JP2608002C - - Google Patents
Info
- Publication number
- JP2608002C JP2608002C JP2608002C JP 2608002 C JP2608002 C JP 2608002C JP 2608002 C JP2608002 C JP 2608002C
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- magnetic
- shaped permanent
- axial direction
- rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000696 magnetic material Substances 0.000 claims description 73
- 230000005415 magnetization Effects 0.000 claims description 16
- 230000000875 corresponding Effects 0.000 claims description 3
- 230000004907 flux Effects 0.000 description 20
- 239000000463 material Substances 0.000 description 16
- 239000002131 composite material Substances 0.000 description 11
- 230000001276 controlling effect Effects 0.000 description 4
- 230000002093 peripheral Effects 0.000 description 3
- 230000005284 excitation Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910000529 magnetic ferrite Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】
本発明は磁気吸着力を用いて軟磁性材を固定するマグネットチャックに関する
ものである。
【0002】
【従来の技術】
図15、図16は従来の回転操作形式のマグネットチャックの端面模式図で、
図15は吸着状態、図16は非吸着状態を示す。1は軟磁性材の被吸着材で、磁
気絶縁能力を有する非磁性材3を挟んで対向する一対の軟磁性材ヨーク4,4の
中央に透孔を形成し、永久磁石2を回転可能に挿入して形成されるマグネットチ
ャックMの吸着面40、41に密着可能となっている。図15は吸着状態を示し
、N極からでた磁束が軟磁性材4、吸着面40、被吸着材1、吸着面41、軟磁
性材4、S極と流れ閉じた磁路を作る。したがって吸着面40、41と被吸着材
1が吸着される。図16は非吸着状態を示し、図15に対し磁石2が90°回転
している。N極から出た磁束は軟磁性材4、S極と流れる。したがって吸着面4
0、41には実質的には磁束が流れず吸着作用が生じない。図15において、軟
磁性材4の他の面42、43は、被吸着材1を密着させると上記と同じく閉じた
磁路を形成し同様に吸着作用を示す。ところで軟磁性材の他の面44、45は閉
じた磁路を形成できず実質的吸着性がない。
【0003】
【発明が解決しようとする課題】
しかしながら、このような磁石回転式構成のものでは吸着面として2面しか利
用できない。したがって4面、6面など多面の吸着面を必要とする機械器具の場
合など作業が困難であった。また着脱操作は磁石回転操作を必要とし、機械器具
の自動化に組み込む場合操作メカニズムが複雑となった。そこで本発明は多面で
吸着可能で、操作メカニズムが簡便なマグネットチャックを提供することを目的
とするものである。
【0004】
【課題を解決するための手段】
そしてこの目的を達成するために本発明は、
(1)軸方向に一定ピッチで複数個磁化方向が異なる磁極を形成してなる棒状永
久磁石と、軟磁性材ヨークを非磁性材にて軸方向に一定間隔で磁気的に遮断分割
してなり、外形多角柱体または円柱体をなすチャック本体は、その中心に向かう
面にて磁気的に遮断分割して形成される各柱体にその長手方向に穿設された透孔
を介して各1本以上の上記棒状永久磁石を挿入して複数のマグネットチャックを
一体化し、各棒状永久磁石をスライドさせるように構成し、上記棒状永久磁石と
チャック本体との軸方向相対動により上記分割された隣接する軟磁性材ヨーク間
を渡って形成される磁気回路閉ループの磁界強度を調整可能に構成してなること
を特徴とするマグネットチャック。
(2)軸方向に一定ピッチで複数個磁化方向が異なる磁極を形成してなる棒状永
久磁石と、軟磁性材ヨークを非磁性材にて軸方向に一定間隔で磁気的に遮断分割
してなり、外形多角柱体または円柱体をなすチャック本体は、その中心に上記棒
状永久磁石が挿入され、それに近接しかつ包囲する軸方向に延びる透孔を有し、
該透孔からチャック本体外周に至る軸方向に延びる磁気遮断板を透孔回りに所定
角度で複数個配設し、その分割角度に対応した磁気吸着力を上記棒状永久磁石を
スライドさせるように構成し、上記棒状永久磁石とチャック本体との軸方向相対
動により上記分割された隣接する軟磁性材ヨーク間を渡って形成される磁気回路
閉ループの磁界強度を調整可能に構成してなることを特徴とするマグネットチャ
ック。
(3)軸方向に一定ピッチで複数個磁化方向が異なる磁極を形成してなる棒状永
久磁石と、該棒状永久磁石の周囲に近接して包囲する軟磁性材ヨークを非磁性材
にて軸方向に一定間隔で磁気的に遮断分割してなるチャック本体とからなるマグ
ネットチャックを並列接続して広く磁気吸着面を形成し、上記棒状永久磁石とチ
ャック本体との軸方向相対動により上記分割された隣接する軟磁性材ヨーク間を
渡って形成される磁気回路閉ループの磁界強度を調整可能に構成してなることを
特徴とするマグネットチャックにある。
【0005】
以上の構成とすれば、軸方向に一定ピッチで複数個磁化方向が異なる磁極を形
成してなる棒状永久磁石と、非磁性材にて軸方向に一定間隔で磁気的に遮断分割
してなる軟磁性材ヨークとの相対位置により、棒状永久磁石のN極から隣接する
S極に流れる磁束が対向する軟磁性材ヨークから隣接する軟磁性材ヨークに流れ
て隣接するS極に至ると、ヨーク外面に位置する被吸着材には磁気吸着力が働く
一方、N極からの磁束が同一軟磁性材ヨークを介して隣接するS極に流れると、
ヨーク外面には磁気吸着力が発揮されないことになる。したがって、棒状永久磁
石と軟磁性材ヨークとの相対動によりヨーク外面での磁気吸着力を調整すること
ができる。また、軟磁性材ヨークは棒状永久磁石を包囲するので、ヨーク本体の
外周には軸方向に全部吸着面として形成することが可能で吸着面数に制限がない
。さらに、磁気吸着力による被吸着材の着脱操作も軸方向の相対動作であるので
、簡便な外部入力、例えばエアシリンダーや電気入力で操作でき、自動機械器具
への組入も容易となる。
【0006】
また、上記非磁性材で軸方向に分割される軟磁性材ヨークの分割ピッチを上記
棒状永久磁石の磁極ピッチに対応または略対応させると、上記棒状永久磁石とチ
ャック本体との軸方向相対動により異なる磁極を隣接する軟磁性材ヨーク区域に
分配して位置させることができ、その結果、N極から隣接するS極に流れる磁束
を有効に隣接するヨークに流すことができ、ヨーク外面に強磁気吸着力を発生さ
せることができる(図3参照)一方、異なる磁極を同一軟磁性材ヨーク区域に位
置させると、該軟磁性材ヨーク内に磁気回路の閉ループを形成し、ヨーク外面に
おける磁気吸着力を実質的に零にすることができる(図4参照)。
【0007】
本発明のマグネットチャックによれば、全面に磁気吸着力を発生させることが
できるが、各面における磁気吸着力を独立して制御することもできる。即ち、上
記チャック本体を外形多角柱体または円柱体、例えば4角柱に形成し、その対角
線を含む面にて磁気的に遮断分割し、各柱体にその長手方向に穿設された透孔を
介して各1本の上記軸方向に一定ピッチで複数個磁化方向が異なる磁極を形成し
てなる棒状永久磁石を挿入して複数のマグネットチャックを一体化するのがよい
(図10参照)。なお、各分割柱体に対し2本以上の棒状永久磁石を挿入してヨ
ーク外面における磁束密度を増強する場合は、例えば図11に示すように各棒状
磁石からの磁束がヨーク外面に流れやすいようにかつヨーク内部での磁束密度が
均一化されるように各棒状磁石の挿入位置を考慮する必要がある。また、図12
に示すようにチャック本体が8角柱体である場合および図13に示すように円柱
体である場合は中心に向かう面33にて長手方向に8分割または4分割し、各分
割柱体4に対し透孔10を介して上記棒状永久磁石2を挿入する。ここではチャ
ック本体の中心に装着穴11を形成し、非磁性材からなる図示しない回転軸を介
して所定位置に装着されるようになっている。
また、外形多面柱体の中心に軸方向に延びる透孔を形成して上記棒状永久磁石
を挿入し、該透孔からチャック本体外周に至る軸方向に延びる磁気遮断板を透孔
回りに所定角度で複数個配設して分割すれば、分割角度に対応した磁気吸着力を
各分割されたチャック本体面において発生消去することができる(図9参照)。
【0008】
他方、本発明によれば、軸方向に一定ピッチで複数個磁化方向が異なる磁極を
形成してなる棒状永久磁石と、該棒状永久磁石の周囲に近接して包囲する軟磁性
材ヨークを非磁性材にて軸方向に一定間隔で磁気的に遮断分割してなるチャック
本体とからなるマグネットチャックを並列接続して磁気吸着面を広く形成するこ
とができる(図5参照)。この並列接続した複合チャック本体を図14に示すよ
うに4角柱の各側面を形成するように配設して広い磁気吸着面を有する複合チャ
ック本体を形成することもできる。これらの複合チャック本体において、一方の
可動磁石を固定すれば、固定棒状磁石と可動棒状磁石の磁束の重量強化および打
ち消しにより磁気吸着力の強弱巾を大きくすることができる(図6参照)。即ち
、磁束打ち消し軸方向に一定ピッチで複数個磁化方向が異なる磁極を形成してな
る棒状永久磁石を偶数本とし、該棒状永久磁石が挿入され、それに近接して包囲
する軸方向に延びる透孔を複数個有し、軟磁性材ヨークを非磁性材にて軸方向に
一定間隔で磁気的に遮断分割してなるチャック本体にその半数を上記透孔を介し
て軟磁性材ヨークと対向して一体構造と固定し、残り半数を可動磁石としスライ
ド可能に挿入し、この可動磁石を軸方向に磁極ピッチ可動させ各棒状永久磁石の
同極を軟磁性材ヨークで連結して吸着力を生じさせ、また可動磁石を上記可動方
向に対し反対方向に磁極ピッチ可動させて軟磁性材ヨークを介して磁気回路の閉
ループを作り吸着力が実質的に零にするように構成されるとよい。
【0009】
上記棒状磁石の相対動はエアシリンダーや電気入力で操作できるが、棒状磁石
の少なくとも一部を電磁プランジャーの可動子として構成される電磁プランジャ
ーが、上記マグネットチャックと結合されて一体構造とすれば、電気操作入力で
上記棒状永久磁石をその軸方向に可動操作できる(図7参照)。その際、マグネ
ットチャックの少なくとも一方端にストッパーを設け、そのストッパーを軟磁性
材または永久磁石により形成すれば(図8参照)、操作状態を記憶できるので、
自動機械器具への組入も容易となる。
【0010】
【実施例】
図1は本発明の部分カット図を示す。2は軸方向に複数の磁極を設けた棒状永
久磁石、7は磁石2を操作する棒で磁石と一体となっている。
4は磁極ピッチ間隔で設けられた四角の軟磁性ヨーク、3は軟磁性ヨーク4の
間に設けられている非磁性材であって、軟磁性ヨーク4と非磁性材3は一体構造
で磁石2が入る穴(透孔)10が設けられている。
また一体構造の両端には磁石2の可動範囲を決めるストッパー5,6が設けら
れている。
【0011】
図2は棒状永久磁石2を示すもので、この磁石2はMn−Al−Cを主成分と
するものであって、押出方向に指向して磁化容易軸が並ぶ特性を有しているので
、軸方向に一定ピッチで複数個磁化方向が異なる磁極を一体的に形成した棒状永
久磁石とすることができる。その軸方向の特性は残留磁束密度0.55T(55
00ガウス)、保磁力200KA/m(2500エルステッド)、また径方向の
特性は残留磁束密度0.27T(2700ガウス)、保磁力144KA/m(1
800エルステッド)となっている。通常のフェライト磁石を繋ぎ合わせて棒状
永久磁石を形成することができる。その際、磁石と磁石とのつなぎ目には非磁性
材または軟磁性材を介在させて軸方向の磁束を外周面に流れ出るように構成する
必要がある。
【0012】
図2(a)図は棒状磁石2が円柱で磁極がリング状に着磁されているときの表
面磁束密度の変化状態を示し、(b)図はそのときの磁石2の内外部を流れる磁
束の状態を示す。ここで、表面磁束密度の最大振れ巾の生ずる間隔を磁極ピッチ
と呼ぶ。このように棒状Mn−Al−C材を用いて上記図2の着磁状態を完成す
るには、図2(c)に示すように棒状磁石材2を内挿する外筒51の外周に軸方
向に一定の磁極ピッチをもって巻回されたコイル52,52をもって構成された
着磁器50で着磁を行う。この着磁器50では磁極ピッチ間隔で磁化方向が反転
するように磁化電流の方向が設定されているので、図示の磁力線53,53が示
すように、磁石内部から磁石外周面へ磁力線が流れる。したがって、磁石材の軸
方向・径方向の特性を十分活用でき、かつ磁束を外周面に収束させることができ
る。
【0013】
さて、次に図1のカット断面である図3、図4を用いてマグネットチャックの
構造と動作を詳細に説明する。図3は吸着状態を示すもので、被吸着材1はマグ
ネットチャックの外側面に密着している。N極より出た磁速は近接して対向する
軟磁性材ヨーク4から外側に密着する被吸着材1に、次いでS極に近接し対向す
る隣接する軟磁性材ヨーク4からS極と流れる閉磁路を作る。したがって、被吸
着材1は軟磁性材ヨーク4に吸着される。9は磁極ピッチ(図2(a)参照)、
8は空隙で磁性ピッチの半分である。また、この状態では磁石2は一方のストッ
パー6と接している。図4は非吸着状態を示すもので、磁石2は一方のストッパ
ー5に接し、磁極ピッチの半分可動している。N極より出た磁束は同一軟磁性材
ヨーク4からS極へと流れる。したがって、軟磁性材ヨーク4の外側面には実質
的吸着力が零となる。実施例では4面の吸着面としているが、外側面は多面体で
もよく、また円柱状でもよい。
【0014】
図5は2本の棒状永久磁石を設ける実施例を示すもので、操作棒7を取り付け
た図示していないが棒状永久磁石2を2本設け、軟磁性材ヨーク4で磁気的に結
合され、外側面への磁束は増加し、吸着力も増加する。なお、複数の穴を設けて
複数の棒状永久磁石2を設けることもできる。
【0015】
図6は2本の棒状永久磁石を設け、着脱操作を1本の棒状磁石で行う実施例を
示すもので、棒状永久磁石2aはストッパー5、6に固定されている。一方の棒
状永久磁石2bは操作棒7が取り付けてある。図6の状態は吸着状態を示すもの
で、被吸着材1は図示していないが、2本の棒状磁石2a、2bの同極が軟磁性
材ヨーク4で磁気的に連結されている。磁石2bの端とストッパー5の間に磁極
ピッチと同じ空隙9がある。非吸着状態は図示していないが、空隙9が零の状態
、すなわち磁石2bがストッパー5に接する状態では、磁石2aと2bが軟磁性
材ヨーク4を介して閉磁路を作り、実質的に外側面の吸着力が零となる。なお、
磁石2a、2bを対で複数本設けることもできる。
【0016】
図7は外部よりの操作を電気入力で行う実施例を示すものである。また、構成
が示すように密閉構造が可能である。20は電磁プランジャーで非磁性材3と一
体となっている。21は駆動コイル、22は電気入力のリード線である。ストッ
パー5と一体となる23は軟磁性または永久磁石からなり、状態の記憶作用をす
るものである。
【0017】
図8は電磁プランジャーの動作を説明するもので、(a)図は電磁プランジャ
ーの吸引状態を示し、電磁プランジャー20と磁石2の各極が吸引状態となる。
この状態で励磁入力を零としても磁石2は電磁プランジャー20の鉄心に吸着し
、状態を保持する。
(b)図は電磁プランジャーの反発状態を示すもので、電磁プランジャー20と
磁石2の各極が反発し、磁石2は23に接することになる。この状態で励磁入力
を零としても磁石2とストッパー23とが吸着し、状態を保持することになる。
【0018】
図9は軟磁性材ヨークの外側面の吸着力を調整するもので、その正面の断面図
を示すものである。軟磁性材ヨーク4は非磁性材33で分割され、かつ一体構造
となっている。棒状永久磁石2からの磁束は図示している角度で各軟磁性材ヨー
クの外側面に供給され、その量に対応して吸着力が各面独立に調整される。なお
、実施以外の分割による調整も可能である。
【0019】
図10は軟磁性材ヨーク4の外側面の着脱操作を各面独立に行う実施例を示す
正面の断面図である。33は各外側面及び軟磁性材ヨーク4を磁気的に分割され
、かつ一体構造となっている。したがって、棒状永久磁石2a、2b、2c、2
dは磁気的に結合はなく、独立の各吸着面の着脱操作が可能である。
【0020】
【発明の効果】
以上のように本発明によれば、磁化方向の異なる磁極N極、S極を軸方向に交
互に複数極設け、好ましくは構成磁極の全部または大部分が同じ磁極ピッチを有
する棒状永久磁石と、上記永久磁石に近接し、かつ包囲する構造で軸方向に磁極
ピッチより少し短い軟磁性材ヨークを磁極ピッチ間隔で複数個並べ、この軟磁性
材ヨーク間に非磁性材を設けて一体構造とし、上記永久磁石をチャック本体に対
し軸方向に磁極ピッチの半ピッチ可動させ、磁極と軟磁性材ヨークを対向させて
軟磁性材ヨークの永久磁石に対向していない面に吸着力を生じさせ、また、上記
可動方向に対して反対方向に磁極ピッチの半ピッチ可動させて軟磁性材ヨークで
磁気的に磁極を短絡し、吸着力が実質的に零にするようにしたので、マグネット
チャックの外周が全部吸着面とすることが可能で吸着面数に制限がない。
また、着脱操作も軸方向に可動させるもので、簡単な外部入力、例えばエアシ
リンダーや電気入力で操作でき、自動機械器具への組入も容易である。Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a magnet chuck for fixing a soft magnetic material using magnetic attraction. 2. Description of the Related Art FIGS. 15 and 16 are schematic end views of a conventional rotary operation type magnetic chuck.
FIG. 15 shows a suction state, and FIG. 16 shows a non-suction state. Reference numeral 1 denotes a material to be adsorbed by a soft magnetic material. A through hole is formed in the center of a pair of soft magnetic material yokes 4 and 4 which sandwich a non-magnetic material 3 having a magnetic insulating ability so that the permanent magnet 2 can be rotated. The magnet chuck M can be closely attached to the suction surfaces 40 and 41 formed by insertion. FIG. 15 shows the attracted state, in which the magnetic flux from the N pole flows through the soft magnetic material 4, the attracting surface 40, the material to be attracted 1, the attracting surface 41, the soft magnetic material 4, and the S pole to form a closed magnetic path. Therefore, the adsorption surfaces 40 and 41 and the adsorption target material 1 are adsorbed. FIG. 16 shows a non-sucking state, in which the magnet 2 is rotated by 90 ° with respect to FIG. The magnetic flux from the N pole flows through the soft magnetic material 4 and the S pole. Therefore, suction surface 4
The magnetic flux does not substantially flow through 0 and 41, and no attracting action occurs. In FIG. 15, the other surfaces 42 and 43 of the soft magnetic material 4 form a closed magnetic path similarly to the above when the material 1 to be adsorbed is brought into close contact with each other, and similarly exhibit an attracting action. By the way, the other surfaces 44 and 45 of the soft magnetic material cannot form a closed magnetic path and have substantially no adsorptivity. [0003] However, with such a magnet rotating type configuration, only two suction surfaces can be used. Therefore, it has been difficult to perform operations such as in the case of a machine that requires multiple suction surfaces such as four or six surfaces. In addition, the attaching and detaching operation requires the rotation of the magnet, and the operation mechanism becomes complicated when incorporated in the automation of machinery and equipment. Accordingly, it is an object of the present invention to provide a magnet chuck that can be attracted on multiple sides and has a simple operation mechanism. Means for Solving the Problems In order to achieve this object, the present invention provides: (1) a rod-shaped permanent magnet having a plurality of magnetic poles having different magnetization directions at a constant pitch in the axial direction; The soft magnetic material yoke is magnetically interrupted and divided at regular intervals in the axial direction by a non-magnetic material. The chuck body that forms a polygonal or cylindrical outer shape is magnetically interrupted and split at the surface toward the center. One or more of the rod-shaped permanent magnets is inserted into each of the pillars formed through the through holes formed in the longitudinal direction, and a plurality of magnet chucks are integrated, and each rod-shaped permanent magnet is slid. The magnetic field strength of the magnetic circuit closed loop formed between the divided adjacent soft magnetic material yokes can be adjusted by the axial relative movement of the rod-shaped permanent magnet and the chuck body. It is characterized by Magnet chuck that. (2) A bar-shaped permanent magnet formed by forming a plurality of magnetic poles having different magnetization directions at a constant pitch in the axial direction, and a soft magnetic material yoke which is magnetically cut off and divided at a constant interval in the axial direction by a non-magnetic material. The chuck body having a polygonal or cylindrical outer shape has the rod-shaped permanent magnet inserted at the center thereof, and has a through hole extending in the axial direction which is close to and surrounds it.
A plurality of magnetic shielding plates extending in the axial direction extending from the through hole to the outer periphery of the chuck body are disposed at a predetermined angle around the through hole, and the bar-shaped permanent magnet is slid by a magnetic attraction force corresponding to the division angle. The magnetic field strength of a magnetic circuit closed loop formed between the divided adjacent soft magnetic material yokes can be adjusted by an axial relative movement of the rod-shaped permanent magnet and the chuck body. And a magnetic chuck. (3) A rod-shaped permanent magnet formed by forming a plurality of magnetic poles having different magnetization directions at a constant pitch in the axial direction, and a soft magnetic material yoke surrounding and surrounding the rod-shaped permanent magnet in the axial direction with a non-magnetic material A magnetic chuck consisting of a chuck body divided magnetically at predetermined intervals is connected in parallel to form a wide magnetic attraction surface, and the rod-shaped permanent magnet and the chuck body are divided by the axial relative movement. A magnet chuck characterized in that the magnetic field strength of a magnetic circuit closed loop formed between adjacent soft magnetic material yokes can be adjusted. According to the above configuration, a rod-shaped permanent magnet formed by forming a plurality of magnetic poles having different magnetization directions at a constant pitch in the axial direction is magnetically cut off and divided at a constant interval in the axial direction by a non-magnetic material. When the magnetic flux flowing from the N pole of the bar-shaped permanent magnet to the adjacent S pole flows from the opposing soft magnetic yoke to the adjacent soft magnetic yoke and reaches the adjacent S pole due to the relative position with respect to the soft magnetic material yoke. When the magnetic attracting force acts on the material to be adsorbed located on the outer surface of the yoke, while the magnetic flux from the N pole flows to the adjacent S pole via the same soft magnetic material yoke,
No magnetic attraction force is exerted on the outer surface of the yoke. Therefore, the magnetic attraction force on the outer surface of the yoke can be adjusted by the relative movement between the bar-shaped permanent magnet and the soft magnetic material yoke. Further, since the soft magnetic material yoke surrounds the bar-shaped permanent magnet, it can be formed as an attraction surface all around the yoke main body in the axial direction, and the number of attraction surfaces is not limited. Furthermore, since the operation of attaching and detaching the material to be adsorbed by the magnetic attraction force is a relative operation in the axial direction, it can be operated by a simple external input, for example, an air cylinder or an electric input, and can be easily incorporated into an automatic machine. In addition, when the division pitch of the soft magnetic material yoke divided in the axial direction by the non-magnetic material corresponds to or substantially corresponds to the magnetic pole pitch of the rod-shaped permanent magnet, the axial direction of the rod-shaped permanent magnet and the chuck body is changed. Due to the relative movement, different magnetic poles can be distributed and located in the adjacent soft magnetic material yoke area. As a result, the magnetic flux flowing from the N pole to the adjacent S pole can effectively flow to the adjacent yoke, On the other hand, when a different magnetic pole is located in the same soft magnetic material yoke area, a closed loop of a magnetic circuit is formed in the soft magnetic material yoke, and a strong magnetic attraction force is generated on the outer surface of the yoke (see FIG. 3). The magnetic attraction force can be made substantially zero (see FIG. 4). According to the magnet chuck of the present invention, the magnetic attraction force can be generated on the entire surface, but the magnetic attraction force on each surface can be controlled independently. That is, the chuck main body is formed into an external polygonal prism or a cylindrical body, for example, a quadrangular prism, and is magnetically cut off and divided at a plane including a diagonal line of the chuck main body. It is preferable that a plurality of magnetic chucks are integrated by inserting a bar-shaped permanent magnet having a plurality of magnetic poles having different magnetization directions at a constant pitch in the axial direction through each one (see FIG. 10). When two or more rod-shaped permanent magnets are inserted into each of the divided pillars to increase the magnetic flux density on the outer surface of the yoke, for example, as shown in FIG. It is necessary to consider the insertion position of each bar-shaped magnet so that the magnetic flux density inside the yoke is uniform. FIG.
In the case where the chuck body is an octagonal prism as shown in FIG. 13 and in the case where the chuck body is a cylinder as shown in FIG. The rod-shaped permanent magnet 2 is inserted through the through hole 10. Here, a mounting hole 11 is formed in the center of the chuck body, and is mounted at a predetermined position via a rotating shaft (not shown) made of a non-magnetic material. Also, a through hole extending in the axial direction is formed at the center of the outer polygonal column, the rod-shaped permanent magnet is inserted, and a magnetic shielding plate extending in the axial direction from the through hole to the outer periphery of the chuck body is formed at a predetermined angle around the through hole. If a plurality of pieces are arranged and divided, the magnetic attraction force corresponding to the division angle can be generated and erased on each of the divided chuck body surfaces (see FIG. 9). On the other hand, according to the present invention, a bar-shaped permanent magnet formed by forming a plurality of magnetic poles having different magnetization directions at a constant pitch in the axial direction, and a soft magnetic material yoke surrounding and surrounding the bar-shaped permanent magnet And a chuck body composed of a non-magnetic material and a chuck body which is magnetically cut off and divided at predetermined intervals in the axial direction, and connected in parallel to form a wide magnetic attraction surface (see FIG. 5). As shown in FIG. 14, the composite chuck bodies connected in parallel can be arranged so as to form each side surface of a quadrangular prism to form a composite chuck body having a wide magnetic attraction surface. In these composite chuck bodies, if one movable magnet is fixed, the strength of the magnetic attraction force can be increased by strengthening and canceling out the weight of the magnetic flux between the fixed rod-shaped magnet and the movable rod-shaped magnet (see FIG. 6). That is, an even number of rod-shaped permanent magnets are formed by forming a plurality of magnetic poles having different magnetization directions at a constant pitch in the magnetic flux canceling axial direction, and the rod-shaped permanent magnets are inserted therein, and the through holes extending in the axial direction surround in close proximity thereto. And a half of the chuck body, which is made by magnetically interrupting and dividing the soft magnetic material yoke at predetermined intervals in the axial direction with a non-magnetic material, faces the soft magnetic material yoke through the through hole. It is fixed to the integrated structure, the other half is slidably inserted as a movable magnet, and this movable magnet is moved in the axial direction with a magnetic pole pitch, and the same pole of each bar-shaped permanent magnet is connected by a soft magnetic material yoke to generate an attractive force. Further, it is preferable that the movable magnet be moved in the direction of the magnetic pole in the direction opposite to the movable direction to form a closed loop of the magnetic circuit via the soft magnetic material yoke so that the attraction force becomes substantially zero. The relative movement of the rod-shaped magnet can be operated by an air cylinder or an electric input, but an electromagnetic plunger having at least a part of the rod-shaped magnet as a movable element of the electromagnetic plunger is connected to the magnet chuck to form an integral body. With this structure, the rod-shaped permanent magnet can be movably operated in the axial direction by an electric operation input (see FIG. 7). At this time, if a stopper is provided on at least one end of the magnet chuck, and the stopper is formed of a soft magnetic material or a permanent magnet (see FIG. 8), the operation state can be stored.
Incorporation into automatic machine equipment is also facilitated. FIG. 1 shows a partial cutaway view of the present invention. 2 is a bar-shaped permanent magnet provided with a plurality of magnetic poles in the axial direction, and 7 is a bar for operating the magnet 2, which is integrated with the magnet. Reference numeral 4 denotes a square soft magnetic yoke provided at magnetic pole pitch intervals, and reference numeral 3 denotes a nonmagnetic material provided between the soft magnetic yokes 4. The soft magnetic yoke 4 and the nonmagnetic material 3 have an integral structure. (Through hole) 10 is provided. At both ends of the integrated structure, stoppers 5 and 6 for determining the movable range of the magnet 2 are provided. FIG. 2 shows a rod-shaped permanent magnet 2. The magnet 2 is mainly composed of Mn—Al—C, and has a characteristic in which the axes of easy magnetization are aligned in the extrusion direction. Therefore, a rod-shaped permanent magnet in which a plurality of magnetic poles having different magnetization directions at a constant pitch in the axial direction are integrally formed can be obtained. Its axial characteristic is a residual magnetic flux density of 0.55T (55
00 gauss), coercive force 200 KA / m (2500 oersted), radial characteristics are residual magnetic flux density 0.27 T (2700 gauss), coercive force 144 KA / m (1
800 Oersted). A rod-shaped permanent magnet can be formed by joining ordinary ferrite magnets. At that time, it is necessary to provide a structure in which a non-magnetic material or a soft magnetic material is interposed at the joint between the magnets so that the magnetic flux in the axial direction flows out to the outer peripheral surface. FIG. 2A shows the state of change of the surface magnetic flux density when the rod-shaped magnet 2 is a column and the magnetic poles are magnetized in a ring shape, and FIG. 2B shows the inside and outside of the magnet 2 at that time. Shows the state of the magnetic flux flowing through. Here, the interval at which the maximum amplitude of the surface magnetic flux occurs is called a magnetic pole pitch. In order to complete the magnetized state of FIG. 2 using the rod-shaped Mn-Al-C material in this way, as shown in FIG. 2C, a shaft is attached to the outer periphery of the outer cylinder 51 into which the rod-shaped magnet material 2 is inserted. Magnetization is performed by a magnetizer 50 composed of coils 52, 52 wound with a constant magnetic pole pitch in the direction. In this magnetizer 50, the direction of the magnetizing current is set so that the magnetization direction is reversed at the magnetic pole pitch interval, so that the lines of magnetic force flow from the inside of the magnet to the outer peripheral surface of the magnet as indicated by the lines of magnetic force 53 shown in the figure. Therefore, the characteristics of the magnet material in the axial direction and the radial direction can be sufficiently utilized, and the magnetic flux can be converged on the outer peripheral surface. Next, the structure and operation of the magnet chuck will be described in detail with reference to FIGS. 3 and 4, which are cross-sectional views of FIG. FIG. 3 shows the attracted state, in which the adsorbed material 1 is in close contact with the outer surface of the magnet chuck. The magnetic velocity generated from the N pole flows from the soft magnetic material yoke 4 that is close to and opposed to the adsorbed material 1 that is in close contact with the outside, and then from the adjacent soft magnetic material yoke 4 that is close to and opposed to the S pole. Make a road. Therefore, the material to be adsorbed 1 is adsorbed by the soft magnetic material yoke 4. 9 is a magnetic pole pitch (see FIG. 2A),
Numeral 8 is a gap which is half of the magnetic pitch. In this state, the magnet 2 is in contact with one of the stoppers 6. FIG. 4 shows a non-adsorbed state, in which the magnet 2 is in contact with one of the stoppers 5 and is movable by half the magnetic pole pitch. The magnetic flux from the N pole flows from the same soft magnetic material yoke 4 to the S pole. Therefore, the outer surface of the soft magnetic material yoke 4 has a substantially zero attractive force. In the embodiment, four suction surfaces are used, but the outer surface may be a polyhedron or a column. FIG. 5 shows an embodiment in which two bar-shaped permanent magnets are provided. Although not shown, two bar-shaped permanent magnets 2 provided with an operating rod 7 are provided, and a soft magnetic material yoke 4 is used for magnetically. As a result, the magnetic flux to the outer surface increases, and the attraction force also increases. Note that a plurality of holes may be provided to provide a plurality of bar-shaped permanent magnets 2. FIG. 6 shows an embodiment in which two bar-shaped permanent magnets are provided and the attaching / detaching operation is performed by one bar-shaped magnet. The bar-shaped permanent magnet 2 a is fixed to stoppers 5 and 6. One rod-shaped permanent magnet 2b has an operation rod 7 attached thereto. The state of FIG. 6 shows the attracted state, and the material 1 to be attracted is not shown, but the same poles of the two rod-shaped magnets 2 a and 2 b are magnetically connected by the soft magnetic material yoke 4. There is a gap 9 between the end of the magnet 2b and the stopper 5 which is equal to the magnetic pole pitch. Although the non-adsorbed state is not shown, when the gap 9 is zero, that is, when the magnet 2b is in contact with the stopper 5, the magnets 2a and 2b form a closed magnetic path via the soft magnetic material yoke 4, and The suction force on the side surface becomes zero. Note that a plurality of magnets 2a and 2b may be provided in pairs. FIG. 7 shows an embodiment in which an external operation is performed by an electric input. Also, a closed structure is possible as shown by the configuration. Reference numeral 20 denotes an electromagnetic plunger integrated with the non-magnetic material 3. Reference numeral 21 denotes a drive coil, and reference numeral 22 denotes an electric input lead wire. 23 integrated with the stopper 5 is made of a soft magnet or a permanent magnet, and has a function of storing a state. FIG. 8 illustrates the operation of the electromagnetic plunger. FIG. 8A shows a state in which the electromagnetic plunger is attracted, and the electromagnetic plunger 20 and each pole of the magnet 2 are in the attracted state.
In this state, even if the excitation input is set to zero, the magnet 2 is attracted to the iron core of the electromagnetic plunger 20 and maintains the state. FIG. 3B shows the repulsion state of the electromagnetic plunger. The poles of the electromagnetic plunger 20 and the magnet 2 repel, and the magnet 2 comes into contact with 23. In this state, even if the excitation input is set to zero, the magnet 2 and the stopper 23 are attracted and the state is maintained. FIG. 9 is a sectional view of the front surface for adjusting the attraction force of the outer surface of the soft magnetic material yoke. The soft magnetic material yoke 4 is divided by the non-magnetic material 33 and has an integral structure. The magnetic flux from the bar-shaped permanent magnet 2 is supplied to the outer surface of each soft magnetic material yoke at the illustrated angle, and the attraction force is adjusted independently for each surface according to the amount. Adjustment by division other than implementation is also possible. FIG. 10 is a front sectional view showing an embodiment in which the attaching / detaching operation of the outer surface of the soft magnetic material yoke 4 is performed independently for each surface. Numeral 33 indicates that each outer surface and the soft magnetic material yoke 4 are magnetically divided and have an integral structure. Therefore, the bar-shaped permanent magnets 2a, 2b, 2c, 2
d is not magnetically coupled, and independent attachment / detachment operations of each suction surface are possible. As described above, according to the present invention, a plurality of magnetic north poles and south magnetic poles having different magnetization directions are provided alternately in the axial direction, and preferably all or most of the constituent magnetic poles are the same. A plurality of bar-shaped permanent magnets having a pitch, and a plurality of soft magnetic material yokes that are close to and surround the permanent magnet and that are slightly shorter than the magnetic pole pitch in the axial direction are arranged at magnetic pole pitch intervals. The permanent magnet is moved in the axial direction by a half pitch of the magnetic pole pitch in the axial direction with respect to the chuck body, and the magnetic pole and the soft magnetic material yoke are opposed to each other, so that the surface of the soft magnetic material yoke that is not opposed to the permanent magnet is provided. The magnetic pole is short-circuited magnetically by the soft magnetic material yoke by moving the magnetic pole half pitch in the opposite direction to the above-mentioned movable direction so that the attractive force becomes substantially zero. I did There is no restriction on the suction surface number can periphery of the net chuck and total adsorption surface. In addition, the attachment / detachment operation can be performed in the axial direction, and can be operated by a simple external input, for example, an air cylinder or an electric input, and can be easily incorporated into an automatic machine.
【図面の簡単な説明】
【図1】
本発明の一実施例であるマグネットチャックの部分断面斜視図、
【図2】
図1に示す棒状永久磁石の着磁状態を示すグラフ(a)および模式図(b)、
着脱工程を示す断面図、
【図3】
図1に示すマグネットチャックの動作説明図で、吸着状態を示す。
【図4】
図3と同様の動作説明図で、非吸着状態を示す。
【図5】
本発明の他の実施例である複合マグネットチャックの斜視図、
【図6】
本発明の複合マグネットチャックの他の実施例の断面図、
【図7】
本発明のマグネットチャックの駆動操作を説明するための他の実施例の部分断
面斜視図、
【図8】
図7のマグネットチャックの動作説明のための断面図、
【図9】
本発明に係る面吸着力制御の行なえるマグネットチャックの端面図、
【図10】
本発明に係る独立して各側面の吸着力制御ができる他の複合マグネットチャッ
クの端面図で、チャック本体が4角柱である場合を示す。
【図11】
本発明に係る独立して各側面の吸着力制御ができる他の複合マグネットチャッ
クの端面図で、チャック本体が4角柱で各分割柱に複数の棒状永久磁石が挿入さ
れる場合を示す。
【図12】
本発明に係る独立して各側面の吸着力制御ができる他の複合マグネットチャッ
クの端面図で、チャック本体が8角柱である場合を示す。
【図13】
本発明に係る独立して各側面の吸着力制御ができる他の複合マグネットチャッ
クの端面図で、チャック本体が円柱である場合を示す。
【図14】
本発明に係る独立して各側面の吸着力制御ができる他の複合マグネットチャッ
クの端面図で、チャック本体の各面を複合体で形成した場合を示す。
【図15】
従来の回転操作式マグネットチャックの動作説明のための端面図であって、吸
着状態を示す。
【図16】
図15と同一のマグネットチャックの動作説明のための端面図で、非吸着状態
を示す。
【符号の説明】
1 被吸着材
2 永久磁石
3 非磁性材
4 軟磁性材ヨーク
5,6 ストッパー
7 操作棒
10 透孔
20 電磁プランジャーBRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial cross-sectional perspective view of a magnet chuck according to one embodiment of the present invention, FIG. 2 is a graph (a) showing a magnetized state of a bar-shaped permanent magnet shown in FIG. Figure (b),
FIG. 3 is a cross-sectional view showing an attaching / detaching process. FIG. 3 is an operation explanatory view of the magnet chuck shown in FIG. FIG. 4 is an operation explanatory view similar to FIG. 3, showing a non-sucking state. FIG. 5 is a perspective view of a composite magnet chuck according to another embodiment of the present invention; FIG. 6 is a cross-sectional view of another embodiment of the composite magnet chuck of the present invention; FIG. FIG. 8 is a partial cross-sectional perspective view of another embodiment for explaining the operation, FIG. 8 is a cross-sectional view for explaining the operation of the magnet chuck of FIG. 7, and FIG. 9 is a magnet capable of controlling the surface attraction force according to the present invention. FIG. 10 is an end view of the chuck, and FIG. 10 is an end view of another composite magnet chuck according to the present invention, which can independently control the suction force of each side surface, showing a case where the chuck body is a quadrangular prism. FIG. 11 is an end view of another composite magnet chuck according to the present invention capable of independently controlling the attraction force of each side surface, in a case where the chuck body is a quadrangular prism and a plurality of rod-shaped permanent magnets are inserted into each divided column. Show. FIG. 12 is an end view of another composite magnet chuck according to the present invention capable of independently controlling the attraction force of each side surface, showing a case where the chuck body is an octagonal prism. FIG. 13 is an end view of another composite magnet chuck according to the present invention capable of independently controlling the attraction force of each side surface, showing a case where the chuck body is a cylinder. FIG. 14 is an end view of another composite magnet chuck according to the present invention that can independently control the attraction force of each side surface, and shows a case where each surface of the chuck body is formed of a composite. FIG. 15 is an end view for explaining the operation of the conventional rotary operation type magnet chuck, and shows a suction state. FIG. 16 is an end view for explaining the operation of the same magnetic chuck as that of FIG. 15 and shows a non-sucked state. [Description of Signs] 1 Adsorbed material 2 Permanent magnet 3 Non-magnetic material 4 Soft magnetic material yoke 5, 6 Stopper 7 Operation rod 10 Through hole 20 Electromagnetic plunger
Claims (1)
なる棒状永久磁石と、軟磁性材ヨークを非磁性材にて軸方向に一定間隔で磁気的
に遮断分割してなり、外形多角柱体または円柱体をなすチャック本体は、その中
心に向かう面にて磁気的に遮断分割して形成される各柱体にその長手方向に穿設
された透孔を介して各1本以上の上記棒状永久磁石を挿入して複数のマグネット
チャックを一体化し、各棒状永久磁石をスライドさせるように構成し、上記棒状
永久磁石とチャック本体との軸方向相対動により上記分割された隣接する軟磁性
材ヨーク間を渡って形成される磁気回路閉ループの磁界強度を調整可能に構成し
てなることを特徴とするマグネットチャック。 【請求項2】 軸方向に一定ピッチで複数個磁化方向が異なる磁極を形成して
なる棒状永久磁石と、軟磁性材ヨークを非磁性材にて軸方向に一定間隔で磁気的
に遮断分割してなり、外形多角柱体または円柱体をなすチャック本体は、その中
心に上記棒状永久磁石が挿入され、それに近接しかつ包囲する軸方向に延びる透
孔を有し、該透孔からチャック本体外周に至る軸方向に延びる磁気遮断板を透孔
回りに所定角度で複数個配設し、その分割角度に対応した磁気吸着力を上記棒状
永久磁石をスライドさせるように構成し、上記棒状永久磁石とチャック本体との
軸方向相対動により上記分割された隣接する軟磁性材ヨーク間を渡って形成され
る磁気回路閉ループの磁界強度を調整可能に構成してなることを特徴とするマグ
ネットチャック。 【請求項3】 軸方向に一定ピッチで複数個磁化方向が異なる磁極を形成して
なる棒状永久磁石と、該棒状永久磁石の周囲に近接して包囲する軟磁性材ヨーク
を非磁性材にて軸方向に一定間隔で磁気的に遮断分割してなるチャック本体とか
らなるマグネットチャックを並列接続して広く磁気吸着面を形成し、上記棒状永
久磁石とチャック本体との軸方向相対動により上記分割された隣接する軟磁性材
ヨーク間を渡って形成される磁気回路閉ループの磁界強度を調整可能に構成して
なることを特徴とするマグネットチャック。 【請求項4】 軸方向に一定ピッチで複数個磁化方向が異なる磁極を形成して
なる棒状永久磁石を偶数本とし、該棒状永久磁石が挿入され、それに近接して包
囲する軸方向に延びる透孔を複数個有し、軟磁性材ヨークを非磁性材にて軸方向
に一定間隔で磁気的に遮断分割してなるチャック本体にその半数を上記透孔を介
して軟磁性材ヨークと対向して一体構造と固定し、残り半数を可動磁石としスラ
イド可能に挿入し、この可動磁石を軸方向に磁極ピッチ可動させ各棒状永久磁石
の同極を軟磁性材ヨークで連結して吸着力を生じさせ、また可動磁石を上記可動
方向に対し反対方向に磁極ピッチ可動させて軟磁性材ヨークを介して磁気回路の
閉ループを作り吸着力が実質的に零にするように構成されるマグネットチャック
。 【請求項5】 棒状磁石の少なくとも一部を電磁プランジャーの可動子として
構成される電磁プランジャーが、上記マグネットチャックと結合されて一体構造
とし、電気操作入力で上記棒状永久磁石をその軸方向に可動操作できるように構
成される請求項1〜4のいずれかに記載のマグネットチャック。 【請求項6】 マグネットチャックの少なくとも一方端に軟磁性材または永久
磁石を設けてストッパーとし、操作状態を記憶できるように構成される請求項1
〜5記載のマグネットチャック。Claims: 1. A bar-shaped permanent magnet formed by forming a plurality of magnetic poles having different magnetization directions at a constant pitch in an axial direction, and a soft magnetic material yoke made of a non-magnetic material at regular intervals in an axial direction. The chuck body, which is magnetically cut off and divided and forms an external polygonal column or a cylindrical body, is bored in the longitudinal direction of each column formed by magnetically cut off and split on the surface toward the center thereof. A plurality of magnet chucks are integrated by inserting one or more of the rod-shaped permanent magnets through the through holes, and the rod-shaped permanent magnets are configured to slide, and the axial direction between the rod-shaped permanent magnets and the chuck body is adjusted. A magnetic chuck characterized in that the magnetic field strength of a magnetic circuit closed loop formed between adjacent divided soft magnetic yokes by relative movement can be adjusted. 2. A bar-shaped permanent magnet in which a plurality of magnetic poles having different magnetization directions are formed at a constant pitch in the axial direction, and a soft magnetic material yoke are magnetically cut off and divided at regular intervals in the axial direction by a non-magnetic material. The chuck body having a polygonal columnar shape or a cylindrical shape has a through hole in which the rod-shaped permanent magnet is inserted at the center thereof and which is close to and surrounds and extends in the axial direction. A plurality of magnetic shielding plates extending in the axial direction leading to the axial direction are arranged at a predetermined angle around the through hole, and the magnetic attraction force corresponding to the division angle is configured to slide the bar-shaped permanent magnet, and the rod-shaped permanent magnet and A magnet chuck characterized in that the magnetic field strength of a magnetic circuit closed loop formed between said divided soft magnetic material yokes can be adjusted by an axial relative movement with respect to the chuck body. 3. A bar-shaped permanent magnet formed by forming a plurality of magnetic poles having different magnetization directions at a constant pitch in the axial direction, and a soft magnetic yoke surrounding and surrounding the bar-shaped permanent magnet by a non-magnetic material. A magnet chuck composed of a chuck body magnetically interrupted and divided at constant intervals in the axial direction is connected in parallel to form a wide magnetic attraction surface, and the above-mentioned division is performed by relative axial movement of the rod-shaped permanent magnet and the chuck body. A magnetic chuck, wherein the magnetic field strength of a magnetic circuit closed loop formed between adjacent soft magnetic material yokes is adjustable. 4. An even number of rod-shaped permanent magnets each having a plurality of magnetic poles having different magnetization directions at a constant pitch in the axial direction, and the rod-shaped permanent magnets are inserted, and the rod-shaped permanent magnets extend in the axial direction surrounding the rod-shaped permanent magnets. A half of the chuck body having a plurality of holes and a soft magnetic material yoke which is magnetically cut off and divided at predetermined intervals in the axial direction with a non-magnetic material is opposed to the soft magnetic material yoke through the through hole. And the other half are slidably inserted as movable magnets.The movable magnets can be moved in the magnetic pole pitch in the axial direction, and the same pole of each bar-shaped permanent magnet is connected by a soft magnetic material yoke to generate an attractive force. A magnet chuck configured to move the movable magnet in a magnetic pole pitch in a direction opposite to the movable direction to form a closed loop of a magnetic circuit via a soft magnetic material yoke so that the attraction force becomes substantially zero. 5. An electromagnetic plunger, wherein at least a part of the rod-shaped magnet is configured as a movable element of an electromagnetic plunger, is connected to the magnet chuck to form an integral structure, and the electric rod is used to move the rod-shaped permanent magnet in its axial direction. The magnet chuck according to any one of claims 1 to 4, wherein the magnet chuck is configured to be movable. 6. A structure in which a soft magnetic material or a permanent magnet is provided at at least one end of the magnet chuck to serve as a stopper, so that an operation state can be stored.
A magnet chuck according to any one of claims 1 to 5.
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2608002B2 (en) | Magnet chuck | |
US7859144B1 (en) | Low frequency electromagnetic motor to create or cancel a low frequency vibration | |
JPS6325691Y2 (en) | ||
JP2534586B2 (en) | Small single-phase electromagnetic actuator | |
US6094119A (en) | Permanent magnet apparatus for magnetizing multipole magnets | |
JP4066040B2 (en) | Electromagnet and operation mechanism of switchgear using the same | |
PL108574B1 (en) | Magnetic chuck with permanent and electro-permanent magnets | |
US5252924A (en) | Magnetic field generating apparatus for MRI | |
JP3553598B2 (en) | Short stroke single phase electromagnetic actuator with good power / power ratio | |
EP0379075B1 (en) | Magnetic circuit | |
US4306206A (en) | Linear solenoid device | |
JP2006222438A (en) | Electromagnet and operating mechanism of switching device using the same | |
JP2003088082A (en) | Linear motor | |
JP2001112228A (en) | Movable magnet type linear actuator | |
JPH06284670A (en) | Linear actuator | |
JP2608002C (en) | ||
KR20030020788A (en) | A Linear Actuating Device Using Solenoid And Permanent Magnet | |
JPH03195343A (en) | Magnetizer for step motor | |
USRE35565E (en) | Magnetic field generating apparatus for MRI | |
JPS6138166Y2 (en) | ||
JPH11103568A (en) | Movable magnet type linear actuator | |
JP3750127B2 (en) | Voice coil linear motor | |
JPH0244482Y2 (en) | ||
JPS6050442A (en) | Magnetic-field generator for nuclear-magnetic- resonance imaging apparatus | |
JPH07277664A (en) | Lifting device |