JPH02142099A - Incident device for charged particle beam - Google Patents

Incident device for charged particle beam

Info

Publication number
JPH02142099A
JPH02142099A JP29466388A JP29466388A JPH02142099A JP H02142099 A JPH02142099 A JP H02142099A JP 29466388 A JP29466388 A JP 29466388A JP 29466388 A JP29466388 A JP 29466388A JP H02142099 A JPH02142099 A JP H02142099A
Authority
JP
Japan
Prior art keywords
magnetic field
electromagnet
magnet
electro
center axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29466388A
Other languages
Japanese (ja)
Other versions
JP2565993B2 (en
Inventor
Shuhei Nakada
修平 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63294663A priority Critical patent/JP2565993B2/en
Priority to DE3943786A priority patent/DE3943786C2/en
Priority to DE19893938628 priority patent/DE3938628C2/en
Priority to US07/440,250 priority patent/US5138270A/en
Publication of JPH02142099A publication Critical patent/JPH02142099A/en
Priority to US07/861,437 priority patent/US5216377A/en
Priority to US08/035,259 priority patent/US5355106A/en
Application granted granted Critical
Publication of JP2565993B2 publication Critical patent/JP2565993B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To take incident beams in with no influence on accumulated beams by providing an electro-magnet which generates magnetic fields with multi- magnetic field components so as to deflect the orbit of charged particles. CONSTITUTION:A generated magnetic field is furnished with an electro-magnet 16 accompanied with multi-magnetic field components. The direction of a magnetic field to be generated by the electro-magnet 16 is opposite about a center axis with respect to the axis of symmetry, an incident beam is subjected to the more intensive force of the magnetic field as it is parted from the center axis so that it is thereby pressed back toward the center axis. Which situation thereby prevents the beam on the center axis from being affected much, the orbit 4 of accumulated beams is not changed even when the electro-magnet 16 is in operation, and the capacity of a power supply can thereby be enhanced.

Description

【発明の詳細な説明】 〔施業上の利用分野〕 この発明は、例えば円形加速器への荷電粒子ビームの入
射用として用いられる荷電粒子ビーム入射装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Practical Application] The present invention relates to a charged particle beam injection device used for, for example, injection of a charged particle beam into a circular accelerator.

〔従来の技術] 第3図は例えば、昭和57年12月、分子科学研究所発
行”UVストレージリングの設計″(UVSOR−9)
67ページに示された従来の荷電ビームの入射装置であ
り、図において(1)は電磁石の真空容器、(2)はコ
イル、(3)はコイルのヨーク、(4)は蓄積ビーム軌
道、(5)は入射軌道を示している。
[Prior art] Figure 3 shows, for example, "Design of UV Storage Ring" (UVSOR-9), published by the Institute of Molecular Science, December 1982.
This is the conventional charged beam injection device shown on page 67. In the figure, (1) is the vacuum chamber of the electromagnet, (2) is the coil, (3) is the yoke of the coil, (4) is the storage beam trajectory, ( 5) shows the incident trajectory.

第4図は、このときの様子を位相平面上に書いたもので
ある。図中(5)〜(11)の丸は入射ビームの位置を
示している。横軸は、中心軌道からのずれであり、縦軸
はビームの持つ中心@1に対する傾きを示し℃いる。第
5図において(12)は入射マグネット、(13)は真
空容器の壁を示している。
FIG. 4 shows the situation at this time on a phase plane. In the figure, circles (5) to (11) indicate the positions of the incident beams. The horizontal axis represents the deviation from the center orbit, and the vertical axis represents the inclination of the beam with respect to the center @1. In FIG. 5, (12) shows the incident magnet, and (13) shows the wall of the vacuum chamber.

(14)は入射ビームの軌道、(15)は@積ビームの
軌道を示している。
(14) shows the trajectory of the incident beam, and (15) shows the trajectory of the @ product beam.

従来の荷電粒子ビーム入射装置は上記のように構成され
、パルス′l[isによって発生した電流は電。
A conventional charged particle beam injection device is constructed as described above, and the current generated by the pulse 'l[is is an electric current.

磁石に流れ込む。電磁石は図面上、上下方向の磁界のみ
を発生してビーム軌道を一定の値だけ偏向することKな
る。なぜパルス電磁石が必要かというと、物理の教える
ところにより、ビームに時間的に一定の磁界力のみが働
く場合、例えば第4図において、ビームは中心軸を中心
とする円弧上を運動することとなる、つまり、ビーム(
5)は(5)の位置を通る円弧上を移動することになり
2やがて元の(5)の位tK戻ってきてします。第5図
から分かるとおり、このビームは入射マグネ・ット(1
2)の真空壁(13)に衝突してしまい入射できなくな
ってしまう。入射ビームを内部にとどめるためには、パ
ルス電磁石によっである一定時間のみ軌道偏向をビーム
に与えることが必要となるためである。
flows into the magnet. As shown in the drawing, the electromagnet generates only a magnetic field in the vertical direction and deflects the beam trajectory by a certain amount. The reason why pulsed electromagnets are necessary is that, according to physics, when only a temporally constant magnetic field force acts on a beam, for example in Figure 4, the beam moves on an arc centered on the central axis. In other words, the beam (
5) will move on the arc that passes through the position of (5), and will eventually return to the original position (5) tK. As can be seen in Figure 5, this beam is located at the incident magnet (1
It collides with the vacuum wall (13) of 2) and becomes unable to enter. This is because in order to keep the incident beam inside, it is necessary to apply orbital deflection to the beam using a pulsed electromagnet for only a certain period of time.

この様子を示したのが第4図である。まず入射ビームに
ついて考える。電磁石が駆動する以前にはビームは(5
)のように中心軸からずれた位置にある。
FIG. 4 shows this situation. First, consider the incident beam. Before the electromagnet is driven, the beam is (5
) is located off the central axis.

ビームが一回転後に次に電磁石の所にやってきたときに
は、ビームの位置は(6)の位置に変化している。その
位置でパルス電磁石の磁界のためK(7)の位tK変化
する。その後、電磁石の発生する磁界の効果によって、
−回転毎に(81,(9)、(1o)。
When the beam next reaches the electromagnet after one rotation, the beam position has changed to position (6). At that position, it changes by tK by K(7) due to the magnetic field of the pulsed electromagnet. Then, due to the effect of the magnetic field generated by the electromagnet,
- (81, (9), (1o) for each revolution.

(11)の位置を通過することになる。次このときにパ
ルス電磁石のilf流を切ったとすると、その後のビー
ムは、加速器物理の教えるところにより、第4図上で中
心軸を中心とする円弧上を運動することとなる。このた
め、入射ビーム第4図において当初の位置よりも内側の
軌道を描くこととなり、2度と外部に出て行くことはな
い。
It will pass through position (11). Next, if the ILF flow of the pulsed electromagnet is cut off at this time, the subsequent beam will move on an arc centered on the central axis in FIG. 4, as taught by accelerator physics. Therefore, in FIG. 4, the incident beam traces a trajectory inside the initial position, and never goes outside.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上のような従来の荷電粒子ビーム入射装置では、たと
えば電磁石の発生する磁界は蓄積ビームにも影響を及は
すことになる。このことは、ビームに余計な振動を与え
てビームを不安定な状態に陥れるかも知れない。また、
電磁石の電源から考えると、上記電磁石は余計な磁界を
発生していることとなり、必要以上の宵1源容量が求め
られることとなってしまう。
In the conventional charged particle beam injection device as described above, for example, the magnetic field generated by the electromagnet also affects the stored beam. This may cause extra vibrations to the beam and cause it to become unstable. Also,
Considering the power source of the electromagnet, the electromagnet generates an unnecessary magnetic field, and a power source capacity that is larger than necessary is required.

この発明は、かかる問題点を解決するためになされたも
ので、蓄積ビームに擾乱を与えることなく、しかも電源
容量を減らすことができる荷重粒子ビーム入射装置を得
ることを目的とする。
The present invention has been made to solve these problems, and aims to provide a loaded particle beam injection device that does not disturb the stored beam and can reduce the power supply capacity.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る荷電粒子ビーム入射装置は、発生磁界に
多極磁界成分を伴う電磁石を備えている。
The charged particle beam injection device according to the present invention includes an electromagnet with a multipolar magnetic field component in the generated magnetic field.

〔作 用〕[For production]

この発明においては、電磁石で発生する磁界の向きが、
中心軸上を対称軸として、反対となっている。このため
入射ビームを中心軸がら離りるにしたがってより強い磁
界の力を受け・て中心軸上に押し戻される。
In this invention, the direction of the magnetic field generated by the electromagnet is
They are opposite with the central axis as the axis of symmetry. Therefore, as the incident beam moves away from the central axis, it receives a stronger magnetic field force and is pushed back onto the central axis.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示し、符号(1)〜(1
5)は上記従来装置と全く同一のものである。
FIG. 1 shows an embodiment of the present invention, with symbols (1) to (1)
5) is exactly the same as the conventional device described above.

(16)は例えば4極電磁石である。第2図は位相平面
を示している図であるが符号は従来装置と全く同一のも
のである。
(16) is, for example, a quadrupole electromagnet. FIG. 2 is a diagram showing a phase plane, and the symbols are exactly the same as in the conventional device.

上記のように構成された荷電粒子ビーム入射装置におい
ては、発生磁界はXに比例した値を取ることになる。こ
のために、中心軸上でのビームは殆ど影響を受けないこ
とになり、蓄積電子ビームの軌道は電磁石を動作させた
としても変化することはない。入射ビームについて考え
てみるに、第2図のように、ビームが一回転当たり回転
する角度を適当に選ぶことによって、中心軸から離れる
にしたがって強い力を受けることで収束して行くことが
分かる。
In the charged particle beam injection device configured as described above, the generated magnetic field takes a value proportional to X. For this reason, the beam on the central axis is hardly affected, and the trajectory of the stored electron beam does not change even if the electromagnet is operated. If we consider the incident beam, as shown in Figure 2, by appropriately selecting the angle at which the beam rotates per rotation, we can see that it converges as it receives a stronger force as it moves away from the central axis.

なお、上記実施例では電磁石として4極電磁石を考えた
が、より高次の磁界を発生するための多極電磁石でも同
様の動作を期待できる。
In the above embodiment, a quadrupole electromagnet was considered as the electromagnet, but a similar operation can be expected with a multipole electromagnet for generating a higher-order magnetic field.

〔発明の効果〕〔Effect of the invention〕

この発明は5以上説明したとおり、従来の垂直磁界発生
用の入射パルス電磁石を多極電磁石としたことによって
、蓄積ビームに殆ど影響を与えることなく入射ビームを
取り込むことができる。
As explained above, in this invention, by using a multipolar electromagnet instead of the conventional incident pulse electromagnet for generating a vertical magnetic field, the incident beam can be taken in with almost no effect on the accumulated beam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の横断面図、第2図はこの
実施例における位相空間上のビームの振舞いを示す線図
、第3図は従来の荷電粒子ビーム入射装置の横断面図、
第4図は同じく位相平面上のビームの振舞いを示す線図
、第5図は同じくパルス電磁石と同時に使用する立ち上
がりの遅い入射マグネット及び真空容器の要部側断面図
である。 (1)・・真空容器、(2)・・マグネットのコイル、
(3)・・マグネットのヨーク、(4)・・蓄積ビーム
軌道、(5)・・入射軌道、(16)・・4極電磁石。 なお、各図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a cross-sectional view of an embodiment of the present invention, FIG. 2 is a line diagram showing the behavior of the beam in phase space in this embodiment, and FIG. 3 is a cross-sectional view of a conventional charged particle beam injection device. ,
FIG. 4 is a diagram showing the behavior of the beam on the phase plane, and FIG. 5 is a sectional side view of the main part of the slow-rising incidence magnet and the vacuum vessel, which are used simultaneously with the pulse electromagnet. (1)...Vacuum container, (2)...Magnetic coil,
(3)...magnet yoke, (4)...storage beam trajectory, (5)...injection trajectory, (16)...quadrupole electromagnet. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 多極磁界成分を持つ磁界を発生し前記磁界によつて荷電
粒子の軌道を偏向する電磁石と、この電磁石にパルス電
流を流すための電源とを備えてなる荷電粒子ビーム入射
装置。
A charged particle beam injection device comprising an electromagnet that generates a magnetic field having a multipolar magnetic field component and deflects the trajectory of a charged particle by the magnetic field, and a power source for causing a pulse current to flow through the electromagnet.
JP63294663A 1988-11-24 1988-11-24 Charged particle beam injector Expired - Fee Related JP2565993B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63294663A JP2565993B2 (en) 1988-11-24 1988-11-24 Charged particle beam injector
DE3943786A DE3943786C2 (en) 1988-11-24 1989-11-21 Charged particle storage device
DE19893938628 DE3938628C2 (en) 1988-11-24 1989-11-21 Device for storing charged particles
US07/440,250 US5138270A (en) 1988-11-24 1989-11-22 High voltage pulse generator
US07/861,437 US5216377A (en) 1988-11-24 1992-04-01 Apparatus for accumulating charged particles with high speed pulse electromagnet
US08/035,259 US5355106A (en) 1988-11-24 1993-03-22 Pulse electromagnet for apparatus for accumulating charged particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63294663A JP2565993B2 (en) 1988-11-24 1988-11-24 Charged particle beam injector

Publications (2)

Publication Number Publication Date
JPH02142099A true JPH02142099A (en) 1990-05-31
JP2565993B2 JP2565993B2 (en) 1996-12-18

Family

ID=17810689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63294663A Expired - Fee Related JP2565993B2 (en) 1988-11-24 1988-11-24 Charged particle beam injector

Country Status (1)

Country Link
JP (1) JP2565993B2 (en)

Also Published As

Publication number Publication date
JP2565993B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
JPH02168199A (en) Proton generator
WO2004073364A1 (en) Charged particle accelerator
US5138271A (en) Method for cooling a charged particle beam
US5349196A (en) Ion implanting apparatus
JPH02142099A (en) Incident device for charged particle beam
US3153743A (en) Electron collector for travelling wave tubes and the like
JPH04109598A (en) Source of high-speed automatic beam
JPH0465057A (en) Charge particle beam apparatus
US2905842A (en) Device for producing sustained magnetic self-focusing streams
JPS62177900A (en) Radiation light generator
JPH07116600B2 (en) Sputtering equipment
US2970273A (en) Method of producing large circular currents
JPS61183899A (en) Fast atomic beam source
JPS61183900A (en) Fast atomic beam source
WO2001002619A1 (en) Sputtering device and film forming method
JP4102677B2 (en) Charged particle accelerator
RU2119730C1 (en) Source of multicomponent nuclear flows
RU2187915C1 (en) Heavy-current electron cyclotron
JP2758913B2 (en) Fast atom beam source
JPS61268015A (en) Depositing device for thin-film
JPH01231299A (en) High speed atomic beam source
JP2910944B2 (en) Plasma generator
JP2671219B2 (en) Fast atom beam source
JPH0561760B2 (en)
JPH02225665A (en) Magnetron sputtering device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees