JP2610075B2 - Hybrid integrated circuit and manufacturing method thereof - Google Patents

Hybrid integrated circuit and manufacturing method thereof

Info

Publication number
JP2610075B2
JP2610075B2 JP4042878A JP4287892A JP2610075B2 JP 2610075 B2 JP2610075 B2 JP 2610075B2 JP 4042878 A JP4042878 A JP 4042878A JP 4287892 A JP4287892 A JP 4287892A JP 2610075 B2 JP2610075 B2 JP 2610075B2
Authority
JP
Japan
Prior art keywords
substrate
film
bonding
gaas substrate
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4042878A
Other languages
Japanese (ja)
Other versions
JPH06291298A (en
Inventor
和生 江田
豊 田口
章大 金星
哲義 小掠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP4042878A priority Critical patent/JP2610075B2/en
Publication of JPH06291298A publication Critical patent/JPH06291298A/en
Application granted granted Critical
Publication of JP2610075B2 publication Critical patent/JP2610075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、GaAsとSiを用い
た高性能なハイブリッド集積回路及びその製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high performance hybrid integrated circuit using GaAs and Si and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、ハイブリッド集積回路、例えば半
導体レーザーと駆動トランジスタや増幅用トランジスタ
などを集積化した光電子集積回路などでは、GaAsな
どの半導体レーザー作製可能な基板の上に、半導体レー
ザーなどの光素子とトランジスタなどの電子素子を同時
に作り込む方法が知られている。
2. Description of the Related Art Conventionally, in a hybrid integrated circuit, for example, an opto-electronic integrated circuit in which a semiconductor laser is integrated with a driving transistor, an amplifying transistor, and the like, an optical device such as a semiconductor laser is mounted on a substrate on which a semiconductor laser such as GaAs can be manufactured. There is known a method in which an element and an electronic element such as a transistor are formed at the same time.

【0003】また別の方法として、Si基板に分子線エ
ピタキシー等の方法により、GaAs膜を形成し、この
GaAs膜上に光素子などを形成する方法が研究されて
いる。
As another method, a method of forming a GaAs film on a Si substrate by a method such as molecular beam epitaxy and forming an optical element or the like on the GaAs film has been studied.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
GaAs基板に光素子と電子素子の両者を集積する方法
では、GaAs基板がSi基板よりも数倍高価であるこ
と、また半導体デバイス形成のプロセスがSi基板の場
合よりも複雑であるため、歩留まりが悪く、高密度に集
積化できないなどの課題がある。またGaAs基板はS
i基板よりも熱伝導が数倍悪いため、使用電力量の多い
回路の集積化には適さないなどの課題があった。
However, in the above-described method of integrating both the optical element and the electronic element on the GaAs substrate, the GaAs substrate is several times more expensive than the Si substrate, and the process of forming the semiconductor device is difficult. Since it is more complicated than the case of the Si substrate, there are problems such as a low yield and a high-density integration. The GaAs substrate is S
Since the thermal conductivity is several times worse than that of the i-substrate, there is a problem that it is not suitable for integration of a circuit using a large amount of power.

【0005】またSi基板上にGaAs膜を形成し、G
aAs膜上に光素子を、Si基板上に電子素子を集積し
ようとする方法では、現在のところ、SiとGaAsの
結晶格子定数がかなり異なるため、あまり良好な特性の
GaAs膜が得られておらず、特に光素子の場合は、原
子レベルでの格子欠陥が特性に悪影響を及ぼすため、こ
のGaAs膜上に良好な特性の光素子を形成することが
困難となっている。
A GaAs film is formed on a Si substrate,
In a method of integrating an optical element on an aAs film and an electronic element on a Si substrate, at present, a GaAs film having very good characteristics has not been obtained because the crystal lattice constants of Si and GaAs are considerably different. In particular, in the case of an optical device, lattice defects at the atomic level adversely affect characteristics, and it is difficult to form an optical device having good characteristics on this GaAs film.

【0006】本発明は、従来のこのような課題を考慮
し、光素子及び電子素子を高密度に集積化でき、低コス
トで歩留まりがよく、良好な特性が得られるハイブリッ
ド集積回路とその製造方法を提供することを目的とする
ものである。
The present invention has been made in view of the above-mentioned problems, and a hybrid integrated circuit capable of integrating optical elements and electronic elements at a high density, having low cost, good yield, and excellent characteristics, and a method of manufacturing the same. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】請求項1記載の本発明
は、GaAs基板およびSi基板の接合する側の表面の
うち、少なくとも一方の前記表面に、酸化珪素膜または
珪素膜を有し、前記GaAs基板と前記Si基板とが、
各接合表面に付着された水酸基により直接接合されてい
ハイブリッド集積回路である。
SUMMARY OF THE INVENTION The present invention according to claim 1, the side of the surface to be bonded of the GaAs substrate and a Si substrate
Among them, at least one of the surfaces has a silicon oxide film or
A silicon film, wherein the GaAs substrate and the Si substrate are
Direct bonding by hydroxyl groups attached to each bonding surface
That is a hybrid integrated circuit.

【0008】請求項5記載の本発明は、GaAs基板お
よびSi基板に能動素子を設ける工程と、前記GaAs
基板および前記Si基板の接合する側の表面のうち、少
なくとも一方の前記表面に、酸化珪素膜または珪素膜を
設ける工程と、前記膜を設ける行程により前記膜が形成
された表面を少なくとも一方に含む各接合表面に水酸基
を付着させる工程と、前記水酸基の付着された前記各接
合表面を重ね合わせて、前記GaAs基板と前記Si基
板とを直接接合する工程と、前記GaAs基板に設けら
れた前記能動素子と前記Si基板に設けられた前記能動
素子とを電気的に接続する工程とを備えたハイブリッド
集積回路の製造方法である。
According to a fifth aspect of the present invention, there is provided a semiconductor device comprising the steps of providing an active element on a GaAs substrate and a Si substrate;
Of the surfaces of the substrate and the Si substrate to be bonded,
A silicon oxide film or a silicon film on at least one of the surfaces.
Forming the film by the providing step and the step of providing the film
Hydroxyl groups on each joint surface, including at least one
Attaching each of the contacts to which the hydroxyl group has been attached.
The GaAs substrate and the Si-based
Bonding directly to the GaAs substrate;
And the active element provided on the Si substrate.
Electrically connecting the elements to each other .

【0009】[0009]

【作用】請求項1記載の本発明では、GaAs基板およ
びSi基板の接合する側の表面のうち、少なくとも一方
の前記表面に、酸化珪素膜または珪素膜を有し、それら
各接合表面に付着された水酸基により、前記GaAs基
板と前記Si基板とが直接接合される。
According to the present invention, a GaAs substrate and a GaAs substrate are provided.
At least one of the surfaces on the bonding side of
Having a silicon oxide film or a silicon film on the surface thereof,
The hydroxyl group attached to each bonding surface allows the GaAs group
The plate and the Si substrate are directly bonded.

【0010】請求項5記載の本発明では、GaAs基板
およびSi基板に能動素子を設け、前記GaAs基板お
よび前記Si基板の接合する側の表面のうち、少なくと
も一方の前記表面に、酸化珪素膜または珪素膜を設け、
前記膜が形成された表面を少なくとも一方に含む各接合
表面に水酸基を付着させ、前記水酸基の付着された前記
各接合表面を重ね合わせて、前記GaAs基板と前記S
i基板とを直接接合し、前記GaAs基板に設けられた
前記能動素子と前記Si基板に設けられた前記能動素子
とを電気的に接続する。
According to a fifth aspect of the present invention, a GaAs substrate is provided.
And active elements are provided on the Si substrate, and the GaAs substrate and the
And at least one of the surfaces on the bonding side of the Si substrate
A silicon oxide film or a silicon film is provided on one of the surfaces,
Each junction including at least one of the surfaces on which the film is formed
A hydroxyl group is attached to the surface, and the hydroxyl group is attached to the surface.
The GaAs substrate and the S
i substrate, which was directly bonded to the GaAs substrate.
The active element and the active element provided on the Si substrate
And are electrically connected.

【0011】[0011]

【実施例】以下、本発明にかかる実施例のハイブリッド
集積回路及びその製造方法について、図面を参照しなが
ら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a hybrid integrated circuit according to an embodiment of the present invention and a method for manufacturing the same will be described with reference to the drawings.

【0012】(実施例1)図1は、本発明の第1の実施
例のハイブリッド集積回路の構造を示す模式断面図であ
る。すなわち、ハイブリッド集積回路を構成しているS
i基板1上には、トランジスタなどの電子素子5が形成
され、GaAs基板2上には、半導体レーザなどの光素
子4が形成されている。又GaAs基板2の所定の面に
は、酸化珪素膜(または珪素膜)3が形成され、その酸
化珪素膜(又は珪素膜)3とSi基板1とは直接接合さ
れている(接合の方法については後述)。それぞれの基
板に形成された光素子4及び電子素子5は、電気的配線
等により機能的に接続されている。
FIG. 1 is a schematic sectional view showing the structure of a hybrid integrated circuit according to a first embodiment of the present invention. That is, S which constitutes the hybrid integrated circuit
An electronic element 5 such as a transistor is formed on the i-substrate 1, and an optical element 4 such as a semiconductor laser is formed on the GaAs substrate 2. On a predetermined surface of the GaAs substrate 2, a silicon oxide film (or silicon film) 3 is formed, and the silicon oxide film (or silicon film) 3 and the Si substrate 1 are directly bonded. Will be described later). The optical element 4 and the electronic element 5 formed on each substrate are functionally connected by electrical wiring or the like.

【0013】以上のように、光素子4は、発光などの光
特性に優れたGaAs基板2上に形成されており、トラ
ンジスタなどの電子素子5は、大規模集積回路の形成に
適したSi基板1上に形成されているので、高性能の光
素子4と大規模集積化した電子素子5を一体にして集積
化することが可能であった。またSi基板1は、熱伝導
率が大きいため、GaAs基板2に高出力の半導体レー
ザーを形成しても、十分放熱することが可能であり、し
たがって、また電力増幅器などの電子素子を集積化する
こともできた。
As described above, the optical element 4 is formed on the GaAs substrate 2 having excellent optical characteristics such as light emission, and the electronic element 5 such as a transistor is formed on the Si substrate suitable for forming a large-scale integrated circuit. 1, the high-performance optical element 4 and the large-scale integrated electronic element 5 can be integrated and integrated. Further, since the Si substrate 1 has a high thermal conductivity, even if a high-power semiconductor laser is formed on the GaAs substrate 2, it is possible to sufficiently dissipate heat, and therefore, electronic elements such as a power amplifier are integrated. I was able to do it.

【0014】(実施例2)図2は、本発明の第2の実施
例のハイブリッド集積回路の構造を示す模式断面図であ
る。すなわち、ハイブリッド集積回路を構成しているS
i基板1上には、トランジスタなどの電子素子5が形成
され、GaAs基板2のSi基板1に対向する面の一部
には、例えば半導体レーザなどの光素子(発光素子)4
が形成されている。又その面の光素子4の周囲の所定の
部位には、酸化珪素膜(又は珪素膜)3が形成され、そ
の酸化珪素膜(又は珪素膜)3はSi基板1の面に直接
接合されている(接合の方法については後述)。更にG
aAs基板2に形成された光素子4に対向するSi基板
1の部位には、ホトダイオードなどの光素子(受光素
子)4’が形成され、それら光素子(発光素子)4と光
素子(受光素子)4’は光により結合されるようになっ
ている。それぞれの基板に形成された光素子4,4’と
電子素子5は、必要に応じ電気的配線及び前述の光的結
合により機能的に接続されている。
Embodiment 2 FIG. 2 is a schematic sectional view showing the structure of a hybrid integrated circuit according to a second embodiment of the present invention. That is, S which constitutes the hybrid integrated circuit
An electronic element 5 such as a transistor is formed on the i-substrate 1. An optical element (light-emitting element) 4 such as a semiconductor laser is provided on a part of the surface of the GaAs substrate 2 facing the Si substrate 1.
Are formed. A silicon oxide film (or silicon film) 3 is formed at a predetermined portion around the optical element 4 on the surface, and the silicon oxide film (or silicon film) 3 is directly bonded to the surface of the Si substrate 1. (The joining method will be described later). Further G
An optical element (light receiving element) 4 ′ such as a photodiode is formed at a portion of the Si substrate 1 facing the optical element 4 formed on the aAs substrate 2, and the optical element (light emitting element) 4 and the optical element (light receiving element) ) 4 'is adapted to be coupled by light. The optical elements 4, 4 'and the electronic element 5 formed on the respective substrates are functionally connected by electric wiring and the aforementioned optical coupling as required.

【0015】以上のように、半導体レーザなどの光素子
4は、発光などの光特性に優れたGaAs基板2上に形
成されており、ホトダイオードなどのようにSi基板1
上でも高性能の得られる一部の光素子4’や、トランジ
スタなどの電子素子5は、大規模集積回路の形成に適し
たSi基板1上に形成されているので、高性能の光素子
4,4’と大規模集積化した電子素子5を集積化するこ
とが可能であった。これにより実施例1と同様の効果が
得られた。またこの場合には、前述したようにSi基板
1上の大規模集積回路とGaAs基板2上の光素子4
を、電気的配線によらずに、光で信号を直接伝送するこ
とも可能であった。またGaAs基板2上に、高速の電
子素子を同時に集積化することも可能であった。
As described above, the optical element 4 such as a semiconductor laser is formed on the GaAs substrate 2 having excellent optical characteristics such as light emission.
Some of the optical elements 4 ′ and the electronic elements 5 such as transistors, which can obtain high performance, are formed on the Si substrate 1 suitable for forming a large-scale integrated circuit. , 4 ′ and the large-scale integrated electronic device 5. Thereby, the same effect as that of the first embodiment was obtained. In this case, as described above, the large-scale integrated circuit on the Si substrate 1 and the optical element 4 on the GaAs substrate 2
It was also possible to directly transmit signals by light without using electrical wiring. It was also possible to integrate high-speed electronic elements on the GaAs substrate 2 at the same time.

【0016】なお、上記いずれの実施例においても、G
aAs基板に形成される酸化珪素膜に代えて、非晶質の
珪素膜あるいは多結晶の珪素膜を用いてもよい。
In any of the above embodiments, G
Instead of the silicon oxide film formed on the aAs substrate, an amorphous silicon film or a polycrystalline silicon film may be used.

【0017】また、上記実施例では、GaAs基板側に
発光素子を形成し、Si基板側に受光素子を形成して両
基板を光により結合したが、これとは逆にGaAs基板
側に受光素子を形成し、Si基板側に発光素子を形成し
て光による結合を行ってもよい。
In the above embodiment, the light emitting element is formed on the GaAs substrate side, the light receiving element is formed on the Si substrate side, and the two substrates are coupled by light. Conversely, the light receiving element is formed on the GaAs substrate side. May be formed, and a light emitting element may be formed on the Si substrate side to perform light coupling.

【0018】また、上記実施例では、発光素子及び受光
素子の間は空間であったが、これに限らず、発光素子か
ら発射される光が受光素子に入射されるように構成され
ていればよい。
In the above embodiment, the space is provided between the light emitting element and the light receiving element. However, the present invention is not limited to this. If the light emitted from the light emitting element is incident on the light receiving element. Good.

【0019】(実施例3)本発明の第3の実施例のハイ
ブリッド集積回路の製造方法について説明する。
(Embodiment 3) A method of manufacturing a hybrid integrated circuit according to a third embodiment of the present invention will be described.

【0020】まず、Si基板およびGaAs基板の所定
の箇所に、接合力強化のために必要な熱処理温度以上の
温度で行うべきプロセス、例えば、拡散プロセスなどを
含めて、一連の半導体プロセス処理を行い、電界効果ト
ランジスタ(FET)などの電子素子や半導体レーザー
などの光素子を形成した。これらの拡散プロセスなど
は、通常1000度C以上の高温で行われる。
First, a series of semiconductor processing processes including a process to be performed at a temperature higher than a heat treatment temperature necessary for strengthening the bonding force, for example, a diffusion process, etc., are performed on predetermined portions of the Si substrate and the GaAs substrate. Electronic devices such as field effect transistors (FETs) and optical devices such as semiconductor lasers were formed. These diffusion processes and the like are usually performed at a high temperature of 1000 ° C. or more.

【0021】次に、各種素子が形成されたSi部および
GaAs部に保護膜を形成した後、その他の露出したS
i部およびGaAs部の表面を極めて清浄にした。具体
的には、GaAs基板は、過酸化水素とアンモニア系エ
ッチング液で表面層をエッチング除去した。同じくSi
基板表面は弗酸系エッチング液により清浄化した。その
時必要部分のみ保護膜を除去した。その後、GaAs基
板上に化学気相成長法などにより酸化珪素膜を形成し
た。膜厚は0.1ー3ミクロン程度であり、この厚み及
びその厚みの均一性の制御は容易である。さらに酸化珪
素膜表面は、バッファード弗酸により清浄化した。その
時必要部分のみ保護膜を除去した。
Next, after forming a protective film on the Si portion and the GaAs portion on which various elements are formed, other exposed S
The surfaces of the i portion and the GaAs portion were extremely cleaned. Specifically, the surface layer of the GaAs substrate was removed by etching with hydrogen peroxide and an ammonia-based etchant. Also Si
The substrate surface was cleaned with a hydrofluoric acid-based etchant. At that time, only the necessary portion of the protective film was removed. After that, a silicon oxide film was formed on the GaAs substrate by a chemical vapor deposition method or the like. The thickness is about 0.1 to 3 μm, and it is easy to control the thickness and the uniformity of the thickness. Further, the surface of the silicon oxide film was cleaned with buffered hydrofluoric acid. At that time, only the necessary portion of the protective film was removed.

【0022】その後、酸化珪素膜の表面を純水で十分洗
浄し、前記Si基板露出部に前記GaAs基板の酸化珪
素膜を一様に重ねあわせると、酸化珪素膜表面およびS
i基板表面に吸着した水酸基によって、容易に直接接合
が得られた。このままでも十分な接合強度が得られる
が、さらにこの状態で、100度Cから700度Cの温
度で熱処理を行うと、その接合は更に強化された。ここ
で熱処理温度が高い場合、GaAs基板の熱膨張率及び
Si基板の熱膨張率に差があるため、形状、寸法などに
多少の制約が加えられるが、基本的には、高温で熱処理
する場合ほど、接合する基板の厚みを薄く、また面積を
小さくしていけば、剥離や破損なく接合強度の向上が可
能であった。
Thereafter, the surface of the silicon oxide film is sufficiently washed with pure water, and the silicon oxide film of the GaAs substrate is uniformly superposed on the exposed portion of the Si substrate.
Direct bonding was easily obtained by the hydroxyl group adsorbed on the i-substrate surface. Although sufficient bonding strength can be obtained as it is, further heat treatment at a temperature of 100 ° C. to 700 ° C. in this state further strengthens the bonding. Here, when the heat treatment temperature is high, there is a difference between the coefficient of thermal expansion of the GaAs substrate and the coefficient of thermal expansion of the Si substrate, so that some restrictions are imposed on the shape, dimensions, and the like. As the thickness of the substrate to be bonded becomes thinner and the area becomes smaller, the bonding strength can be improved without peeling or breakage.

【0023】次に、接合力強化のための熱処理温度以下
の温度で処理すべき各種プロセス、例えば電極形成など
を実施し、配線パターンを形成した。配線にはアミニウ
ムや金などを用いた。これにより、実施例2に示す構造
のハイブリッド集積回路が得られた。接合強化の熱処理
効果は、例えば、200度Cで、1時間程度保持するだ
けでも接合強度は数倍に上がり、数10Kg/平方cm
の強度が得られた。700度C以上に温度を上げると、
GaAs基板表面から砒素が抜けていくため表面の特性
劣化が大きく光素子としての所定の性能が得られないの
で、接合熱処理温度は700度C以下とすることが望ま
しい。
Next, various processes to be processed at a temperature equal to or lower than the heat treatment temperature for strengthening the bonding strength, for example, electrode formation and the like were performed to form a wiring pattern. Aminium or gold was used for the wiring. As a result, a hybrid integrated circuit having the structure shown in Example 2 was obtained. The effect of the heat treatment for strengthening the bonding is, for example, at 200 ° C., the bonding strength is increased several times even if the temperature is maintained for only about 1 hour, and several tens kg / cm 2.
Was obtained. When the temperature is raised to 700 degrees C or more,
Since arsenic escapes from the surface of the GaAs substrate, the characteristics of the surface are greatly degraded and a predetermined performance as an optical element cannot be obtained.

【0024】上述のSi基板1と酸化珪素膜(又は珪素
膜)3との接合を、一般の樹脂などの接着剤を用いて行
うと、耐熱性や耐薬品性の面から、接合後は半導体プロ
セスが行えないなどの問題点があるが、本実施例の方法
を用いれば、Si基板とGaAs基板が直接接合されて
おり、そのような問題点が解決される。
If the above-described bonding between the Si substrate 1 and the silicon oxide film (or silicon film) 3 is performed using an adhesive such as a general resin, the semiconductor after bonding is preferably used in view of heat resistance and chemical resistance. Although there is a problem that the process cannot be performed, the use of the method of the present embodiment solves such a problem because the Si substrate and the GaAs substrate are directly bonded.

【0025】また樹脂などの接着剤を用いて接着する
と、接着剤の厚みを高精度で制御することが困難なた
め、接着後の基板平行度が悪くなり、ホトリソグラフィ
ーの精度が悪くなるが、そのような問題も解決された。
また直接接合の場合の方が、熱伝導がよくなるため、消
費電力の大きい回路にも適用することができた。
Further, when bonding is performed using an adhesive such as a resin, it is difficult to control the thickness of the adhesive with high precision, so that the parallelism of the substrate after bonding is deteriorated, and the accuracy of photolithography is deteriorated. Such problems have also been resolved.
In addition, the direct connection has better heat conduction, so that it can be applied to a circuit with large power consumption.

【0026】以上の直接接合のメカニズムは、珪素膜ま
たは酸化珪素膜表面を、適当な表面処理を行った後純水
に浸すことにより、その表面に水酸基が付着し、接合さ
せようとする両表面に付着した水酸基によって、接合が
行われると考えられる。その後熱処理を行うと、相互拡
散により接合が強化されるものと考えられる。
The mechanism of the direct bonding described above is as follows. The surface of the silicon film or silicon oxide film is subjected to an appropriate surface treatment and then immersed in pure water, so that hydroxyl groups adhere to the surface and both surfaces to be bonded are bonded. It is considered that the bonding is carried out by the hydroxyl group attached to the. After that, when heat treatment is performed, it is considered that bonding is strengthened by mutual diffusion.

【0027】(実施例4)本発明の第4の実施例のハイ
ブリッド集積回路の製造方法について説明する。
(Embodiment 4) A method of manufacturing a hybrid integrated circuit according to a fourth embodiment of the present invention will be described.

【0028】実施例3と同様にして、Si基板およびG
aAs基板の所定の箇所に、電子素子または光素子を形
成し、その後、保護膜形成、表面洗浄を行った後、接合
面になるGaAs基板上に、非晶質珪素の膜を、プラズ
マCVDなどにより形成した。形成する非晶質珪素の膜
厚は、実施例3の場合とほぼ同様、0.1ー3ミクロン
程度である。その後、実施例3と同様に、非晶質珪素膜
とSi基板表面を極めて清浄にした。具体的方法は、実
施例3とほぼ同じである。非晶質珪素膜表面は、バッフ
ァード弗酸系エッチング液により清浄化した。その後非
晶質珪素膜及びSi基板の表面を純水で十分洗浄し、す
ぐに一様に重ねあわせることにより、非晶質珪素膜表面
に吸着した水酸基により、容易に接合が得られた。
In the same manner as in Example 3, the Si substrate and the G
After an electronic element or an optical element is formed at a predetermined position on the aAs substrate, a protective film is formed, and the surface is cleaned. Then, an amorphous silicon film is formed on the GaAs substrate serving as a bonding surface by plasma CVD or the like. Formed. The film thickness of the amorphous silicon to be formed is about 0.1 to 3 μm, almost the same as in the third embodiment. After that, as in Example 3, the amorphous silicon film and the surface of the Si substrate were extremely cleaned. The specific method is almost the same as that of the third embodiment. The surface of the amorphous silicon film was cleaned with a buffered hydrofluoric acid-based etchant. Thereafter, the surface of the amorphous silicon film and the surface of the Si substrate were sufficiently washed with pure water and immediately superimposed uniformly, so that the bonding was easily obtained by the hydroxyl groups adsorbed on the surface of the amorphous silicon film.

【0029】次に必要に応じて実施例3と同様のプロセ
スを行うことにより、GaAs基板上に形成された光素
子と、Si基板上に形成された電子素子が一体に集積化
されたハイブリッド集積回路の製造が可能となり、実施
例3と同様の効果が得られた。この場合の接合強度は、
酸化珪素膜を用いた場合よりも、2−5倍の値が得られ
た。
Next, a process similar to that of the third embodiment is performed, if necessary, so that an optical device formed on a GaAs substrate and an electronic device formed on a Si substrate are integrally integrated. The circuit can be manufactured, and the same effect as that of the third embodiment is obtained. The bonding strength in this case is
The value was 2 to 5 times that obtained when the silicon oxide film was used.

【0030】(実施例5)本発明の第5の実施例のハイ
ブリッド集積回路の製造方法について説明する。
(Embodiment 5) A method of manufacturing a hybrid integrated circuit according to a fifth embodiment of the present invention will be described.

【0031】実施例3または4と同様にして、Si基板
およびGaAs基板の所定の箇所に、電子素子または光
素子を形成し、その後、保護膜形成、表面洗浄を行った
後、接合面になるGaAs基板上に、酸化珪素膜または
非晶質珪素膜を形成した。その後、実施例3または4と
同様に、酸化珪素膜または非晶質珪素膜とSi基板表面
を極めて清浄にした。具体的方法は、実施例3または4
とほぼ同じである。酸化珪素膜または非晶質珪素膜表面
は、バッファード弗酸系エッチング液により清浄化し
た。その後酸化珪素膜又は非晶質珪素膜及びSi基板の
表面を純水で十分洗浄し、接合させる面を重ね合わた。
In the same manner as in Example 3 or 4, an electronic element or an optical element is formed at a predetermined position on the Si substrate and the GaAs substrate, and then a protective film is formed, and the surface is cleaned. A silicon oxide film or an amorphous silicon film was formed on a GaAs substrate. Then, as in Example 3 or 4, the silicon oxide film or the amorphous silicon film and the surface of the Si substrate were extremely cleaned. The specific method is described in Example 3 or 4.
Is almost the same as The surface of the silicon oxide film or the amorphous silicon film was cleaned with a buffered hydrofluoric acid-based etchant. Thereafter, the surface of the silicon oxide film or the amorphous silicon film and the surface of the Si substrate were sufficiently washed with pure water, and the surfaces to be joined were overlapped.

【0032】乾燥後、両基板を加熱しながら、酸化珪素
膜部または珪素膜部に高電圧の直流電圧を加えた。これ
により静電力が働き、強固な直接接合が得られた。次に
必要に応じて実施例3と同様のプロセスを行うことによ
り、GaAs基板上に形成された光素子と、Si基板上
に形成された電子素子が一体に集積化されたハイブリッ
ド集積回路の製造が可能となり、実施例3と同様の効果
が得られた。この場合の接合強度は、単に熱処理したも
のよりもさらに強くなった。
After drying, a high DC voltage was applied to the silicon oxide film portion or the silicon film portion while heating both substrates. As a result, an electrostatic force was applied, and a strong direct bonding was obtained. Next, a process similar to that of the third embodiment is performed, if necessary, to manufacture a hybrid integrated circuit in which the optical device formed on the GaAs substrate and the electronic device formed on the Si substrate are integrated. Became possible, and the same effect as in Example 3 was obtained. The bonding strength in this case was even stronger than that obtained by simply heat-treating.

【0033】このとき、接合部の膜に高電圧が加わるよ
うに、Si基板およびGaAs基板に半導体性基板を用
いたり、基板一部に低抵抗部を設けることにより、接合
に用いる酸化珪素膜または非晶質珪素膜に有効に高電圧
を加えることができた。この場合酸化珪素膜は本来、高
抵抗であるが、非晶質珪素膜の場合は、できるだけ高抵
抗にすることが望ましい。
At this time, a silicon oxide film or a silicon oxide film used for bonding is provided by using a semiconductor substrate for the Si substrate and the GaAs substrate or providing a low resistance portion on a part of the substrate so that a high voltage is applied to the film of the bonding portion. A high voltage could be effectively applied to the amorphous silicon film. In this case, the silicon oxide film originally has a high resistance, but in the case of an amorphous silicon film, it is desirable to make the resistance as high as possible.

【0034】印加する電圧は、1ミクロンの膜厚に対
し、50から1000Vが適当であり、電圧が高い場合
は、パルス的に加える方が良かった。
The applied voltage is suitably from 50 to 1000 V for a film thickness of 1 micron. When the voltage is high, it is better to apply the voltage in a pulsed manner.

【0035】(実施例6)本発明の第6の実施例のハイ
ブリッド集積回路の製造方法について説明する。
(Embodiment 6) A method of manufacturing a hybrid integrated circuit according to a sixth embodiment of the present invention will be described.

【0036】実施例3と同様にして、Si基板およびG
aAs基板の所定の箇所に、電子素子または光素子を形
成し、その後、保護膜形成、表面洗浄を行った後、接合
面になるGaAs基板上に、多結晶珪素の膜を、プラズ
マCVDなどにより形成した。形成する多結晶珪素の膜
厚は、実施例3の場合とほぼ同様、0.1ー3ミクロン
程度である。その後、実施例3と同様に、多結晶珪素膜
とSi基板表面を極めて清浄にした。具体的方法は、実
施例3とほぼ同じである。多結晶珪素膜表面は、バッフ
ァード弗酸系エッチング液により清浄化した。その後多
結晶珪素膜及びSi基板の表面を純水で十分洗浄し、す
ぐに一様に重ねあわせることにより、多結晶珪素膜表面
に吸着した水酸基により、容易に接合が得られた。次に
必要に応じて実施例3と同様のプロセスを行うことによ
り、GaAs基板上に形成された光素子と、Si基板上
に形成された電子素子が一体に集積化されたハイブリッ
ド集積回路の製造が可能となり、実施例3と同様の効果
が得られた。
In the same manner as in Example 3, the Si substrate and the G
After forming an electronic element or an optical element at a predetermined position on the aAs substrate, forming a protective film and cleaning the surface, a polycrystalline silicon film is formed on the GaAs substrate serving as a bonding surface by plasma CVD or the like. Formed. The thickness of the polycrystalline silicon to be formed is about 0.1 to 3 μm, almost the same as in the third embodiment. Then, as in Example 3, the polycrystalline silicon film and the surface of the Si substrate were extremely cleaned. The specific method is almost the same as that of the third embodiment. The surface of the polycrystalline silicon film was cleaned with a buffered hydrofluoric acid-based etchant. Thereafter, the surface of the polycrystalline silicon film and the surface of the Si substrate were sufficiently washed with pure water and immediately superimposed uniformly, so that the bonding was easily obtained by the hydroxyl groups adsorbed on the surface of the polycrystalline silicon film. Next, a process similar to that of the third embodiment is performed, if necessary, to manufacture a hybrid integrated circuit in which the optical device formed on the GaAs substrate and the electronic device formed on the Si substrate are integrated. Became possible, and the same effect as in Example 3 was obtained.

【0037】なお、上記ハイブリッド集積回路の製造方
法の実施例では、いずれも、実施例2の構造の例につい
て説明したが、実施例1の構造を得るには、各製造方法
の実施例において、酸化珪素膜または珪素膜を、単にG
aAs基板の裏面に形成すれば実現することができた。
この場合のGaAs基板上の光素子などと、Si基板上
の電子素子などとの結線は、外部のワイヤーで行った
り、GaAs基板にビアホールを形成するなどして行っ
た。
In each of the above embodiments of the method of manufacturing a hybrid integrated circuit, the example of the structure of the second embodiment has been described. However, in order to obtain the structure of the first embodiment, in each of the embodiments of each manufacturing method, A silicon oxide film or a silicon film is simply referred to as G
This was realized by forming it on the back surface of the aAs substrate.
In this case, the connection between the optical element and the like on the GaAs substrate and the electronic element and the like on the Si substrate was made by an external wire or by forming a via hole in the GaAs substrate.

【0038】また、上記実施例では、いずれも、Si基
板上には他の膜を形成しなかったが、Si基板上にも酸
化珪素膜又は珪素膜を形成しても同様の直接接合が可能
であった。
In each of the above embodiments, no other film was formed on the Si substrate. However, the same direct bonding is possible even if a silicon oxide film or a silicon film is formed on the Si substrate. Met.

【0039】また、上記実施例では、いずれの場合も接
合に用いる膜表面の平坦度が重要であり、製膜の方法、
条件が悪く、表面の凹凸が大きい場合には接合が困難と
なるため、十分な注意が必要であった。
In each of the above embodiments, the flatness of the film surface used for bonding is important in any case.
When the conditions are poor and the unevenness of the surface is large, it becomes difficult to join, so that sufficient attention has been required.

【0040】また、いずれの実施例においても、まず第
1に、Si基板に形成された電子素子などとGaAs基
板に形成された光素子などを、一体に集積しているの
で、ハイブリッド集積回路を大幅に小型、軽量化する事
が可能となった。
In any of the embodiments, first, an electronic device formed on a Si substrate and an optical device formed on a GaAs substrate are integrally integrated. Significantly smaller and lighter.

【0041】また、いずれの実施例においても、大規模
集積回路は、歩留まり良く形成できるSi基板上に、光
素子は高性能の得られるGaAs基板上に形成できるた
め、単一基板を用いて集積した場合よりも、高性能のハ
イブリッド集積回路が歩留まり良く得られた。
In each of the embodiments, since a large-scale integrated circuit can be formed on a Si substrate which can be formed with a high yield, and an optical element can be formed on a GaAs substrate which can obtain high performance, the integrated circuit can be integrated using a single substrate. As a result, a higher performance hybrid integrated circuit was obtained with higher yield.

【0042】また、いずれの実施例においても、その接
合方法は、GaAs基板とSi基板を膜厚の制御された
珪素系無機材料で直接接合しているので、平面性が極め
て良く、大規模集積に必要な、サブミクロンのホトリソ
グラフィーが可能となるとともに、熱や振動などに対す
る信頼性も大幅に向上した。
Also, in any of the embodiments, the bonding method is such that the GaAs substrate and the Si substrate are directly bonded by a silicon-based inorganic material having a controlled film thickness, so that the flatness is extremely good and the large scale integration is possible. In addition to enabling submicron photolithography, which is required for, the reliability against heat and vibration has been greatly improved.

【0043】[0043]

【発明の効果】以上述べたところから明らかなように本
発明は、光素子及び電子素子を高密度に集積化でき、低
コストで歩留まりがよく、良好な特性が得られるという
長所がある。
As is apparent from the above description, the present invention has the advantages that optical elements and electronic elements can be integrated at a high density, low cost, good yield, and good characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる第1の実施例のハイブリッド集
積回路の構成を示す模式断面図である。
FIG. 1 is a schematic sectional view showing a configuration of a hybrid integrated circuit according to a first embodiment of the present invention.

【図2】本発明にかかる第2の実施例のハイブリッド集
積回路の構成を示す模式断面図図である。
FIG. 2 is a schematic cross-sectional view showing a configuration of a hybrid integrated circuit according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 Si基板 2 GaAs基板 3 酸化珪素膜または珪素膜 4 光素子(発光素子) 4’ 光素子(受光素子) 5 電子素子 DESCRIPTION OF SYMBOLS 1 Si substrate 2 GaAs substrate 3 Silicon oxide film or silicon film 4 Optical element (light emitting element) 4 'Optical element (light receiving element) 5 Electronic element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小掠 哲義 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平3−262143(JP,A) 特開 平1−293664(JP,A) 特開 昭62−217633(JP,A) OPTICAL AND QUANT UM ELECTRONICS 20 (1988)PP.441−474 JOURNAL OF LIGHTW AVE TECHNOLOGY.VO L.8NO.6(1990)PP.846−862 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuyoshi Kotara 1006 Kazuma Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. (56) References JP-A-3-262143 (JP, A) JP-A-1 -293664 (JP, A) JP-A-62-217633 (JP, A) OPTICAL AND QUANT UM ELECTRONICS 20 (1988) PP. 441-474 JOURNAL OF LIGHTWAVE AVE TECHNOLOGY. VOL. 8NO. 6 (1990) PP. 846-862

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 GaAs基板およびSi基板の接合する
側の表面のうち、少なくとも一方の前記表面に、酸化珪
素膜または珪素膜を有し、 前記GaAs基板と前記Si基板とが、各接合表面に付
着された水酸基により直接接合されている ことを特徴と
するハイブリッド集積回路。
1. A method for bonding a GaAs substrate and a Si substrate.
Silicon oxide on at least one of the
A GaAs substrate and a Si substrate, each of which has a silicon film or a silicon film .
A hybrid integrated circuit, which is directly joined by the attached hydroxyl group .
【請求項2】 GaAs基板およびSi基板の接合する
側の表面のうち、少なくとも一方の前記表面に、酸化珪
素膜または珪素膜を有し、 前記GaAs基板と前記Si基板とが、各接合表面へ水
酸基を付着させる処理と、重ね合わせる処理と、熱処理
とを施されて直接接合されている ことを特徴とするハイ
ブリッド集積回路。
2. A method for bonding a GaAs substrate and a Si substrate.
Silicon oxide on at least one of the
A GaAs substrate and a Si substrate, each having a base film or a silicon film.
Treatment to attach acid groups, superposition treatment, and heat treatment
And a direct bonding .
【請求項3】 GaAs基板およびSi基板の接合する
側の表面のうち、少なくとも一方の前記表面に、酸化珪
素膜または珪素膜を有し、 前記GaAs基板と前記Si基板とが、各接合表面へ水
酸基を付着させる処理と、重ね合わせる処理と、接合界
面に直流電圧を加えながら行う熱処理とを施されて直接
接合されている ことを特徴とするハイブリッド集積回
路。
3. The bonding of a GaAs substrate and a Si substrate.
Silicon oxide on at least one of the
A GaAs substrate and a Si substrate, each having a base film or a silicon film.
The process of attaching acid groups, the process of superposition, and the bonding
Heat treatment performed while applying a DC voltage to the surface
A hybrid integrated circuit characterized by being joined .
【請求項4】 100℃から700℃の温度範囲で前記
熱処理を施すことを特徴とする請求項2または3記載の
ハイブリッド集積回路。
4. The method according to claim 1 , wherein the temperature ranges from 100 ° C. to 700 ° C.
The hybrid integrated circuit according to claim 2, wherein heat treatment is performed .
【請求項5】 GaAs基板およびSi基板に能動素子
を設ける工程と、 前記GaAs基板および前記Si基板の接合する側の表
面のうち、少なくとも一方の前記表面に、酸化珪素膜ま
たは珪素膜を設ける工程と、 前記膜を設ける行程により前記膜が形成された表面を少
なくとも一方に含む各接合表面に水酸基を付着させる工
程と、 前記水酸基の付着された前記各接合表面を重ね合わせ
て、前記GaAs基板と前記Si基板とを直接接合する
工程と、 前記GaAs基板に設けられた前記能動素子と前記Si
基板に設けられた前記能動素子とを電気的に接続する工
程と、 を備えた ことを特徴とするハイブリッド集積回路の製造
方法
5. An active element on a GaAs substrate and a Si substrate
And a table on the bonding side of the GaAs substrate and the Si substrate.
A silicon oxide film or a silicon oxide film is formed on at least one of the surfaces.
Or providing a silicon film, and reducing the surface on which the film is formed by the step of providing the film.
At least a process to attach hydroxyl groups to each joint surface included in one
And joining each of the bonding surfaces to which the hydroxyl groups are attached.
Directly bonding the GaAs substrate and the Si substrate
The active element and the Si provided on the GaAs substrate.
Step of electrically connecting the active element provided on the substrate
Manufacture of hybrid integrated circuit comprising: the degree, the
How .
【請求項6】 直接接合する工程の後に、100℃から
700℃の温度範囲で熱処理する工程を加えたことを特
徴とする請求項5記載のハイブリッド集積回路の製造方
法。
6. After 100 ° C., a temperature of 100 ° C.
It is noted that a heat treatment process in the temperature range of 700 ° C has been added.
A method for manufacturing a hybrid integrated circuit according to claim 5 .
JP4042878A 1992-02-28 1992-02-28 Hybrid integrated circuit and manufacturing method thereof Expired - Fee Related JP2610075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4042878A JP2610075B2 (en) 1992-02-28 1992-02-28 Hybrid integrated circuit and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4042878A JP2610075B2 (en) 1992-02-28 1992-02-28 Hybrid integrated circuit and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH06291298A JPH06291298A (en) 1994-10-18
JP2610075B2 true JP2610075B2 (en) 1997-05-14

Family

ID=12648302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4042878A Expired - Fee Related JP2610075B2 (en) 1992-02-28 1992-02-28 Hybrid integrated circuit and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2610075B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62217633A (en) * 1986-03-19 1987-09-25 Fujitsu Ltd Planar plate bonding method
JP2657820B2 (en) * 1988-05-23 1997-09-30 セイコー電子工業株式会社 Method of manufacturing MOS field effect transistor
JPH03262143A (en) * 1990-03-12 1991-11-21 Fujitsu Ltd Manufacture of semiconductor substrate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF LIGHTWAVE TECHNOLOGY.VOL.8NO.6(1990)PP.846−862
OPTICAL AND QUANTUM ELECTRONICS 20(1988)PP.441−474

Also Published As

Publication number Publication date
JPH06291298A (en) 1994-10-18

Similar Documents

Publication Publication Date Title
US20200013765A1 (en) Techniques for joining dissimilar materials in microelectronics
US5925973A (en) Electronic component and method for producing the same
Bower et al. Low temperature Si3N4 direct bonding
KR100641209B1 (en) Single-crystal silicon substrate, soi substrate, and display device
JP2608548B2 (en) Method for manufacturing semiconductor device
US5503704A (en) Nitrogen based low temperature direct bonding
JPH08505010A (en) Method for producing single crystal silicon island on quartz substrate
KR20010013085A (en) Method for producing a light-emitting component
US20080009123A1 (en) Method for Bonding Two Free Surfaces, Respectively of First and Second Different Substrates
JP2610076B2 (en) Hybrid integrated circuit and manufacturing method thereof
US5244830A (en) Method for manufacturing a semiconductor substrate having a compound semiconductor layer on a single-crystal silicon wafer
JP2610075B2 (en) Hybrid integrated circuit and manufacturing method thereof
JPH06151946A (en) Semiconductor photodetecting element and manufacture thereof
JP3406376B2 (en) Method for manufacturing compound semiconductor device
JPH01133341A (en) Manufacture of semiconductor device and manufacturing equipment therefor
JPH06224404A (en) Manufacture of integrated circuit device
JP3194822B2 (en) Manufacturing method of composite substrate material
JP2857456B2 (en) Method for manufacturing semiconductor film
JP2675519B2 (en) Semiconductor substrate, semiconductor device, and manufacturing method thereof
JPH08236695A (en) Three-dimensional integrated circuit device and fabrication therof
JPH07263814A (en) Manufacture of semiconductor device
JPS6334994A (en) Photoelectric integrated circuit device and manufacture thereof
JPH0594929A (en) Compound substrate and its manufacturing method and semiconductor device
US20120280352A1 (en) Semiconductor structure with heat spreader and method of its manufacture
KR940008022B1 (en) Junction method of hetero semiconductors

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees