JP2607478B2 - Cryogenic sample cooling equipment for electron microscopes, etc. - Google Patents

Cryogenic sample cooling equipment for electron microscopes, etc.

Info

Publication number
JP2607478B2
JP2607478B2 JP61173652A JP17365286A JP2607478B2 JP 2607478 B2 JP2607478 B2 JP 2607478B2 JP 61173652 A JP61173652 A JP 61173652A JP 17365286 A JP17365286 A JP 17365286A JP 2607478 B2 JP2607478 B2 JP 2607478B2
Authority
JP
Japan
Prior art keywords
sample
cooling
cooling member
electron microscope
liquid helium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61173652A
Other languages
Japanese (ja)
Other versions
JPS6332847A (en
Inventor
潤二 遠藤
彰 外村
強 松田
信行 長我部
猛 川崎
修司 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61173652A priority Critical patent/JP2607478B2/en
Publication of JPS6332847A publication Critical patent/JPS6332847A/en
Application granted granted Critical
Publication of JP2607478B2 publication Critical patent/JP2607478B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子顕微鏡等の真空容器内に試料を設置する
装置と組合せて使用する極低温試料冷却装置に関するも
のである。本発明は電子顕微鏡以外にも真空容器内に試
料が配置される電子線回折装置、イオン散乱装置、光電
子分光装置の試料を極低温に冷却する試料冷却装置に適
用可能であるが、説明の便宜上これ等を含めて電子顕微
鏡等と表わす。
Description: TECHNICAL FIELD The present invention relates to a cryogenic sample cooling apparatus used in combination with an apparatus for setting a sample in a vacuum vessel such as an electron microscope. The present invention is applicable not only to an electron microscope but also to a sample cooling device for cooling a sample to an extremely low temperature in an electron beam diffraction device, an ion scattering device, and a photoelectron spectroscopy device in which a sample is placed in a vacuum container. These are referred to as electron microscopes and the like.

〔従来の技術〕 電子顕微鏡等の試料を冷却する装置として、例えば、
ジャーナル・オブ・エレクトロン・マイクロスコープ
(Journal of Electron Microscope)29(1980)346、
あるいは、電子顕微鏡10(1975)59に記載のように、5K
以下の極低温まで試料冷却可能な装置がいくつか開発さ
れている。これら従来の装置は、試料及び試料ホルダ
を、液体ヘリウムを冷媒として冷却し、その試料と試料
ホルダ及び液体ヘリウム冷媒容器の周囲を、液体窒素を
冷媒として冷却される部材で取り囲んで熱シールドし、
室温部分からの熱伝導及び熱輻射により試料及び試料ホ
ルダの温度上昇を防ぎ、極低温までの試料の冷却を可能
にしていた。以下、この構造の装置を一重シールド型と
呼ぶ。即ち、熱伝導及び熱輻射により低温部に流入する
熱量は、それを接触又は相対する高温部の温度が低いほ
ど少ないことから、試料及び試料ホルダと室温部分の間
に約百Kに冷却された液体窒素冷却部材を介在させ、液
体ヘリウム冷却部材(試料及び試料ホルダと熱的に接続
している部材)への熱流入を抑えているのである。しか
し、この構造においてさえ、百k以上の液体窒素冷却部
材と数kの液体ヘリウム冷却部材とが、百度程度の大き
な温度差をもって接触又は相対することになり、液体ヘ
リウム冷却部材に流入する熱量は十分小さいとは言い難
い。そこで、さらに熱シールドを完全にするために、液
体窒素冷却部材の内側に、液体ヘリウム冷却部材を冷却
すると同じ容器内の液体ヘリウムによって冷却される第
二の液体ヘリウム冷却部材を介在させて試料ホルダを蔽
う構造の装置が開発されている。以下、この構造の装置
を二重シールド型と呼ぶ。また、高温部と低温部が介在
物をはさんで接触している場合、高温部から低温部へ流
入する熱量は、その介在物の断面積に比例し、長さに反
比例するため、液体ヘリウム冷却部材と液体窒素冷却部
材の間、又は、液体窒素冷却部材と室温の装置本体との
間の介在物の断面積を可能な限り小さくし、長さを十分
確保して、低温部材への熱流入を抑える必要がある。し
かし、電子顕微鏡等の試料室の寸法の制限から、百度程
度の温度差をもって接触する部分のある従来型装置で
は、この条件を十分満足させるほど寸法の大きい介在物
を低温部材と高温部材との間に挿入することが困難であ
った。このため、試料の冷却到達温度が、ヘリウムの沸
点4.2kよりかなり高いのが現状であった。また同様の理
由から、液体ヘリウム蒸発速度が速く、液体ヘリウム貯
蔵容器内を減圧してヘリウムの沸点以下の低温まで冷却
し、その温度を長時間維持することが容易でなかった。
[Related Art] As a device for cooling a sample such as an electron microscope, for example,
Journal of Electron Microscope 29 (1980) 346,
Alternatively, as described in electron microscope 10 (1975) 59, 5K
Several devices capable of cooling a sample to the following extremely low temperatures have been developed. These conventional devices cool the sample and the sample holder, using liquid helium as a coolant, and heat shield the sample, the sample holder, and the periphery of the liquid helium coolant container by surrounding the sample and the member cooled with liquid nitrogen as a coolant,
The heat conduction and heat radiation from the room temperature portion prevented the temperature of the sample and the sample holder from rising, and allowed the sample to be cooled to extremely low temperatures. Hereinafter, an apparatus having this structure is referred to as a single shield type. That is, the amount of heat flowing into the low-temperature portion due to heat conduction and heat radiation is reduced to about 100 K between the sample and the sample holder and the room temperature portion, because the lower the temperature of the high-temperature portion that contacts or opposes it, the smaller the amount. The liquid nitrogen cooling member is interposed to suppress the heat flowing into the liquid helium cooling member (the member thermally connected to the sample and the sample holder). However, even in this structure, the liquid nitrogen cooling member of 100 k or more and the liquid helium cooling member of several k come into contact or oppose with a large temperature difference of about one hundred degrees, and the amount of heat flowing into the liquid helium cooling member is It is hard to say that it is small enough. Therefore, in order to further complete the heat shield, the sample holder is provided inside the liquid nitrogen cooling member with a second liquid helium cooling member cooled by the liquid helium in the same container when the liquid helium cooling member is cooled. A device having a structure that covers the space has been developed. Hereinafter, an apparatus having this structure is referred to as a double shield type. In addition, when the high-temperature part and the low-temperature part are in contact with the inclusions interposed, the amount of heat flowing from the high-temperature part to the low-temperature part is proportional to the cross-sectional area of the inclusion and inversely proportional to the length. The cross-sectional area of the inclusion between the cooling member and the liquid nitrogen cooling member or between the liquid nitrogen cooling member and the main body at room temperature is made as small as possible, the length is sufficiently secured, and the heat to the low-temperature member is It is necessary to control the inflow. However, due to the limitation of the size of the sample chamber such as an electron microscope, in a conventional apparatus having a part contacting with a temperature difference of about one hundred degrees, an inclusion having a size large enough to satisfy this condition needs to be interposed between the low-temperature member and the high-temperature member. It was difficult to insert in between. For this reason, at present, the ultimate cooling temperature of the sample is considerably higher than the boiling point of helium 4.2 k. For the same reason, the liquid helium evaporation rate is high, and it is not easy to maintain the temperature for a long time by cooling the liquid helium storage container to a low temperature below the boiling point of helium by reducing the pressure in the liquid helium storage container.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述の二重熱シールド型従来装置においては、電子顕
微鏡の試料室内に冷媒(液体ヘリウムと液体窒素)貯蔵
タンクが設置されていた。この構造では冷却ステージの
小型化が困難であるばかりでなく、冷媒の沸騰による冷
媒貯蔵タンクの震動が試料に伝達されやすく、試料の高
分解能観察が難しくなるという欠点を持っていた。
In the above double heat shield type conventional apparatus, a refrigerant (liquid helium and liquid nitrogen) storage tank is installed in the sample chamber of the electron microscope. In this structure, not only is it difficult to reduce the size of the cooling stage, but also the vibration of the refrigerant storage tank caused by the boiling of the refrigerant is easily transmitted to the sample, which has the disadvantage that high-resolution observation of the sample becomes difficult.

電子顕微鏡等の真空中で試料を数K程度の極低温まで
冷却すると、残留気体の飽和蒸気圧が著しく低くなり、
試料表面に残留気体が凝結し、試料汚染の原因となる。
これを防ぐために、上記従来型冷却装置の内、一重熱シ
ールド型では、試料及び試料ホルダを室温以上の高温に
保持しながら、まず、液体窒素冷却部材を冷却し、その
冷却部材に試料付近の残留気体を吸着させ、その後に試
料及び試料ホルダを液体ヘリウムで冷却するという手順
をとっていた。しかしながらこの場合、残留気体成分中
の水や炭化水素類の一部は液体窒素で百K程度に冷却さ
れた部分に吸着され、それによる試料の汚染は軽減され
るが、液体窒素温度ではまだ飽和蒸気圧が十分に低下し
ていない酸素、窒素、炭化水素類、及び希ガス類等の残
留気体成分は液体窒素冷却部材に吸着されず、試料が数
Kまで冷却された時、それらは試料表面に吸着されてし
まう。このように、一重熱シールド型装置では、試料汚
染を十分に防止するのが困難であった。また、二重熱シ
ールド型装置でも、内側シールドの液体ヘリウム冷却部
材が試料ホルダと同時に冷却されるため、上記残留気体
は内側シールドのヘリウム冷却部材だけでなく、試料に
も吸着し、試料汚染はあまり軽減されない。
When the sample is cooled to a very low temperature of about several K in a vacuum of an electron microscope or the like, the saturated vapor pressure of the residual gas becomes extremely low,
Residual gas condenses on the sample surface, causing sample contamination.
In order to prevent this, among the above-mentioned conventional cooling devices, in the single heat shield type, the liquid nitrogen cooling member is first cooled while the sample and the sample holder are kept at a high temperature of room temperature or higher. A procedure was adopted in which the residual gas was adsorbed, and then the sample and the sample holder were cooled with liquid helium. However, in this case, some of the water and hydrocarbons in the residual gaseous component are adsorbed on the part cooled to about 100 K with liquid nitrogen, thereby reducing the contamination of the sample. Residual gas components such as oxygen, nitrogen, hydrocarbons, and noble gases whose vapor pressure has not been sufficiently reduced are not adsorbed by the liquid nitrogen cooling member, and when the sample is cooled down to several K, they are adsorbed on the sample surface. Will be done. As described above, it was difficult to sufficiently prevent sample contamination with the single heat shield type apparatus. Further, even in the double heat shield type device, the liquid helium cooling member of the inner shield is cooled at the same time as the sample holder, so that the residual gas is adsorbed not only on the helium cooling member of the inner shield but also on the sample, and sample contamination is reduced. Not much reduced.

従来の試料冷却装置は、試料が一重又は二重の熱シー
ルドに囲まれているため、簡便に試料交換できる装置は
無かった。即ち、複雑で大型の試料交換機構が必要であ
ったか、あるいは、電子顕微鏡内の真空を破り、試料室
付近を解体して試料交換を行っていたため、多大の手間
を要した。
In the conventional sample cooling device, there is no device that can easily exchange the sample because the sample is surrounded by a single or double heat shield. That is, a complicated and large sample exchange mechanism was required, or the vacuum in the electron microscope was broken and the vicinity of the sample chamber was disassembled to exchange the sample, which required a great deal of labor.

本発明の目的は、試料冷却到達温度が低く、しかも、
その極低温を長時間維持でき、試料の高分解能観察が可
能で、試料汚染が軽微な試料冷却装置を提供することに
ある。
An object of the present invention is to achieve a low cooling temperature of a sample, and
An object of the present invention is to provide a sample cooling device which can maintain the cryogenic temperature for a long time, can observe a sample at a high resolution, and has minimal sample contamination.

〔問題点を解決するための手段〕[Means for solving the problem]

上記問題点を解決するために、液体ヘリウムによって
冷却される第一冷却部材(試料ステージのうち、試料及
び試料ホルダと熱接触している部分)の周囲を別の容器
内の液体ヘリウムによって冷却される第二冷却部材、及
び、液体窒素によって冷却される第三冷却部材の二重熱
シールドで取り囲むととに、電子顕微鏡体等装置本体外
に設置した独立な二つの液体ヘリウム貯蔵容器(第一、
及び、第二液体ヘリウム容器)と液体窒素貯蔵容器によ
り、上記三つの冷却部材をそれぞれ三つの伝熱部材を介
して冷却する構造を有する。
In order to solve the above-mentioned problems, the periphery of a first cooling member cooled by liquid helium (a part of the sample stage that is in thermal contact with the sample and the sample holder) is cooled by liquid helium in another container. And two independent liquid helium storage containers (first and second liquid helium storage containers) installed outside the main body of the device such as the electron microscope body. ,
And a second liquid helium container) and a liquid nitrogen storage container to cool the three cooling members through three heat transfer members.

〔作用〕[Action]

上記第二冷却部材は上記第一冷却部材と同じく液体ヘ
リウムによって冷却されるので、試料との温度差を10度
以下に抑えることができる。そのため、従来装置と比較
し、試料及び試料ホルダに流入する熱量を著しく減少さ
せることができる。もって、冷却到達温度をさらに低く
することができる。また、第一冷却部材の冷媒である液
体ヘリウムの蒸発速度を非常に遅くすることが可能とな
る。さらに第1液体ヘリウム容器を減圧すれば、容易に
試料部を4.2K以下に冷却することができ、この時の熱流
入も十分小さく保つことが出来る。冷媒容器を電子顕微
鏡体等装置本体外に設置して試料ステージと近距離で直
結させないため、冷媒の沸騰等による冷媒容器の震動等
が試料に伝達されにくい。さらに、液体窒素温度まで冷
却された第三冷却部材に吸着されない酸素、窒素、炭化
水素、及び希ガス類等の残留気体成分を、液体ヘリウム
温度まで冷却されている第二冷却部材に吸着させた後、
第一冷却部材を冷却することにより、試料に残留気体が
吸着して汚染されるのを防止することが可能となる。
Since the second cooling member is cooled by liquid helium like the first cooling member, the temperature difference from the sample can be suppressed to 10 degrees or less. Therefore, the amount of heat flowing into the sample and the sample holder can be significantly reduced as compared with the conventional apparatus. As a result, the ultimate cooling temperature can be further reduced. Further, the evaporation rate of liquid helium, which is the refrigerant of the first cooling member, can be extremely reduced. Furthermore, if the pressure of the first liquid helium container is reduced, the sample portion can be easily cooled to 4.2 K or less, and the heat inflow at this time can be kept sufficiently small. Since the refrigerant container is installed outside the main body of the apparatus such as the electron microscope and is not directly connected to the sample stage at a short distance, vibration of the refrigerant container due to boiling of the refrigerant or the like is not easily transmitted to the sample. Further, oxygen, nitrogen, hydrocarbons, and residual gas components such as rare gases, which are not adsorbed to the third cooling member cooled to the liquid nitrogen temperature, are adsorbed to the second cooling member cooled to the liquid helium temperature,
By cooling the first cooling member, it is possible to prevent the residual gas from being adsorbed on the sample and contaminated.

〔実施例〕〔Example〕

本発明の実施例を図面を用いて説明する。第1図は本
発明を電子顕微鏡に組み込んだ場合の構成図である。冷
媒容器1は鏡体外に設置されており、内部に三槽構造と
なっている。即ち、試料ステージ2中にある試料及び試
料ホルダと第一冷却部材を冷却する液体ヘリウム容器
5、第二冷却部材を冷却する液体ヘリウム容器4、及
び、第三冷却部材を冷却する液体窒素容器3から成り、
それらは、それぞれ、伝熱部13を通じて試料ステージの
各部に熱的に接続されている。また、これら三つの容器
はそれぞれ熱的に絶縁されている。
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram when the present invention is incorporated in an electron microscope. The refrigerant container 1 is installed outside the mirror body and has a three-tank structure inside. That is, a liquid helium container 5 for cooling the sample and the sample holder in the sample stage 2 and the first cooling member, a liquid helium container 4 for cooling the second cooling member, and a liquid nitrogen container 3 for cooling the third cooling member. Consisting of
Each of them is thermally connected to each section of the sample stage through the heat transfer section 13. In addition, each of these three containers is thermally insulated.

第2図は伝熱部13と試料ステージ2の詳細な断面図で
ある。この図において電子ビームは矢印の方向に細孔4
8,52,29を通過する。液体ヘリウム容器5は伝熱棒42と
熱的に接続されており、さらに、第一冷却部材(伝熱リ
ング39及び、波形に折り曲げられた円筒形銀薄膜36、内
側円筒26)および、試料ホルダー22と試料21を冷却して
いる。伝熱棒42は、液体ヘリウム容器4に熱的に接続し
ている内側シールド伝熱管43で蔽われており、また、伝
熱管43に熱的に接続されている第二冷却部材(第二伝熱
リング40、内側シールド第一上キャップ45、内側シール
ド第二上キャップ46、円筒形銀薄膜37、中間円筒30、内
側シールド下キャップ27)が第一冷却部材を蔽ってい
る。内側シールド管43はさらに、液体窒素容器3と熱的
に接続している外側シールド伝熱管44によって蔽われて
おり、その外側シールド伝熱管44に熱的に接続している
第三冷却部材(第三伝熱リング41、円筒形銀薄膜38、外
側シールド上キャップ47、外側円筒31、外側シールド下
キャップ28)によって第二冷却部材を完全に蔽ってい
る。内側円筒26と中間円筒30は、円筒形断熱管32を介し
て結合している。中間円筒30と外側円筒31、断熱管32と
同様な断熱管33を介して結合している。外側円筒31と試
料微動ステージ35は断熱管32と同様な断熱管34を介して
結合している。円筒形銀薄膜36,37,38は細スリットが軸
方向に入っており、さらに波形に折り曲げられ、弾力的
に容易に変形するため、伝熱部13等を伝わって侵入する
震動が試料ホルダ27まで伝達されにくい構造となってい
る。このような試料は、液体ヘリウムを冷媒として冷却
されている第二冷却部材と、液体窒素を冷媒とし冷却さ
れている第三冷却部材により完全に取り囲まれており、
それが熱的に絶縁されているばかりでなく、室温の電子
顕微鏡鏡体からも熱絶縁されている。これら試料ステー
ジの各部は、鏡体外に設置された冷媒容器と熱伝導によ
って熱接続されているのである。この構造を採ることに
より、試料ホルダーに流入する熱量及び震動を著しく小
さくすることができる。
FIG. 2 is a detailed sectional view of the heat transfer section 13 and the sample stage 2. In this figure, the electron beam
Pass through 8,52,29. The liquid helium container 5 is thermally connected to the heat transfer rod 42, and further includes a first cooling member (a heat transfer ring 39, a cylindrical silver thin film 36 bent into a corrugated shape, an inner cylinder 26), and a sample holder. 22 and sample 21 are cooled. The heat transfer rod 42 is covered by an inner shield heat transfer tube 43 that is thermally connected to the liquid helium container 4, and a second cooling member (second transfer member) that is thermally connected to the heat transfer tube 43. The heat ring 40, the inner shield first upper cap 45, the inner shield second upper cap 46, the cylindrical silver thin film 37, the intermediate cylinder 30, and the inner shield lower cap 27) cover the first cooling member. The inner shield tube 43 is further covered by an outer shield heat transfer tube 44 that is thermally connected to the liquid nitrogen container 3, and a third cooling member (a second cooling member) that is thermally connected to the outer shield heat transfer tube 44. The third heat transfer ring 41, the cylindrical silver thin film 38, the outer shield upper cap 47, the outer cylinder 31, and the outer shield lower cap 28) completely cover the second cooling member. The inner cylinder 26 and the intermediate cylinder 30 are connected via a cylindrical heat insulating tube 32. The intermediate cylinder 30, the outer cylinder 31, and the heat-insulating pipe 32 are connected via the same heat-insulating pipe 33. The outer cylinder 31 and the sample fine movement stage 35 are connected via an insulating tube 34 similar to the insulating tube 32. The cylindrical silver thin films 36, 37, and 38 have fine slits in the axial direction, and are further bent in a waveform and easily deformed elastically, so that vibrations that enter through the heat transfer section 13 and the like enter the sample holder 27. It is a structure that is difficult to be transmitted to. Such a sample is completely surrounded by a second cooling member cooled with liquid helium as a refrigerant, and a third cooling member cooled with liquid nitrogen as a refrigerant,
Not only is it thermally insulated, it is also thermally insulated from the electron microscope mirror at room temperature. Each part of these sample stages is thermally connected to a refrigerant container installed outside the mirror body by heat conduction. By employing this structure, the amount of heat and vibration flowing into the sample holder can be significantly reduced.

試料冷却は以下の手順で行う。試料21及び試料ホルダ
22をヒーター等で室温以上の温度に保ちながら、まず、
液体窒素容器3に液体窒素を入れ、第三冷却部材を冷却
し、電子顕微鏡内真空の残留気体中の水、及び炭化水素
類の一部を第三冷却部材表面に吸着させる。次に、液体
ヘリウム容器4に液体ヘリウムを入れ、第二冷却部材を
冷却し、その他の残留気体成分を第二冷却部材表面に吸
着させる。このようにして、試料付近を高真空にした
後、液体ヘリウム容器5に液体ヘリウムを入れ、第一冷
却部材を通して試料21を冷却する。この手順を採れば、
冷却による試料の汚染を著しく抑えることが可能とな
る。
The sample is cooled in the following procedure. Sample 21 and sample holder
While keeping 22 above room temperature with a heater,
Liquid nitrogen is put into the liquid nitrogen container 3, the third cooling member is cooled, and water and a part of hydrocarbons in the residual gas in the vacuum in the electron microscope are adsorbed on the surface of the third cooling member. Next, liquid helium is charged into the liquid helium container 4, the second cooling member is cooled, and other residual gas components are adsorbed on the surface of the second cooling member. In this way, after making the vicinity of the sample a high vacuum, liquid helium is put into the liquid helium container 5 and the sample 21 is cooled through the first cooling member. If you take this step,
The contamination of the sample due to cooling can be significantly suppressed.

試料ホルダ22は、外部搬送機構により各熱ソールド容
器に開けられた孔を通って位置60まで運ばれ、さらに、
回転導入器50により、歯車49と螺旋溝25が刻んである円
筒24を回転させて、試料ホルダ22を螺旋溝25に沿って降
下させ、試料観察位置61に試料ホルダを固定する。試料
を取り出す時は逆の過程をたどることにより、簡単に試
料を交換することができる。
The sample holder 22 is carried to a position 60 through a hole opened in each thermal sold container by an external transport mechanism, and further,
The rotation introducer 50 rotates the cylinder 24 in which the gear 49 and the spiral groove 25 are cut, lowers the sample holder 22 along the spiral groove 25, and fixes the sample holder at the sample observation position 61. When the sample is taken out, the sample can be easily exchanged by following the reverse process.

〔発明の効果〕〔The invention's effect〕

以上説明したように、試料を極低温まで安定して冷却
できるため、電子顕微鏡等に適応して、室温状態の試料
と比べ、なんら特別な支障を来すことなく実験、観察等
が可能となる。
As described above, since the sample can be cooled stably to extremely low temperatures, it can be applied to an electron microscope or the like, and can perform experiments, observations, etc., without any particular hindrance, as compared with a sample at room temperature. .

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の一実施例を電子顕微鏡に組み込んだ
場合の模式的な縦断面図、第2図は第1図中の伝熱部13
及び試料ステージ2の詳細な縦断面図である。 1……冷媒容器、2……試料ステージ、3……液体窒素
容器、4……第二液体ヘリウム容器、5……第一液体ヘ
リウム容器、6……電子銃、7……コンデンサレンズ、
8……イオンポンプ、9……対物レンズ、10……中間…
…中間レンズ、11……投射レンズ、12……フィルム、13
……伝熱部、21……試料、22……試料ホルダ、23……案
内円筒、24……螺旋溝回転円筒、25……螺旋溝、26……
内側円筒、27……内側シールド下キャップ、28……外側
シールド下キャップ、29……電子ビーム通過孔、30……
内側円筒、31……外側円筒、32,33,34……円筒形断熱
管、35……試料微動ステージ、36,37,38……波状円筒形
銀薄膜、39……第一伝熱リング、40……第二伝熱リン
グ、41……第三発熱リング、42……伝熱棒、43……内側
シールド伝熱管、44……外側シールド伝熱管、45……内
側シールド第一上キャップ、46……内側シールド第二上
キャップ、47……外側シールド上キャップ、48……電子
ビーム通過孔、49……歯車、50……回転導入器、51……
電子顕微鏡体、60……外部搬送機構によって搬送された
時の試料ホルダ位置、61……試料観察時の試料ホルダ位
置。
FIG. 1 is a schematic longitudinal sectional view when an embodiment of the present invention is incorporated in an electron microscope, and FIG. 2 is a heat transfer section 13 in FIG.
3 is a detailed vertical sectional view of the sample stage 2. FIG. DESCRIPTION OF SYMBOLS 1 ... Refrigerant container, 2 ... Sample stage, 3 ... Liquid nitrogen container, 4 ... Second liquid helium container, 5 ... First liquid helium container, 6 ... Electron gun, 7 ... Condenser lens,
8 ... Ion pump, 9 ... Objective lens, 10 ... Intermediate ...
… Intermediate lens, 11… Projection lens, 12 …… Film, 13
... heat transfer section, 21 ... sample, 22 ... sample holder, 23 ... guide cylinder, 24 ... spiral groove rotating cylinder, 25 ... spiral groove, 26 ...
Inner cylinder, 27… Inner shield lower cap, 28… Outer shield lower cap, 29… Electron beam passage hole, 30…
Inner cylinder, 31 ... Outer cylinder, 32,33,34 ... Cylindrical insulated tube, 35 ... Sample fine movement stage, 36,37,38 ... Wave cylindrical silver thin film, 39 ... First heat transfer ring, 40 …… Second heat transfer ring, 41 …… Third heat generation ring, 42 …… Heat transfer rod, 43 …… Inner shield heat transfer tube, 44 …… Outer shield heat transfer tube, 45 …… Inner shield first upper cap, 46 …… Inner shield second upper cap, 47 …… Outer shield upper cap, 48 …… Electron beam passage hole, 49 …… Gear, 50 …… Rotary introducer, 51 ……
Electron microscope body, 60: sample holder position when transported by the external transport mechanism, 61: sample holder position during sample observation.

フロントページの続き (72)発明者 長我部 信行 国分寺市東恋ヶ窪1丁目280番地 株式 会社日立製作所基礎研究所内 (72)発明者 川崎 猛 国分寺市東恋ヶ窪1丁目280番地 株式 会社日立製作所基礎研究所内 (72)発明者 長谷川 修司 国分寺市東恋ヶ窪1丁目280番地 株式 会社日立製作所基礎研究所内 (56)参考文献 特開 昭61−263036(JP,A) 実公 昭49−46935(JP,Y1)Continuing from the front page (72) Inventor Nobuyuki Nagagabe 1-280 Higashi-Koigabo, Kokubunji City, Hitachi, Ltd.Basic Research Laboratories Co., Ltd. ) Inventor Shuji Hasegawa 1-280 Higashi Koigakubo, Kokubunji City Inside the Basic Research Laboratory, Hitachi, Ltd. (56) References JP-A-61-263036 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電子顕微鏡等鏡体内に配置される試料もし
くは試料ホルダを冷却するための第一冷却部材と、第一
冷却部材を略取り囲むごとき形状を有する第二冷却部材
と、第二冷却部材を略取り囲むごとき形状を有する第三
冷却部材と、電子顕微鏡等鏡体の装置本体外に設置され
た互いに独立な第一及び第二の液体ヘリウム容器及び液
体窒素容器とを有し、上記第一及び第二の液体ヘリウム
容器及び液体窒素容器が、上記第一、第二、第三の冷却
部材とそれぞれ第一、第二、第三の伝熱部材で結合され
たことを特徴とする電子顕微鏡等用極低温試料冷却装
置。
1. A first cooling member for cooling a sample or a sample holder disposed in a mirror body such as an electron microscope, a second cooling member having a shape substantially surrounding the first cooling member, and a second cooling member. A third cooling member having a shape substantially enclosing the first and second liquid helium containers and a liquid nitrogen container, which are independent from each other, and are provided outside the apparatus main body such as an electron microscope. And an electron microscope wherein the second liquid helium container and the liquid nitrogen container are connected to the first, second, and third cooling members by first, second, and third heat transfer members, respectively. Cryogenic sample cooling device for etc.
【請求項2】上記第一冷却部材の内側に配置された螺旋
溝を有する円筒と、上記試料ホルダを上記円筒の螺旋溝
に沿って上下降する搬送機構とを備えたことを特徴とす
る特許請求の範囲第1項記載の電子顕微鏡等用極低温試
料冷却装置。
2. A patent comprising: a cylinder having a spiral groove disposed inside the first cooling member; and a transport mechanism for moving the sample holder up and down along the spiral groove of the cylinder. The cryogenic sample cooling device for an electron microscope or the like according to claim 1.
【請求項3】上記第一の液体ヘリウム容器を減圧して用
いることを特徴とする特許請求の範囲第1項記載の電子
顕微鏡等用極低温試料冷却装置。
3. A cryogenic sample cooling apparatus for an electron microscope or the like according to claim 1, wherein said first liquid helium container is used under reduced pressure.
JP61173652A 1986-07-25 1986-07-25 Cryogenic sample cooling equipment for electron microscopes, etc. Expired - Lifetime JP2607478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61173652A JP2607478B2 (en) 1986-07-25 1986-07-25 Cryogenic sample cooling equipment for electron microscopes, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61173652A JP2607478B2 (en) 1986-07-25 1986-07-25 Cryogenic sample cooling equipment for electron microscopes, etc.

Publications (2)

Publication Number Publication Date
JPS6332847A JPS6332847A (en) 1988-02-12
JP2607478B2 true JP2607478B2 (en) 1997-05-07

Family

ID=15964583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61173652A Expired - Lifetime JP2607478B2 (en) 1986-07-25 1986-07-25 Cryogenic sample cooling equipment for electron microscopes, etc.

Country Status (1)

Country Link
JP (1) JP2607478B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232210A (en) * 1990-12-28 1992-08-20 Honda Motor Co Ltd Device for heating billet
DE102006042501B4 (en) * 2006-09-07 2010-11-25 Eisenmann Anlagenbau Gmbh & Co. Kg Method and installation for drying objects

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263036A (en) * 1985-05-16 1986-11-21 Univ Kyoto Cryogen separation type sample cooler
JPS63141551U (en) * 1987-03-06 1988-09-19

Also Published As

Publication number Publication date
JPS6332847A (en) 1988-02-12

Similar Documents

Publication Publication Date Title
JP6008965B2 (en) Improved low temperature sample holder
JP5947296B2 (en) Low temperature sample holder
KR101665221B1 (en) Cryogenic specimen holder and cooling source container
US8267575B2 (en) Temperature measuring device
US3262279A (en) Extreme high vacuum apparatus
JP2607478B2 (en) Cryogenic sample cooling equipment for electron microscopes, etc.
US4674288A (en) Method of magnetic refrigeration and a magnetic refrigerating apparatus
US4713941A (en) Cryogenic vessel
GB2015716A (en) Cryostat with radiation shield
JP2000251819A (en) Sample cooling holder
US3306058A (en) Cryostat
Stroscio et al. Wide temperature range sample manipulator for surface studies in ultrahigh vacuum
Piercy et al. A liquid helium cooled finger for the Siemens electron microscope
US3171957A (en) Specimen holder for an electron microscope with means to support a specimen across a thermocouple junction
KR830006769A (en) Target movement and positioning device
JP6471254B1 (en) Sample holder
JP2000111690A (en) Self-temperature control type uninstrumental material irradiator
JPH0610612Y2 (en) Sample cooling device such as electron microscope
JPS5849566Y2 (en) Electron microscope sample contamination prevention device
US3476936A (en) Apparatus for positioning specimens in electron microscopes or electron diffraction cameras
Marshall Styrofoam containers for liquid hydrogen used in nuclear experiments
JP5622485B2 (en) Combined cryogenic refrigerator
JPH1196953A (en) Cooled specimen observation device
JPH11193857A (en) Ball screw
JPS6326924Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term