more, respectively, and 2θ=5.5 to 6.6 degrees and 2θ=15.0 to 16.0 degrees. It is a syndiotactic polystyrene having two diffraction peaks whose relative intensities with respect to the diffraction peaks appearing at 2θ=19 and 6 to 21.2 degrees are less than 20% and 5%, respectively. The syndiotactic polystyrene of the present invention can be used as a molded resin material and a resin processed molded product.

本発明のシンジオタクチックポリスチレンの構造体は、
特公昭62−187708号公報に記載された公知の重
合方法により調製されたシンジオタクチックポリスチレ
ンを原料として用い、以下の方法によって製造すること
ができる。原料として用いられるポリマーのシンジオタ
クテイシテイ−及び数平均分子量は夫々、99%、1.
OX 10’以上で成形体においても少なくとも有用な
機械的物性を示すものが選ばれる。なお、シンジオタク
テイシテイ−及び数平均分子量は下記の製造方法下にお
いて実質的に変化することがない。
The syndiotactic polystyrene structure of the present invention is
It can be produced by the following method using syndiotactic polystyrene prepared by the known polymerization method described in Japanese Patent Publication No. 62-187708 as a raw material. The syndiotacticity and number average molecular weight of the polymer used as raw materials are 99% and 1.
A material having an OX of 10' or more and exhibiting at least useful mechanical properties even in a molded article is selected. Note that the syndiotacticity and number average molecular weight do not substantially change under the following production method.

(1)原料ポリマーを溶融(融解)し、1気圧、窒素、
アルゴン等の不活性ガス雰囲気の存在下240°C〜2
70 ’Cの温度域で5〜3000時間、等温結晶化さ
せる方法。
(1) Melt (melt) the raw material polymer, 1 atm, nitrogen,
240°C ~ 2 in the presence of an inert gas atmosphere such as argon
A method of isothermal crystallization in a temperature range of 70'C for 5 to 3000 hours.

以下特に断らない限り、1気圧、窒素雰囲気下で得られ
た構造体の値で示す。
Unless otherwise specified, the values are shown below for a structure obtained under a nitrogen atmosphere at 1 atm.

(2)原料ポリマーを溶融(融解)し、これを冷却速度
1.25℃/分以下で200°Cまで、不活性ガス雰囲
気下で冷却する方法。
(2) A method in which a raw material polymer is melted (melted) and then cooled to 200°C at a cooling rate of 1.25°C/min or less under an inert gas atmosphere.

以上の方法において、融液状態で無機物等の結晶核を入
れておき、結晶化させることで、結晶化速度を増減させ
たり、結晶化温度領域をずらしたり、または広げたり、
狭めたりする事も可能である。
In the above method, by introducing crystal nuclei such as inorganic substances in a melt state and crystallizing them, the crystallization rate can be increased or decreased, the crystallization temperature range can be shifted or expanded,
It is also possible to narrow it down.

本発明において、シンジオタクチックポリスチレンの物
性値の測定法及び構造体の同定法は以下の方法による。
In the present invention, the method for measuring the physical properties of syndiotactic polystyrene and the method for identifying the structure are as follows.

1)立体規則性及び数平均分子量測定 立体規則性は、 Makromol、 Chem、、176.3051(
19T5)に従い”(、−NMRスペクトル(同位体炭
素による核磁気共鳴スペクトル)におけるベンゼン環の
CI炭素スペクトルから求め、 数平均分子量は、ゲルパーミネーシコンクロマトグラフ
イー (1,2,4−)ジクロルベンゼン中、130℃
で測定)より求めた。
1) Stereoregularity and number average molecular weight measurement stereoregularity is determined by Makromol, Chem, 176.3051 (
19T5), the number average molecular weight was determined from the CI carbon spectrum of the benzene ring in the -NMR spectrum (nuclear magnetic resonance spectrum using carbon isotopes), and the number average molecular weight was calculated using gel perminesicon chromatography (1,2,4-) dichloro 130℃ in benzene
(measured by ).

2)結晶構造の融点測定 結晶構造の融点を示差走査熱量計(DSCと略す)を用
いて、試料を一定速度(10℃/分)で昇温したときに
得られるチャートのピークから求めた。その際の測定条
件は以下のように設定した。
2) Melting point measurement of crystal structure The melting point of the crystal structure was determined from the peak of the chart obtained when the sample was heated at a constant rate (10° C./min) using a differential scanning calorimeter (abbreviated as DSC). The measurement conditions at that time were set as follows.

装置:パーキンエルマー製 5C−2C 測定雰囲気:窒素雰囲気(20cc/分の流量下)融解
チャート測定時の昇温速度:10°C/分装置の冷媒:
氷水 3)結晶構造の同定法 結晶構造の同定には結晶構造解析に常用されるX線回折
法を用いる。
Apparatus: PerkinElmer 5C-2C Measurement atmosphere: Nitrogen atmosphere (under a flow rate of 20 cc/min) Temperature increase rate during melting chart measurement: 10°C/min Refrigerant of the apparatus:
Ice water 3) Identification method of crystal structure To identify the crystal structure, use the X-ray diffraction method commonly used for crystal structure analysis.

第3図は、本発明のシンジオタクチックポリスチレン構
造体の代表的なX線回折パターンである(実施例2)。
FIG. 3 is a typical X-ray diffraction pattern of the syndiotactic polystyrene structure of the present invention (Example 2).

この構造体は散乱角2θが5.5〜6.6度、11.B
〜13.0度、18.1〜19.3度、19.6〜21
.2度、34.0〜36.0度に回折ピーク1、ピーク
2、ピーク4、ピーク0、ピーク5が顕著に認められる
が、散乱角2θが15.0〜16.2度の回折ピーク3
の回折強度は極めて小さい。本発明のシンジオタクチッ
クポリスチレン構造体は散乱角が15.0〜−〇− 16.2度に回折ピークが殆ど認められないか、回折ピ
ークがあってもその回折強度は極めて小さいものである
This structure has a scattering angle 2θ of 5.5 to 6.6 degrees, 11. B
~13.0 degrees, 18.1-19.3 degrees, 19.6-21
.. Diffraction peak 1, peak 2, peak 4, peak 0, and peak 5 are clearly observed at 2 degrees, 34.0 to 36.0 degrees, and diffraction peak 3 is observed at scattering angle 2θ of 15.0 to 16.2 degrees.
The diffraction intensity of is extremely small. In the syndiotactic polystyrene structure of the present invention, almost no diffraction peak is observed at a scattering angle of 15.0 to -0-16.2 degrees, or even if there is a diffraction peak, the diffraction intensity is extremely small.

■ 回折強度の読取 a、第3図に示すように、ピーク0とピーク3がつくる
谷間fと、ピーク0とピーク5がつくる谷間iを結ぶ接
線をベースラインfiとしたとき、散乱角2θ=19,
5〜21.3度の回折ピーク0の、ベースラインfiか
らの強度をI。とする。
■ Diffraction intensity reading a, as shown in Figure 3, when the tangent connecting the valley f formed by peaks 0 and 3 and the valley i formed between peaks 0 and 5 is the baseline fi, the scattering angle 2θ= 19,
I is the intensity of the diffraction peak 0 between 5 and 21.3 degrees from the baseline fi. shall be.

b、第3図に示すように、ピーク1の両側の裾野a、b
を結ぶ接線をベースラインabとしたとき、ピーク1の
、ベースラインabからの強度を11 とする。
b, as shown in Figure 3, the bases a and b on both sides of peak 1
Let us assume that the intensity of peak 1 from baseline ab is 11 when the tangent line connecting these is baseline ab.

C0第3図に示すように、ピーク2の両側の裾野c、d
を結ぶ接線をベースラインcdとしたとき、ピーク2の
、ベースラインcdからの強度を12とする。
C0 As shown in Figure 3, the bases c and d on both sides of peak 2
The intensity of peak 2 from the baseline cd is assumed to be 12, when the tangent line connecting them is the baseline cd.

d、第3図に示すように、ピーク3の両側の裾野e、 
 fを結ぶ接線をヘースラ・「ンefとしたとき、ピー
ク3の、ベースラインefがらの強度を■3とする。
d, as shown in Figure 3, the skirts on both sides of peak 3 e,
When the tangent line connecting f is Hesler's ef, the intensity of peak 3 from the baseline ef is 3.

e、第3図に示すように、ピーク4の両側の裾野g、 
 hを結ふ接線をベースラインghとしたとき、ピーク
4の、ベースラインghがらの強度を14 とする。
e, as shown in Figure 3, the skirts g on both sides of peak 4,
When the tangent line connecting h is defined as the baseline gh, the intensity of peak 4 from the baseline gh is assumed to be 14.

なお、各ピークについて次の点に注意する。特公昭62
−104818号公報図面第2図(a)に記載された結
晶構造を僅かに含む場合、本発明と異なる結晶構造体か
らの回折ピークが生しるため、各ピークに次の様な傾向
が見られる。ピーク1は高角度の裾が、ピーク2ば低角
度側の裾がショルダー若しくは、夫々対応するピーク1
.2よりも小さいピークをもつことがある。この時のベ
ースラインの取り方は、そのショルダー若しくは、夫々
対応するピーク1,2よりも小さいピークを、ピーク1
では高角度側に越えたところの再隣接した谷をbとして
、ピーク2では低角度側に越えたところの再隣接した谷
をCとしてベースラインをとる。
Note the following points regarding each peak. Special Public Service 1986
-104818 Publication When the crystal structure described in Figure 2 (a) is slightly included, diffraction peaks from the crystal structure different from the present invention occur, so the following trends are observed in each peak. It will be done. Peak 1 is the hem of the high angle, peak 2 is the hem of the low angle side is the shoulder, or the corresponding peak 1 is the hem of the low angle side.
.. It may have a peak smaller than 2. The way to take the baseline at this time is to select peaks that are smaller than the shoulder or the corresponding peaks 1 and 2, and
In this case, the next adjacent valley that was crossed on the high angle side is taken as b, and the next next valley that was crossed on the low angle side for peak 2 is taken as C, and the baseline is taken.

本発明の構造体の量が多くなるに従い、ピーク3の強度
は低くなり、ベースラインが取りにくくなる。ピークが
ノイズと区別出来なくなり、ベースラインが取れない場
合、夫々のピーク強度ば0とみなす。また、その時ベー
スラインfiのf点として、e点を用いることとする。
As the amount of the structure of the present invention increases, the intensity of peak 3 decreases, making it difficult to obtain the baseline. When a peak cannot be distinguished from noise and a baseline cannot be obtained, each peak intensity is considered to be 0. Also, at that time, point e is used as point f of the baseline fi.

■ 回折強度の計算 ■の各ピーク強度の求め方に従い、ピーク11ピーク2
、ピーク3、ピーク4の相対強度R,、R2、R3、R
4は次式より求められる。
■ Diffraction intensity calculation According to the method for determining each peak intensity in ■, peak 11 peak 2
, Relative intensity of peak 3, peak 4 R,, R2, R3, R
4 is obtained from the following equation.

R+  =1+ /IoxlOO(%)・・・・・・・
・・(1)R2= [2/ Io X100(%)・・
・・・・・・・(2)R3= I3 / I o X1
00(%)・・・・・・・・・(3)R4=14 /r
o X100(%)・・・・・・・・・(4)〔実施例
〕 以下、本発明のシンジオタクチックポリスチレン構造体
の具体例を実施例により説明する。
R+ =1+ /IoxlOO(%)・・・・・・
... (1) R2 = [2/ Io X100 (%) ...
・・・・・・・・・(2) R3=I3/I o X1
00(%)・・・・・・・・・(3)R4=14/r
o X100 (%) (4) [Example] Hereinafter, specific examples of the syndiotactic polystyrene structure of the present invention will be described with reference to Examples.

(原料シンジオタクチックポリスチレンの調製)不活性
ガスで置換した容器中に、トルエン600m1とメチル
アルミノキサン(東洋ストゥファー製)120mmol
 と、テトラエトキシチタン0.6 mmolを加え、
次いでスチレン600mj!を加えて50’Cで2時間
重合反応を行なった。反応終了後、塩酸・メタノールに
より反応を停止し、生成ポリマーを濾別後、乾燥した。
(Preparation of raw material syndiotactic polystyrene) 600 ml of toluene and 120 mmol of methylaluminoxane (manufactured by Toyo Stufer) in a container purged with inert gas.
and added 0.6 mmol of tetraethoxytitanium,
Next is styrene 600mj! was added and a polymerization reaction was carried out at 50'C for 2 hours. After the reaction was completed, the reaction was stopped with hydrochloric acid/methanol, and the resulting polymer was filtered off and dried.

この結果得られたポリスチレン(以下、シンジオタクチ
ックポリスチレンAと呼ぶ)は92gであった。このポ
リスチレンのメチルエチルケトン不溶部の含有率は96
%であって、この不溶部の立体規則性は”C−NMRス
ペクトル解析の結果、99%以上シンジオタクチック構
造であった。また、ゲルパーミネーションクロマトグラ
フィー(C2,4−)ジクロルヘンビン中、130°C
で測定)より求めた数平均分子量Mnは2.47 x 
10’であった。ここで得られたシンジオタクチックポ
リスチレンAのX線回折パターンを第2図に示す。
The resulting polystyrene (hereinafter referred to as syndiotactic polystyrene A) weighed 92 g. The content of methyl ethyl ketone insoluble part in this polystyrene is 96
%, and the stereoregularity of this insoluble part was 99% or more syndiotactic structure as a result of C-NMR spectrum analysis. °C
The number average molecular weight Mn determined from 2.47 x
It was 10'. The X-ray diffraction pattern of the syndiotactic polystyrene A obtained here is shown in FIG.

実施例1 このようにして得られたシンジオタクチックポリスチレ
ンA5mgを窒素雰囲気下、290°Cで融解させ、そ
の後、同雰囲気下で冷却速度0.31℃/分で200°
Cまで冷却し、目的の構造体を得た。
Example 1 5 mg of syndiotactic polystyrene A thus obtained was melted at 290°C under a nitrogen atmosphere, and then heated at 200°C at a cooling rate of 0.31°C/min under the same atmosphere.
The target structure was obtained by cooling to C.

この構造体のX線回折パターンを第3図に示す。The X-ray diffraction pattern of this structure is shown in FIG.

ピーク1、ピーク2、ピーク3、ピーク4、ピーりO、
ピーク5は夫々散乱角2θがまた、6.1度、12.3
度、15.7度、18.5度、20.3度、35.0度
に現れ、各ピークの相対強度は以下の値を持った。これ
により、この構造体が、本発明が特定するものであるこ
とが分かる。なお、この構造体の融点は263.3℃で
あり、ゲルパーミネーションクロマトグラフィー (1
,2,4−)ジクロルベンゼン中、130℃で測定)よ
り求めた数平均分子量Mnはシンジオタクチックポリス
チレンAと実質的に変わらなかった。
Peak 1, Peak 2, Peak 3, Peak 4, Peak O,
The scattering angle 2θ of peak 5 is also 6.1 degrees and 12.3 degrees, respectively.
It appeared at 15.7 degrees, 18.5 degrees, 20.3 degrees, and 35.0 degrees, and the relative intensity of each peak had the following values. This shows that this structure is specified by the present invention. The melting point of this structure is 263.3°C, and gel permeation chromatography (1
, 2,4-) measured at 130° C. in dichlorobenzene), the number average molecular weight Mn was not substantially different from that of syndiotactic polystyrene A.

R,=14%、   R2=35% R3=1.4%、  R4=11% 比較例1 シンジオタクチックポリスチレンA5■を窒素雰囲気下
、290°Cで融解させ、その後、同雰囲気下で冷却速
度80℃/分で200℃まで冷却し、構造体をBを得た
。この構造体のX線回折パターンを第4図に示す。ピー
ク1、ピーク2、ピーク3、ピーク4、ピーク0、ピー
ク5は夫々散乱角2θが、6.7度、11.7度(ショ
ルダーとして12.2度にもピークがある。相対強度の
計算では11.6度を使用した。) 、15.5度、1
7.9度、20.3度、35.3度に現れ、各ピークの
相対強度は以下の値を持った。なお、この構造体の融点
は、263.8°Cであり、ゲルパーミネーションクロ
マトグラフィー(1,2゜4−トリクロルヘンゼン中、
130°Cで測定)より求めた数平均分子量Mnばシン
ジオタクチックポリスチレンAと実質的に変わらなかっ
た。
R, = 14%, R2 = 35%, R3 = 1.4%, R4 = 11% Comparative Example 1 Syndiotactic polystyrene A5■ was melted at 290°C under a nitrogen atmosphere, and then the cooling rate was adjusted under the same atmosphere. A structure B was obtained by cooling to 200°C at a rate of 80°C/min. The X-ray diffraction pattern of this structure is shown in FIG. The scattering angle 2θ of peak 1, peak 2, peak 3, peak 4, peak 0, and peak 5 is 6.7 degrees and 11.7 degrees, respectively (there is also a peak at 12.2 degrees as a shoulder. Calculation of relative intensity In this case, we used 11.6 degrees.), 15.5 degrees, 1
It appeared at 7.9 degrees, 20.3 degrees, and 35.3 degrees, and the relative intensity of each peak had the following values. The melting point of this structure is 263.8°C, and gel permeation chromatography (1,2° in 4-trichlorhenzene,
The number average molecular weight Mn (measured at 130°C) was substantially the same as that of syndiotactic polystyrene A.

R+=30%、    R2=18% R3=7.1%、  Ra=3.2% 構造体Bに対する、本発明の構造体のX49回折パター
ン上の特徴は、次のような点が挙げられる。
R+ = 30%, R2 = 18%, R3 = 7.1%, Ra = 3.2% The characteristics of the X49 diffraction pattern of the structure of the present invention with respect to structure B include the following points.

■ ピーク1の散乱角度が構造体Bの散乱角度に対し、
本発明の構造体では低角度側に回折ピークを持つ。実施
例1ではピーク1の散乱角度は6.2度であったのに対
し、比較例1の構造体Bのピーク1の散乱角度は6.7
度であった。
■ The scattering angle of peak 1 is relative to the scattering angle of structure B,
The structure of the present invention has a diffraction peak on the low angle side. In Example 1, the scattering angle of peak 1 was 6.2 degrees, whereas in Comparative Example 1, the scattering angle of peak 1 of structure B was 6.7 degrees.
It was degree.

■ ピーク2の散乱角度が構造体Bの散乱角度に対し、
本発明の構造体では高角度側に回折ピークを持つ。実施
例1ではピーク2の散乱角度は12.3度であったのに
対し、比較例1の構造体Bのピーク2の散乱角度は11
.6度であった。
■ The scattering angle of peak 2 is relative to the scattering angle of structure B,
The structure of the present invention has a diffraction peak on the high angle side. In Example 1, the scattering angle of peak 2 was 12.3 degrees, whereas in Comparative Example 1, the scattering angle of peak 2 was 11 degrees.
.. It was 6 degrees.

■ ピーク4の散乱角度が構造体Bの散乱角度に対し、
本発明の構造体では高角度側に回折ピークを持つ。実施
例1ではピーク4の散乱角度は18.5度であったのに
対し、比較例1の構造体Bのピーク2の散乱角度は17
.9度であった。
■ The scattering angle of peak 4 is relative to the scattering angle of structure B,
The structure of the present invention has a diffraction peak on the high angle side. In Example 1, the scattering angle of peak 4 was 18.5 degrees, whereas the scattering angle of peak 2 of structure B in comparative example 1 was 17 degrees.
.. It was 9 degrees.

■ ピーク3のベースラインefに対する散乱強度が、
構造体Bの散乱強度に対し、本発明の構造体ではほぼ0
となる(R3=5%未満)。実施例1ではピーク3のR
3は1.4%であったのに対し、比較例1の構造体Bの
R3は7.1%であった。
■ The scattering intensity of peak 3 with respect to the baseline ef is
Compared to the scattering intensity of structure B, the structure of the present invention has a scattering intensity of almost 0.
(R3=less than 5%). In Example 1, R of peak 3
3 was 1.4%, whereas R3 of Structure B of Comparative Example 1 was 7.1%.

■ ピーク4のベースラインghに対する散乱強度が、
構造体Bの散乱強度に対し、本発明の構造体では大きな
値を持つ(Ra−5%以上)。
■ The scattering intensity of peak 4 with respect to the baseline gh is
Compared to the scattering intensity of Structure B, the structure of the present invention has a large value (Ra-5% or more).

実施例1ではピーク3のR4は11%であったのに対し
、比較例1の構造体BのR4は3.2%であった。
In Example 1, R4 of peak 3 was 11%, whereas R4 of Structure B of Comparative Example 1 was 3.2%.

比較例2 特公昭62−104818号公報図面第2図(a)に与
えられているシンジオタクチックポリスチレン重合体の
X線回折パターンを第1図に挙げる。各ピークの相対強
度は以下の値を持った。ピーク1、ピーク2、ピーク3
、ピーク4、ピークOは夫々散乱角2θが、6.9度、
11.9度、15.6度、18.0度、20.5度に現
れた。なお、特公昭62−104818の実施例1のシ
ンジオタクチックポリスチレン重合体は、260〜27
0°Cの融点を有すると記載されている。
Comparative Example 2 The X-ray diffraction pattern of the syndiotactic polystyrene polymer shown in FIG. 2(a) of Japanese Patent Publication No. 62-104818 is shown in FIG. The relative intensity of each peak had the following values. peak 1, peak 2, peak 3
, peak 4, and peak O have scattering angles 2θ of 6.9 degrees, respectively.
It appeared at 11.9 degrees, 15.6 degrees, 18.0 degrees, and 20.5 degrees. In addition, the syndiotactic polystyrene polymer of Example 1 of Japanese Patent Publication No. 62-104818 has a molecular weight of 260 to 27
It is described as having a melting point of 0°C.

R1−27%、   Rz=30% R3=16%、R4=11% これらの値とX線回折パターンを実施例1に挙げた相対
強度とXWA回折パターンと比較すると、比較例1の、
本発明の構造体の特徴■〜■に挙げた点で、実施例1と
は大きく異なっている。従って、両者は明らかに異なる
結晶構造を有することが分かる。
R1-27%, Rz=30% R3=16%, R4=11% Comparing these values and the X-ray diffraction pattern with the relative intensity and XWA diffraction pattern listed in Example 1, Comparative Example 1 shows that
The structure of the present invention is significantly different from Example 1 in the points listed in (1) to (4). Therefore, it can be seen that the two have clearly different crystal structures.

実施例2 シンジオタクチックポリスチレンA5■を窒素雰囲気下
、290°Cで融解させ、その後、冷却速度320°C
/minで262℃まで冷却し、その温度に80時間保
って結晶化させ、目的の構造体を得た。この構造体のX
vA回折パターンを第5図に示す。ピーク3はほとんど
観測されず、ピーク1、ピーク2、ピーク4、ピーク0
、ピーク5は夫々散乱角2θが、6.2度、12.4度
、18.6度、20.4度、35.1度に現れ、各ピー
クの相対強度は以下の値を持った。また、この構造体の
融点は273.2°Cであり、ゲルパーミネーションク
ロマトグラフィー(1,2,4−トリクロルヘンゼン中
、130°Cで測定)より求めた数平均分子量Mnはシ
ンジオタクチックポリスチレンAと実質的に変わらなか
った。
Example 2 Syndiotactic polystyrene A5■ was melted at 290°C under a nitrogen atmosphere, and then the cooling rate was 320°C.
The mixture was cooled to 262° C./min and kept at that temperature for 80 hours for crystallization to obtain the desired structure. X of this structure
The vA diffraction pattern is shown in FIG. Peak 3 is hardly observed, peak 1, peak 2, peak 4, peak 0
, peak 5 appeared at scattering angles 2θ of 6.2 degrees, 12.4 degrees, 18.6 degrees, 20.4 degrees, and 35.1 degrees, respectively, and the relative intensity of each peak had the following values. The melting point of this structure is 273.2°C, and the number average molecular weight Mn determined by gel permeation chromatography (measured at 130°C in 1,2,4-trichlorhenzene) is syndiotactic. It was not substantially different from polystyrene A.

R1−15%、   Rz=32% R3−0%、    Ra=11% 実施例3 実施例2と同様な方法により、シンジオタクチックポリ
スチレンA5mgを窒素雰囲気下、290°Cで融解さ
せ、その後、冷却速度320℃/minで240°Cま
で冷却し、その温度に5時間保って結晶化させ、目的の
構造体を得た。この構造体のX線回折パターンを第5図
に示す。ピーク1、ピーク2、ピーク3、ピーク4、ピ
ーク0、ピーク5は夫々散乱角度2θがまた、6.3度
、12.5度、15.7度、18.7度、20.5度、
35.3度に現れ、各ピークの相対強度は以下の値を持
った。また、この構造体の融点は259.0°Cであり
、ゲルパーミネーションクロマトグラフィ−(L2,4
− )リクロルヘンゼン中、130℃で測定)より求め
た数平均分子量Mnはシンジオタクチックポリスチレン
Aと実質的に変わらなかった。
R1-15%, Rz=32% R3-0%, Ra=11% Example 3 In the same manner as in Example 2, 5 mg of syndiotactic polystyrene A was melted at 290°C under a nitrogen atmosphere, and then cooled. It was cooled to 240°C at a rate of 320°C/min and kept at that temperature for 5 hours for crystallization to obtain the desired structure. The X-ray diffraction pattern of this structure is shown in FIG. The scattering angles 2θ of peak 1, peak 2, peak 3, peak 4, peak 0, and peak 5 are 6.3 degrees, 12.5 degrees, 15.7 degrees, 18.7 degrees, 20.5 degrees, respectively.
It appeared at 35.3 degrees, and the relative intensity of each peak had the following values. Furthermore, the melting point of this structure is 259.0°C, and gel permeation chromatography (L2,4
-) The number average molecular weight Mn determined from (measured at 130° C. in lychlorhenzene) was not substantially different from that of syndiotactic polystyrene A.

R1=14%、     R2=36%R3=1.4%
、    R4=11%
R1=14%, R2=36% R3=1.4%
, R4=11%

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は特公昭62−104818号公報図面第2図(
a)のシンジオタクチックポリスチレンのxvA回折パ
ターンを転記したものである。第2図は、原料シンジオ
タクチックポリスチレンの調製法に従って合成したシン
ジオタクチックポリスチレンAのX線回折パターンであ
る。第3図は、実施例1に従って得られた構造体のXv
Aの構造体のX線回折パターンである。第4図は、比較
例1に従って得られた構造体のX線回折パターンである
。第5図は、実施例2に従って得られた構造体のX線回
折パターンである。第6図は、実施例3に従って得られ
た構造体のX線回折パターンである。 なお、第2図〜第6図は、入射X線として、CuKα線
(波長0.15418nm )を用いたとき、無配向の
シンジオタクチックポリスチレン構造体のX線回折パタ
ーンである。また、図中の数字は、対応した数字の回折
ピークを表し、破線はベースラインの取り方を示してい
る。横軸は散乱角度(θはブラッグ角〔°〕であり、縦
軸は散乱強度を示す。 特許出願人  旭化成工業株式会社 =17一 第3図 第2図 in? 2θ   deg in? 2θ       deg 第4図 1n↑ 2θ     deg
Figure 1 is from the drawing in Japanese Patent Publication No. 62-104818 (Figure 2).
This is a transcription of the xvA diffraction pattern of syndiotactic polystyrene in a). FIG. 2 is an X-ray diffraction pattern of syndiotactic polystyrene A synthesized according to the method for preparing raw material syndiotactic polystyrene. FIG. 3 shows the Xv of the structure obtained according to Example 1.
It is an X-ray diffraction pattern of structure A. FIG. 4 is an X-ray diffraction pattern of the structure obtained according to Comparative Example 1. FIG. 5 is an X-ray diffraction pattern of the structure obtained according to Example 2. FIG. 6 is an X-ray diffraction pattern of the structure obtained according to Example 3. Note that FIGS. 2 to 6 show X-ray diffraction patterns of a non-oriented syndiotactic polystyrene structure when CuKα rays (wavelength 0.15418 nm) are used as incident X-rays. Further, the numbers in the figure represent the diffraction peaks of the corresponding numbers, and the broken line shows how to take the baseline. The horizontal axis is the scattering angle (θ is the Bragg angle [°], and the vertical axis is the scattering intensity. Patent applicant Asahi Kasei Corporation = 17-1 Figure 3 Figure 2 in? 2θ deg in? 2θ deg 4th Figure 1n↑ 2θ deg

Claims (1)

【特許請求の範囲】[Claims] 入射X線として、CuKα線(波長0.15418nm
)を用いたとき、散乱角2θ=11.8〜13.0度、
2θ=18.1〜19.3度に、2θ=19.6〜21
.2度に現れる回折ピークに対する相対強度が、夫々2
0%、5%以上の回折ピークを持ち、かつ2θ=5.5
〜6.6度、2θ=15.0〜16.2度に、2θ=1
9.6〜21.2度に現れる回折ピークに対する相対強
度が、夫々20%、5%未満の回折ピークを持つシンジ
オタクチツクポリスチレン
As incident X-rays, CuKα rays (wavelength 0.15418 nm
), scattering angle 2θ = 11.8 to 13.0 degrees,
2θ=18.1 to 19.3 degrees, 2θ=19.6 to 21
.. The relative intensity for the diffraction peaks appearing twice is 2
Has a diffraction peak of 0%, 5% or more, and 2θ = 5.5
~6.6 degrees, 2θ=15.0 to 16.2 degrees, 2θ=1
Syndiotactic polystyrene having a diffraction peak whose relative intensity to the diffraction peak appearing at 9.6 to 21.2 degrees is less than 20% and 5%, respectively.
JP63039562A 1988-02-24 1988-02-24 Syndiotactic polystyrene Expired - Lifetime JP2571254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63039562A JP2571254B2 (en) 1988-02-24 1988-02-24 Syndiotactic polystyrene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63039562A JP2571254B2 (en) 1988-02-24 1988-02-24 Syndiotactic polystyrene

Publications (2)

Publication Number Publication Date
JPH01215808A true JPH01215808A (en) 1989-08-29
JP2571254B2 JP2571254B2 (en) 1997-01-16

Family

ID=12556521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63039562A Expired - Lifetime JP2571254B2 (en) 1988-02-24 1988-02-24 Syndiotactic polystyrene

Country Status (1)

Country Link
JP (1) JP2571254B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5183853A (en) * 1989-02-28 1993-02-02 Himont Incorporated Articles of a new crystalline form of syndiotactic styrene polymer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187708A (en) * 1985-11-11 1987-08-17 Idemitsu Kosan Co Ltd Production of styrene polymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187708A (en) * 1985-11-11 1987-08-17 Idemitsu Kosan Co Ltd Production of styrene polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5183853A (en) * 1989-02-28 1993-02-02 Himont Incorporated Articles of a new crystalline form of syndiotactic styrene polymer

Also Published As

Publication number Publication date
JP2571254B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
AU605811B2 (en) Process for producing crystalline vinyl aromatic polymers having mainly a sydiotactic structure
Buchner et al. Kinetics of crystallization and melting behaviour of poly (ethylene naphthalene-2, 6-dicarboxylate)
Lovinger Crystallization and morphology of melt‐solidified poly (vinylidene fluoride)
PT92582B (en) PROCESS OF PREPARATION OF POLYMERIC COMPOSITIONS, BASED ON PROPYLENE, POSSESSING GOOD TRANSPARENCY AND RESISTANCE TO IMPACT IMPACT
JPS62187708A (en) Production of styrene polymer
US5043408A (en) Ethylene-aromatic vinyl compound alternating copolymer and process for the production thereof
Spěváček et al. Study of ordered structures of syndiotactic poly (methyl methacrylate) in solution and in the solid state
Perry et al. Flexible and rigid core molecules in the synthesis of poly (lactic acid) star polymers
JPH01215808A (en) Syndiotactic polystyrene
Boger et al. Mechanical and temperature dependant properties, structure and phase transitions of elastic polypropylenes
US5446117A (en) Process for producing amorphous syndiotactic polystyrene
JP2612302B2 (en) Method for producing crystal structure of syndiotactic polystyrene
JP2612304B2 (en) Method for producing syndiotactic polystyrene structure
Wang et al. Morphology development during isothermal crystallization. II. Isotactic and syndiotactic polypropylene blends
JP2008255341A (en) Manufacturing process of cyclic olefin addition polymer, catalyst for cyclic olefin addition polymerization and transition metal compound
JPH01272607A (en) Production of syndiotactic polystyrene crystal structure
Yoon et al. Novel Dinuclear Half‐Titanocene‐Producing Styrene/Ethylene Copolymers Containing Syndiotactic Styrene/Styrene Sequences
JPH03250007A (en) Alternating ethylene/aromatic vinyl compound copolymer and its production
Qian et al. Synthesis and polymerization behavior of various substituted half-sandwich titanium complexes Cp′ TiCl2 (OR∗) as catalysts for syndiotactic polystyrene
Galdi et al. Polymorphism of syndiotactic poly (p-fluoro-styrene)
Moon et al. Crystallinity in quasi‐alternating cycloolefin copolymers: Overcoming brittleness
JPH09221518A (en) Production of crystalline aromatic vinyl polymer having mainly syndiotactic structure
JPS61264020A (en) Aromatic polycarbonate and production thereof
Peng et al. Synthesis and characterization of Mannich base monophenolate lanthanide complexes and their application in ring‐opening polymerization of ε‐caprolactone
JPS63243103A (en) Production of hydrogenated dicyclopentadiene-ethylene copolymer