JP2608947B2 - Charged particle storage device - Google Patents

Charged particle storage device

Info

Publication number
JP2608947B2
JP2608947B2 JP32212588A JP32212588A JP2608947B2 JP 2608947 B2 JP2608947 B2 JP 2608947B2 JP 32212588 A JP32212588 A JP 32212588A JP 32212588 A JP32212588 A JP 32212588A JP 2608947 B2 JP2608947 B2 JP 2608947B2
Authority
JP
Japan
Prior art keywords
charged particles
electromagnet
speed pulse
magnetic field
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32212588A
Other languages
Japanese (ja)
Other versions
JPH02168599A (en
Inventor
修平 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP32212588A priority Critical patent/JP2608947B2/en
Priority to DE3943786A priority patent/DE3943786C2/en
Priority to DE19893938628 priority patent/DE3938628C2/en
Priority to US07/440,250 priority patent/US5138270A/en
Publication of JPH02168599A publication Critical patent/JPH02168599A/en
Priority to US07/861,437 priority patent/US5216377A/en
Priority to US08/035,259 priority patent/US5355106A/en
Application granted granted Critical
Publication of JP2608947B2 publication Critical patent/JP2608947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、荷電粒子蓄積装置に関し、さらに詳しく
いうと、例えばシンクロトロン放射光光源として用いら
れる荷電粒子蓄積装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a charged particle storage device, and more specifically, to a charged particle storage device used as, for example, a synchrotron radiation light source.

[従来の技術] 第3図は例えば、テル・テラス アクチビティレポー
ト(TELL−TERAS ACTIVITY REPORT)(1980〜1986)P.2
2に示された従来の荷電粒子蓄積装置であり、図におい
て(1)はドーナツ状の真空容器、(2)は偏向電磁
石、(3)は四極電磁石、(4)は低速パルス電磁石、
(5)は垂直磁界を発生する高速パルス電磁石、(6)
は高周波空洞であり、これらで蓄積リングを形成してい
る。(7)は高速電子発生用の電子線形加速器である。
[Prior Art] FIG. 3 shows, for example, TELL-TERAS ACTIVITY REPORT (1980-1986) P.2
2 is a conventional charged particle storage device shown in FIG. 2, wherein (1) is a donut-shaped vacuum vessel, (2) is a bending electromagnet, (3) is a quadrupole electromagnet, (4) is a low-speed pulse electromagnet,
(5) is a high-speed pulse electromagnet for generating a vertical magnetic field, (6)
Are high-frequency cavities, which together form a storage ring. (7) is an electron linear accelerator for high-speed electron generation.

第4図は、低速パルス電磁石出口での位相平面上の荷
電粒子の軌跡を示している。図中(8)は低速パルス電
磁石出口での入射荷電粒子の位置を示している。(9)
は高速パルス電磁石の位置での入射荷電粒子の状態を示
している。(10)はパルス電磁石通過後の入射荷電粒子
の状態を示している。(11)はその後低速パルス電磁石
の位置に戻ったときの入射荷電粒子の状態を示してい
る。(12)はその後蓄積リングを一回転した後の位置と
する。(13)(14)(15)(16)(17)は蓄積荷電粒子
の位置である。(18)は低速パルス電磁石の側壁を示し
ている。
FIG. 4 shows the trajectory of charged particles on the phase plane at the exit of the low-speed pulse electromagnet. (8) in the figure shows the position of the incident charged particles at the exit of the low-speed pulse electromagnet. (9)
Indicates the state of the incident charged particles at the position of the high-speed pulse electromagnet. (10) shows the state of the charged particles after passing through the pulse electromagnet. (11) shows the state of the incident charged particles when returning to the position of the low-speed pulse electromagnet thereafter. (12) is the position after one rotation of the storage ring. (13), (14), (15), (16), and (17) are the positions of accumulated charged particles. (18) shows the side wall of the low-speed pulse electromagnet.

従来の荷電粒子蓄積装置は以上のように構成されてお
り、荷電粒子入射時の様子を説明する。電子線形加速器
(7)で発生した電子は低速パルス電磁石(4)によっ
て軌道を偏向されて第4図中の(8)の状態になる。電
子が高速パルス電磁石(5)の位置にきたとき位相平面
上で(9)の位置になる。このとき高速パルス電磁石
(5)の垂直磁界によって電子の傾きがステップ的に変
化して(10)の所にくる。その後、再び低速パルス電磁
石(4)の所にきたとき(11)の位置にある。その後、
同じような作用を受けて低速パルス電磁石(4)の所に
きたとき(12)の位置にくる。これを繰り返して電子は
位相平面上を運動する。高速パルス電磁石(5)の磁界
が消滅するまでに、側壁(18)に衝突しなければ、外部
からの入射電子はこの蓄積装置に蓄積されたことにな
る。一方、蓄積されていた荷電粒子は同様の作用を受け
て(13)から順次(17)の位置に移動する。
The conventional charged particle storage device is configured as described above, and the state when charged particles are incident will be described. The trajectory of the electrons generated by the electron linear accelerator (7) is deflected by the low-speed pulse electromagnet (4), and the state is changed to (8) in FIG. When the electron arrives at the position of the high-speed pulse electromagnet (5), the position becomes (9) on the phase plane. At this time, the inclination of the electrons changes stepwise due to the vertical magnetic field of the high-speed pulse electromagnet (5) and comes to the position (10). Then, when it comes again to the low-speed pulse electromagnet (4), it is at the position (11). afterwards,
When the low-speed pulse electromagnet (4) arrives at the position of (12) under the same action, it comes to the position of (12). By repeating this, the electrons move on the phase plane. Unless the magnetic field of the high-speed pulsed electromagnet (5) ceases to collide with the side wall (18), incident electrons from the outside have been stored in this storage device. On the other hand, the charged particles that have been accumulated are subjected to the same action and sequentially move from the position (13) to the position (17).

[発明が解決しようとする課題] 以上のような従来の荷電粒子蓄積装置では、次の問題
点がある。
[Problems to be Solved by the Invention] The conventional charged particle storage device as described above has the following problems.

1) 一様垂直磁界を発生するために蓄積荷電粒子の軌
道も擾乱を受けてしまう。
1) Since a uniform vertical magnetic field is generated, the trajectory of the stored charged particles is also disturbed.

2) 発生磁界の空間が大きいために高速パルス電磁石
用の電源容量が大きくなってしまう。
2) Since the space of the generated magnetic field is large, the power supply capacity for the high-speed pulse electromagnet increases.

3) 蓄積電子の軌道が変化してしまうのでそれが減衰
して行くまで、再び外部から荷電粒子を入射できない。
3) Since the trajectory of the stored electrons changes, charged particles cannot be injected from the outside again until the trajectories attenuate.

4) このために、入射時にはシンクロトロン放射光光
源として利用できない。
4) Therefore, it cannot be used as a synchrotron radiation light source at the time of incidence.

5) 高速パルス電磁石のパルス幅は、かなり速くない
と入射荷電粒子が低速パルス電磁石の側壁に衝突してし
まう。
5) If the pulse width of the high-speed pulsed electromagnet is not very fast, incident charged particles will collide with the side wall of the low-speed pulsed electromagnet.

6) このために、電源容量としてはますます大きなも
のとなる。
6) For this reason, the power supply capacity is further increased.

7) 入射後の荷電粒子は中心軌道から大きく離れた所
を通過することとなり、蓄積リングの偏向電磁石および
四極電磁石の有効磁界領域を大きくしなければならな
い。
7) The charged particles after the incidence pass through a place far away from the central trajectory, and the effective magnetic field area of the bending electromagnet and the quadrupole electromagnet of the storage ring must be increased.

この発明は、かかる問題点を解決するためになされた
もので、蓄積荷電粒子に擾乱を与えることなく入射で
き、しかもある程度パルス幅も長く取れ、電源容量を減
らすことができる高速パルス電磁石を有し、荷電粒子の
入射時にも光源として利用できる荷電粒子蓄積装置を得
ることを目的とする。
The present invention has been made in order to solve such a problem, and has a high-speed pulse electromagnet which can be incident without disturbing the stored charged particles, has a certain pulse width, and can reduce the power supply capacity. It is another object of the present invention to obtain a charged particle storage device that can be used as a light source even when charged particles are incident.

[課題を解決するための手段] この発明に係る荷電粒子蓄積装置は、少なくとも四極
の磁界成分を発生する高速パルス電磁石を備えている。
[Means for Solving the Problems] A charged particle storage device according to the present invention includes a high-speed pulse electromagnet that generates at least a quadrupole magnetic field component.

[作 用] この発明においては、少なくとも四極磁界成分を有す
る磁界を発生しているために、高速パルス電磁石で発生
する磁界の向きが、中心軸上を対称軸として、反対とな
っている。また、磁界強度も軸から離れるにしたがって
比例して大きくなって行く。外部から入射された荷電粒
子は中心軸から離れるにしたがってより強い磁界の力を
受ける。さらに、入射された荷電粒子は毎周毎に原点を
対象点とする位置にくるために常に上記荷電粒子は中心
軸方向の力を受けるので中心軸に収束されていく。
[Operation] In the present invention, since a magnetic field having at least a quadrupole magnetic field component is generated, the directions of the magnetic field generated by the high-speed pulse electromagnet are opposite with respect to the central axis as a symmetric axis. Also, the magnetic field strength increases in proportion to the distance from the axis. Charged particles incident from the outside receive a stronger magnetic field force as they move away from the central axis. Further, since the charged particles that have entered come to a position with the origin as a target point every round, the charged particles are always subjected to a force in the direction of the central axis, so that they are converged on the central axis.

[実施例] 第1図はこの発明の一実施例を示し、高速パルス電磁
石(19)は四極磁界を発生する。
FIG. 1 shows an embodiment of the present invention, in which a high-speed pulse electromagnet (19) generates a quadrupole magnetic field.

その他、第3図と同一符号は同一部分である。 In addition, the same reference numerals as those in FIG. 3 denote the same parts.

第2図は、低速パルス電磁石(4)出口での位相平面
上の荷電粒子の軌跡を示しており、図中(8)は低速パ
ルス電磁石(4)出口での入射荷電粒子の位置を示して
いる。(9)は高速パルス電磁石の位置での入射荷電粒
子の状態を示している。(10)はパルス電磁石通過後の
入射荷電粒子の状態を示している。(11)はその後低速
パルス電磁石(4)の位置に戻ったときの入射荷電粒子
の状態を示している。(12)はその後蓄積リングを一回
転した後の位置とする。(13)(14)(15)(16)(1
7)は蓄積荷電粒子のそれである。(18)は低速パルス
電磁石の側壁を示している。
FIG. 2 shows the trajectory of the charged particles on the phase plane at the exit of the low-speed pulse electromagnet (4), and (8) in the figure shows the position of the incident charged particles at the exit of the low-speed pulse electromagnet (4). I have. (9) shows the state of the incident charged particles at the position of the high-speed pulse electromagnet. (10) shows the state of the charged particles after passing through the pulse electromagnet. (11) shows the state of the incident charged particles when returning to the position of the low-speed pulse electromagnet (4). (12) is the position after one rotation of the storage ring. (13) (14) (15) (16) (1
7) is that of stored charged particles. (18) shows the side wall of the low-speed pulse electromagnet.

以上の構成により、電子線形加速器(7)で発生した
電子は低速パルス電磁石(4)によって軌道を偏向され
て第2図中の(8)の状態になる。電子が高速パルス電
磁石(19)の位置にきたとき、位相平面上で(9)の位
置になる。このとき、高速パルス電磁石(19)の垂直磁
界によって電子の傾きがステツプ的に変化して(10)の
所にくる。高速パルス電磁石(19)の強度を適当に選ぶ
ことによって、その後再び低速パルス電磁石(4)の所
にきたとき、(11)の位置を(8)と原点対称の位置に
持ってくることができる。高速パルス電磁石(19)の印
加電流を矩形波状にしたとすると、高速パルス電磁石
(19)の発生磁界は中心からの距離に比例するために、
入射荷電粒子は常に(9)と原点を結んだ直線上を運動
することになる。その後、同じような作用を受けて低速
パルス電磁石(4)の所にきたとき、(12)の位置にく
る。これを繰り返して電子は位相平面上を、原点に収束
する運動をする。このために高速パルス電磁石(19)の
パルス幅を長く取ったとしても、入射荷電粒子は失われ
ずリングに蓄積されたことになる。一方蓄積されていた
荷電粒子は原点上にいるために高速パルス電磁石(19)
の発生磁界は0であるので、高速パルス電磁石(19)の
作用を殆ど受けない。
With the above configuration, the trajectory of the electrons generated by the electron linear accelerator (7) is deflected by the low-speed pulse electromagnet (4), and the state shown in (8) in FIG. 2 is obtained. When the electron arrives at the position of the high-speed pulse electromagnet (19), the position becomes (9) on the phase plane. At this time, the inclination of the electrons changes stepwise due to the vertical magnetic field of the high-speed pulse electromagnet (19) and comes to the position (10). By appropriately selecting the strength of the high-speed pulse electromagnet (19), when the low-speed pulse electromagnet (4) is subsequently returned, the position of (11) can be brought to a position symmetrical to the origin (8). . Assuming that the applied current of the high-speed pulse electromagnet (19) is rectangular, the generated magnetic field of the high-speed pulse electromagnet (19) is proportional to the distance from the center.
The incident charged particles always move on a straight line connecting (9) and the origin. After that, when the same action is taken to reach the low-speed pulse electromagnet (4), it comes to the position (12). By repeating this, the electrons move on the phase plane to converge to the origin. For this reason, even if the pulse width of the high-speed pulse electromagnet (19) is increased, the incident charged particles are not lost but are accumulated in the ring. On the other hand, the accumulated charged particles are on the origin, so a high-speed pulsed electromagnet (19)
Since the generated magnetic field is zero, it is hardly affected by the high-speed pulse electromagnet (19).

なお、上記実施例では高速パルス電磁石として四極電
磁石を考えたが、より高次の磁界を発生するための多極
電磁石でも同様の動作を期待できる。
In the above embodiment, a quadrupole electromagnet was considered as the high-speed pulse electromagnet, but a similar operation can be expected with a multipole electromagnet for generating a higher-order magnetic field.

また、上記実施例では高速パルス電磁石の印加電流と
して矩形波を用いていたが、減衰振動波形、正弦半波、
三角波、等を持つ電流であっても同様の動作を期待でき
る。
In the above embodiment, a rectangular wave was used as the applied current to the high-speed pulse electromagnet.
Similar operation can be expected even with a current having a triangular wave or the like.

[発明の効果] この発明は、以上説明したとおり、従来の垂直磁界発
生用の高速パルス電磁石を多極電磁石としたことによっ
て、蓄積ビームに殆ど影響を与えることなく外部より荷
電粒子を入射することができる。また、入射後の荷電粒
子の中心軸からのずれも急速に小さくすることができる
ので、蓄積リングの偏向電磁石および四極電磁石の有効
磁界領域を狭くすることができ、そのため上記電磁石の
大きさも小形となる。
[Effects of the Invention] As described above, the present invention uses a multi-pole electromagnet as the conventional high-speed pulse electromagnet for generating a vertical magnetic field, thereby allowing charged particles to be incident from the outside without substantially affecting the accumulated beam. Can be. In addition, since the deviation of the charged particles from the central axis after the incidence can be rapidly reduced, the effective magnetic field area of the deflection electromagnet and the quadrupole electromagnet of the storage ring can be narrowed, so that the size of the electromagnet is small. Become.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例の概略平面図、第2図は第
1図のものの動作を説明するための位相平面図、第3図
は従来の荷電粒子蓄積装置の概略平面図、第4図は第3
図のものの動作を説明するための位相平面図である。 (1)……真空容器、(2)……偏向電磁石、(3)…
…四極電磁石、(4)……低速パルス電磁石、(6)…
…高周波空洞、(7)……電子線形加速器、(19)……
高速パルス電磁石。 なお、各図中、同一符号は同一又は相当部分を示す。
FIG. 1 is a schematic plan view of one embodiment of the present invention, FIG. 2 is a phase plan view for explaining the operation of FIG. 1, FIG. 3 is a schematic plan view of a conventional charged particle storage device, Figure 4 is the third
It is a phase plan view for explaining operation of the thing of the figure. (1) Vacuum container (2) Bending electromagnet (3)
... quadrupole electromagnet, (4) ... low-speed pulse electromagnet, (6) ...
… High frequency cavity, (7)… Electronic linear accelerator, (19) ……
High-speed pulse electromagnet. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】磁界によって荷電粒子の軌道を偏向する偏
向電磁石と、前記荷電粒子を収束する四極電磁石と、前
記荷電粒子を加速する高周波空洞と、前記荷電粒子を蓄
積するドーナツ状の真空容器と、この真空容器の外部よ
り供給される入射荷電粒子を偏向させて蓄積荷電粒子の
軌道に近づけるための低速パルス電磁石と、前記入射荷
電粒子の軌道に擾乱を与えて前記蓄積荷電粒子の軌道と
一致させるための少なくとも四極磁界成分をもつ高速パ
ルス電磁石とからなる蓄積リングと、前記真空容器の外
部からの前記入射荷電粒子を発生する電子線形加速器と
を備えてなる荷電粒子蓄積装置。
1. A bending electromagnet for deflecting the trajectory of charged particles by a magnetic field, a quadrupole electromagnet for converging the charged particles, a high-frequency cavity for accelerating the charged particles, and a donut-shaped vacuum vessel for accumulating the charged particles. A low-speed pulsed electromagnet for deflecting the incident charged particles supplied from outside the vacuum vessel to approach the trajectory of the stored charged particles, and disturbing the trajectory of the incident charged particles to match the trajectory of the stored charged particles. A charged particle storage device comprising: a storage ring including a high-speed pulsed electromagnet having at least a quadrupole magnetic field component; and an electron linear accelerator for generating the incident charged particles from outside the vacuum vessel.
JP32212588A 1988-11-24 1988-12-22 Charged particle storage device Expired - Fee Related JP2608947B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP32212588A JP2608947B2 (en) 1988-12-22 1988-12-22 Charged particle storage device
DE3943786A DE3943786C2 (en) 1988-11-24 1989-11-21 Charged particle storage device
DE19893938628 DE3938628C2 (en) 1988-11-24 1989-11-21 Device for storing charged particles
US07/440,250 US5138270A (en) 1988-11-24 1989-11-22 High voltage pulse generator
US07/861,437 US5216377A (en) 1988-11-24 1992-04-01 Apparatus for accumulating charged particles with high speed pulse electromagnet
US08/035,259 US5355106A (en) 1988-11-24 1993-03-22 Pulse electromagnet for apparatus for accumulating charged particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32212588A JP2608947B2 (en) 1988-12-22 1988-12-22 Charged particle storage device

Publications (2)

Publication Number Publication Date
JPH02168599A JPH02168599A (en) 1990-06-28
JP2608947B2 true JP2608947B2 (en) 1997-05-14

Family

ID=18140206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32212588A Expired - Fee Related JP2608947B2 (en) 1988-11-24 1988-12-22 Charged particle storage device

Country Status (1)

Country Link
JP (1) JP2608947B2 (en)

Also Published As

Publication number Publication date
JPH02168599A (en) 1990-06-28

Similar Documents

Publication Publication Date Title
KR100226381B1 (en) System for magnetic ion beam scanning and implanting
JP2608947B2 (en) Charged particle storage device
JPH04109598A (en) Source of high-speed automatic beam
US5440211A (en) Electron accelerator having a coaxial cavity
JP2869084B2 (en) Linear accelerator with self-focusing cavity with high electron capture rate for moderate incident voltage
US3629576A (en) Accelerator tube electrode for focusing a beam of charged particles
US20210280384A1 (en) An Apparatus for Generating Electromagnetic Waves
US3912930A (en) Electron beam focusing system
JPS63221547A (en) Ion neutralizer
JPH1064699A (en) Circular accelerator
JPH03503818A (en) an amplifier or oscillator operating at microwave frequencies
RU2157600C1 (en) Microwave accelerator of electrons
JPH0750637B2 (en) Fast atom beam source
JPH0722040B2 (en) Particle beam accelerator
DE3938628C2 (en) Device for storing charged particles
JPH03147300A (en) Superconducting very small sor ring device
RU2171017C1 (en) Process of collective acceleration of ions
JPH01217900A (en) Accelerator
JP2671219B2 (en) Fast atom beam source
BECK HEAVY CURRENT ELECTRON BEAMS
Wang et al. Beam aberration considerations and simulations for the Cluster Klystron
JPH08148298A (en) Accelerator and operating method thereof
JPS6345599A (en) Deflecting electromagnet for charged particle device
JPH02142099A (en) Incident device for charged particle beam
JPH07109799B2 (en) Charged particle injection method in circular accelerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees