JP2607568B2 - Novel conductive polymer and secondary battery using the same as negative electrode material - Google Patents

Novel conductive polymer and secondary battery using the same as negative electrode material

Info

Publication number
JP2607568B2
JP2607568B2 JP62313706A JP31370687A JP2607568B2 JP 2607568 B2 JP2607568 B2 JP 2607568B2 JP 62313706 A JP62313706 A JP 62313706A JP 31370687 A JP31370687 A JP 31370687A JP 2607568 B2 JP2607568 B2 JP 2607568B2
Authority
JP
Japan
Prior art keywords
conductive polymer
negative electrode
secondary battery
electrode material
novel conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62313706A
Other languages
Japanese (ja)
Other versions
JPH01154462A (en
Inventor
亨 柏木
幸司 花房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62313706A priority Critical patent/JP2607568B2/en
Publication of JPH01154462A publication Critical patent/JPH01154462A/en
Application granted granted Critical
Publication of JP2607568B2 publication Critical patent/JP2607568B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は新規な導電性重合物およびそれを負極材料
に用いる二次電池に関するものであり、特に、カチオン
ドーピングが可能な新規な導電性重合物とそれを負極材
料に用いる二次電池に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel conductive polymer and a secondary battery using the same as a negative electrode material, and in particular, to a novel conductive polymer capable of cation doping. And a secondary battery using the same as a negative electrode material.

[従来の技術] 従来、二次電池に使用できる導電性重合物としては、
ヘテロ原子を含む五員環構造または芳香環構造のモノマ
ーを電解重合法により重合させて作製したポリピロー
ル、ポリチオフェン、ポリアニリン等、あるいは化学重
合法により作製したポリアセチレン等がよく知られてい
る。
[Prior art] Conventionally, conductive polymers that can be used in secondary batteries include:
Polypyrrole, polythiophene, polyaniline, and the like produced by polymerizing a monomer having a five-membered ring structure or an aromatic ring structure containing a hetero atom by an electrolytic polymerization method, and polyacetylene produced by a chemical polymerization method are well known.

[発明が解決しようとする問題点] しかしながら、上記の重合物を二次電池の負極材料と
して使用する検討は、必ずしも良好な進展を見ていな
い。負極材料として用いるためには、重合体への可逆的
なカチオンドーピング−脱ドーピングが可能でなればな
らないが、ポリピロール、ポリチオフェン、ポリアニリ
ンはともにアニオンドーピングに対しては比較的安定で
あっても、カチオンドーピングに対しては不安定もしく
は不可能である。ポリアセチレンは、アニオンドーピン
グ、カチオンドーピングともに可能であるが、空気に接
触すると、分解を起こすという材料自体の本質的な問題
がある。それゆえ、二次電池の検討においては、これら
の重合物を正極材料に用い、負極材料にはリチウム金属
を用いるのが一般的である。しかし、リチウムは空気、
水に対して活性であり、取扱いが不便な上、取扱い時お
よび廃棄時に危険性を伴う。そこで、可逆的で安定なカ
チオンドーピングが可能であり、空気中で劣化のない新
規な導電性重合体を作製すれば二次電池の負極材料とし
て極めて有望であるばかりか、導電性重合物の新しい用
途展開が可能となる。
[Problems to be Solved by the Invention] However, studies on the use of the above polymer as a negative electrode material of a secondary battery have not always seen good progress. In order to be used as a negative electrode material, reversible cation doping-dedoping of the polymer must be possible, but polypyrrole, polythiophene, and polyaniline are both relatively stable to anion doping, but cation Unstable or impossible for doping. Polyacetylene is capable of both anion doping and cation doping, but has an essential problem of the material itself that it decomposes on contact with air. Therefore, in studies of secondary batteries, it is common to use these polymers for the positive electrode material and lithium metal for the negative electrode material. But lithium is air,
Active in water, inconvenient to handle, and hazardous during handling and disposal. Therefore, if a new conductive polymer capable of performing reversible and stable cation doping and not deteriorating in air is produced, it is not only promising as a negative electrode material for secondary batteries, but also a new conductive polymer. Applications can be developed.

本発明はこのような観点の下になされたもので、可逆
的で安定なカチオンドーピングが可能であり、さらに空
気中で劣化のない新規な導電性重合体およびこの新規な
導電性重合体を負極材料に用いる二次電池を提供するこ
とを目的とする。
The present invention has been made from such a viewpoint, a reversible and stable cation doping is possible, furthermore, a novel conductive polymer which does not deteriorate in the air and this novel conductive polymer as a negative electrode An object is to provide a secondary battery used for a material.

[問題点を解決するための手段] これまでに報告されている二次電池の正極材料の中で
最も安定で、深いドーピング深度が得られている重合物
はポリアニリンである。ポリアニリンのアニオンドーピ
ングの機構は以下のように推定されている。
[Means for Solving the Problems] Among the positive electrode materials for secondary batteries that have been reported so far, polyaniline is the most stable polymer having a deep doping depth. The mechanism of anion doping of polyaniline is estimated as follows.

式中、A-はBF4 -、ClO4 -のごとき適当なアニオンを表
わす。上式のごとく、窒素原子の酸化還元によって、
ドーピング−脱ドーピングが起こるので、ポリマー鎖の
分解が起こりにくく、可逆的なドーピング、深いドーピ
ングが可能となるわけである。これに対し、ポリピロー
ル、ポリチオフェン、ポリアセチレン等はポリマーの共
役二重結合からの電子授受反応であるため、ドーピング
−脱ドーピングによる分解が起こりやすく、非可逆的な
ドーピングとなり、さらにドーピング深さも大きくな
い。したがって、カチオンドーピング可能な重合物を作
製するにあたっても、ポリアニリンと類似のものを選ぶ
のが好ましいと思われる。カチオンドーピングのために
は、還元によって負に帯電する原子を含むことが必要で
あるので、ポリアニリンの場合から類推すると、窒素原
子を硼素原子に置き換えた下記のような重合体を合成す
れば、式に示すようなドーピング機構によって、新規な
導電性重合物が得られるであろうと思い至った。
Wherein, A - is BF 4 -, ClO 4 - represents a suitable anion, such as. As shown in the above equation, the oxidation and reduction of the nitrogen atom
Since doping and undoping occur, decomposition of the polymer chain hardly occurs, and reversible doping and deep doping become possible. On the other hand, polypyrrole, polythiophene, polyacetylene, and the like are electron transfer reactions from the conjugated double bond of the polymer, so that they are easily decomposed by doping-undoping, are irreversible, and have a small doping depth. Therefore, it seems that it is preferable to select a polymer similar to polyaniline in preparing a polymer that can be cationically doped. For cation doping, it is necessary to include atoms that are negatively charged by reduction, so by analogy with the case of polyaniline, if the following polymer in which a nitrogen atom is replaced with a boron atom is synthesized, the following formula can be obtained. It was thought that a new conductive polymer would be obtained by the doping mechanism as shown in FIG.

上式において、Xは硼素元素と結合しうる置換基また
は元素を示し、C+はアルカリ金属のイオン、アルカリ土
類金属のイオンH+イオンなどを表わす。
In the above formula, X represents a substituent or an element capable of binding to the boron element, and C + represents an alkali metal ion, an alkaline earth metal ion H + ion, or the like.

なお、上記ドーピング機構は以下の根拠に基づく。硼
素は通常、原子価数は3であるが、原子価数4もとり得
る。具体的には、BF4 -やBH4 -があり、これらはsp3混成
軌道で作られた正四面体型配置である。また、ボラジン
(B3N3H6)は以下のような構造を持ち、sp2混成軌道で
作られている。
The above doping mechanism is based on the following grounds. Boron usually has a valence of 3, but can have a valence of 4. Specifically, BF 4 - and BH 4 - there is, which are tetrahedral arrangement made of sp 3 hybrid orbital. Borazine (B 3 N 3 H 6 ) has the following structure and is made of sp 2 hybrid orbit.

よって、先に示したポリマー中の硼素原子の電子軌道
がsp2混成軌道であれば、十分に安定な分子になると考
えられる。それゆえ、上記提案されたドーピング機構は
妥当なものである。
Therefore, if the electron orbit of the boron atom in the polymer described above is an sp 2 hybrid orbit, it is considered that the molecule becomes a sufficiently stable molecule. Therefore, the doping mechanism proposed above is reasonable.

以上のような考えに基づいて、鋭意研究を行なった結
果、ベンゼンボロン酸を電気化学的にまたは化学的に重
合して得られる重合物が、可逆的で安定なカチオンドー
ピングが可能であり、かつ空気中で劣化しないという、
従来に見られない極めて特徴のある導電性重合体を与え
ることを見出し、本発明に到達したものである。
Based on the above ideas, as a result of intensive research, a polymer obtained by electrochemically or chemically polymerizing benzeneboronic acid is capable of reversible and stable cation doping, and It does not deteriorate in the air,
The present invention has been found to provide a conductive polymer having a very distinctive characteristic not found in the prior art, and has reached the present invention.

さらに、特許請求の範囲記載の第2の発明は、上記第
1の発明の新規な導電性重合物を負極材料に用いる二次
電池に係るものである。
Further, a second invention described in the claims relates to a secondary battery using the novel conductive polymer of the first invention as a negative electrode material.

また、上記新規な導電性重合物を負極材料に用いる二
次電池において、正極材料には、アニリン、ピロール、
チオフェンまたはこれらの誘導体を電解重合して得られ
る重合物が特に好ましく用いられる。また、電解質とし
ては、アルカリ金属の塩、アルカリ類金属の塩、または
電解液中で解離してH+イオンを与えるプロトン酸が特に
好ましく用いられるが、これに限定されるものではな
い。
In a secondary battery using the novel conductive polymer as a negative electrode material, the positive electrode material includes aniline, pyrrole,
A polymer obtained by electrolytic polymerization of thiophene or a derivative thereof is particularly preferably used. As the electrolyte, an alkali metal salt, an alkali metal salt, or a protonic acid that dissociates in an electrolyte to give H + ions is particularly preferably used, but is not limited thereto.

また、電解液の溶媒としては、プロピレンカーボネー
ドまたはその混合溶媒が特に好ましく用いられる。
As a solvent for the electrolytic solution, propylene carbonate or a mixed solvent thereof is particularly preferably used.

本発明の新規な導電性重合物は、たとえば次のように
して製造される。
The novel conductive polymer of the present invention is produced, for example, as follows.

ベンゼンボロン酸を適当な有機溶媒に溶解した後、定
電位法、電位走査法、定電流法で電解を所定の時間行な
い、陰極上に重合物を生成させる、などの方法が行なわ
れる。また、化学的重合によっても得られる。
After dissolving benzeneboronic acid in an appropriate organic solvent, electrolysis is performed for a predetermined time by a constant potential method, a potential scanning method, or a constant current method, and a polymer is formed on a cathode. It can also be obtained by chemical polymerization.

[発明の効果] 本発明に係るベンゼンボロン酸を電気化学的にまたは
化学的に重合して得られる新規な導電性重合物は、可逆
的で安定なカチオンドーピングが可能であり、空気中で
劣化しないという極めて優れた性質を示す。そして、こ
の導電性重合体を二次電池の負極材料として使用する
と、非常に優れた電池性能を有する二次電池が得られ
る。
[Effects of the Invention] A novel conductive polymer obtained by electrochemically or chemically polymerizing benzeneboronic acid according to the present invention is capable of reversible and stable cation doping and degraded in air. It shows an extremely excellent property that it does not. When this conductive polymer is used as a negative electrode material of a secondary battery, a secondary battery having very excellent battery performance can be obtained.

[実施例] 以下、本発明の実施例を示すが、本発明はこれに限定
されるものではない。
EXAMPLES Hereinafter, examples of the present invention will be described, but the present invention is not limited thereto.

実施例1 ベンゼンボロン酸0.1M、LiBF40.1Mを含むエタノール
溶液を電解液とし、陰極に白金を用いて、定電位法で電
解を30分行なった。すると、陰極上に黒色の重合物が生
成した。この陰極上に析出した重合物を負極とし、別に
電解酸化重合によって作製したポリアニリンを正極とし
て、LiBF41Mを含むプロピレンカーボネート溶液を電解
液に用いて、電池性能を検討した。その結果、電流密度
0.1mA/cm2、充電時間30分において、電池エネルギ効率8
7%の二次電池が得られた。
Example 1 Electrolysis was performed by a constant potential method for 30 minutes using an ethanol solution containing 0.1 M of benzeneboronic acid and 0.1 M of LiBF 4 as an electrolytic solution and using platinum as a cathode. Then, a black polymer was formed on the cathode. Battery performance was examined using the polymer deposited on the cathode as a negative electrode, polyaniline prepared separately by electrolytic oxidation polymerization as a positive electrode, and a propylene carbonate solution containing 1M LiBF 4 as an electrolyte. As a result, the current density
0.1mA / cm 2 , battery energy efficiency 8 at 30 minutes charging time
A 7% secondary battery was obtained.

実施例2 ベンゼンボロン酸0.1M、LiBF40.1Mを含むエタノール
溶液を電解液として、陰極に白金を用い、電位走査法で
30分間電解を行なった。すると、陰極上に黒色の重合物
が生成した。実施例1と同様の条件で、電池性能を調べ
たところ、電池エネルギ効率85%の二次電池が得られ
た。
Example 2 benzeneboronic acid 0.1 M, as an electrolytic solution of an ethanol solution containing LiBF 4 0.1 M, using a platinum cathode, at a potential scanning method
Electrolysis was performed for 30 minutes. Then, a black polymer was formed on the cathode. When the battery performance was examined under the same conditions as in Example 1, a secondary battery having a battery energy efficiency of 85% was obtained.

実施例3 ベンゼンボロン酸0.1M、LiBF40.1Mを含むエタノール
溶液を電解液として、白金を陰極に用いて、定電流法で
30分間電解を行なった。すると、陰極上に黒色の重合物
が生成した。実施例1と同様の条件で、電池性能を調べ
たところ、電池エネルギ効率84%の二次電池が得られ
た。
Example 3 A galvanostatic method was performed using an ethanol solution containing 0.1 M benzeneboronic acid and 0.1 M LiBF 4 as an electrolyte and platinum as a cathode.
Electrolysis was performed for 30 minutes. Then, a black polymer was formed on the cathode. When the battery performance was examined under the same conditions as in Example 1, a secondary battery having a battery energy efficiency of 84% was obtained.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ベンゼンボロン酸を電気化学的にまたは化
学的に重合して得られる新規な導電性重合物。
1. A novel conductive polymer obtained by electrochemically or chemically polymerizing benzeneboronic acid.
【請求項2】ベンゼンボロン酸を電気化学的にまたは化
学的に重合して得られる新規な導電性重合物を、負極材
料に用いた二次電池。
2. A secondary battery using, as a negative electrode material, a novel conductive polymer obtained by electrochemically or chemically polymerizing benzeneboronic acid.
【請求項3】正極材料として、アニリン、ピロール、チ
オフェンまたはこれらの誘導体を電解重合して得られる
重合物を用いる特許請求の範囲第2項記載の、新規な導
電性重合物を負極材料に用いた二次電池。
3. A novel conductive polymer according to claim 2, wherein aniline, pyrrole, thiophene or a polymer obtained by electrolytically polymerizing a derivative thereof is used as the cathode material. Rechargeable battery.
【請求項4】電解質として、アルカリ金属またはアルカ
リ土類金属の塩を用いる特許請求の範囲第2項または第
3項に記載の、新規な導電性重合物を負極材料に用いた
二次電池。
4. The secondary battery according to claim 2, wherein a salt of an alkali metal or an alkaline earth metal is used as the electrolyte, wherein the novel conductive polymer is used as a negative electrode material.
【請求項5】電解質として、電解液中に解離してH+イオ
ンを与えるプロトン酸を用いる特許請求の範囲第2項〜
第4項のいずれか1項に記載の、新規な導電性重合物を
負極材料に用いた二次電池。
5. The method according to claim 2, wherein a protonic acid that dissociates into an electrolyte to give H + ions is used as the electrolyte.
A secondary battery using the novel conductive polymer according to any one of items 4 as a negative electrode material.
【請求項6】電解液の溶媒として、プロピレンカーボネ
ートを含む特許請求の範囲第2項〜第5項のいずれか1
項に記載の、新規な導電性重合物を負極材料に用いた二
次電池。
6. The method according to claim 2, wherein propylene carbonate is contained as a solvent for the electrolytic solution.
A secondary battery using the novel conductive polymer as a negative electrode material according to the above item.
JP62313706A 1987-12-10 1987-12-10 Novel conductive polymer and secondary battery using the same as negative electrode material Expired - Lifetime JP2607568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62313706A JP2607568B2 (en) 1987-12-10 1987-12-10 Novel conductive polymer and secondary battery using the same as negative electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62313706A JP2607568B2 (en) 1987-12-10 1987-12-10 Novel conductive polymer and secondary battery using the same as negative electrode material

Publications (2)

Publication Number Publication Date
JPH01154462A JPH01154462A (en) 1989-06-16
JP2607568B2 true JP2607568B2 (en) 1997-05-07

Family

ID=18044538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62313706A Expired - Lifetime JP2607568B2 (en) 1987-12-10 1987-12-10 Novel conductive polymer and secondary battery using the same as negative electrode material

Country Status (1)

Country Link
JP (1) JP2607568B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687513B2 (en) 2000-10-02 2005-08-24 日本電気株式会社 battery

Also Published As

Publication number Publication date
JPH01154462A (en) 1989-06-16

Similar Documents

Publication Publication Date Title
EP0210023B1 (en) Electrochemical cell with high capacity polyaniline electrodes
US6174621B1 (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
EP0638947A1 (en) High capacity cathodes for secondary cells
US6855457B2 (en) Nonaqueous electrolyte secondary battery with a molten salt electrolyte
EP0124875B1 (en) Battery having an electrode made of a polymeric compound with conjugated double bonds
US6090504A (en) High capacity composite electrode and secondary cell therefrom
CN109314240B (en) Aqueous secondary battery
EP0141371B1 (en) Secondary battery
EP0282068B1 (en) Nonaqueous secondary battery
US6403255B1 (en) Polyvinyl mercaptan redox material for cathodes in non-aqueous batteries
EP3783720A1 (en) An electrolyte solution comprising an alkali metal bis (oxalato)borate salt
JP2607568B2 (en) Novel conductive polymer and secondary battery using the same as negative electrode material
JP3115153B2 (en) Electrochemical devices and secondary batteries
EP0239976A2 (en) Molten salt secondary battery
JP3089707B2 (en) Solid electrode composition
JP2008078040A (en) Secondary battery
Zhijiang Study on a novel polymer-based secondary battery system
JP2501821B2 (en) Secondary battery
Changzhi et al. A wound-type lithium/polyaniline secondary cell
JP2680631B2 (en) Rechargeable battery
JP2877784B2 (en) Copper-organic disulfide electrode and secondary battery using the same
JPH0821430B2 (en) Secondary battery
JPS59112584A (en) Battery
JP2632021B2 (en) Rechargeable battery
JP3111506B2 (en) Reversible electrode