JP2604590B2 - Method for recovering metallic gallium from gallium-containing materials - Google Patents

Method for recovering metallic gallium from gallium-containing materials

Info

Publication number
JP2604590B2
JP2604590B2 JP10274787A JP10274787A JP2604590B2 JP 2604590 B2 JP2604590 B2 JP 2604590B2 JP 10274787 A JP10274787 A JP 10274787A JP 10274787 A JP10274787 A JP 10274787A JP 2604590 B2 JP2604590 B2 JP 2604590B2
Authority
JP
Japan
Prior art keywords
gallium
vacuum
binder
raw material
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10274787A
Other languages
Japanese (ja)
Other versions
JPS63270426A (en
Inventor
政禎 井岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP10274787A priority Critical patent/JP2604590B2/en
Priority to US07/182,954 priority patent/US4812167A/en
Publication of JPS63270426A publication Critical patent/JPS63270426A/en
Application granted granted Critical
Publication of JP2604590B2 publication Critical patent/JP2604590B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、半導体製造工場等においてスクラップや廃
棄物として副生されるガリウム化合物微粒子を含むガリ
ウム含有物から、金属ガリウムを回収する方法に関する
ものである。
Description: TECHNICAL FIELD The present invention relates to a method for recovering metallic gallium from gallium-containing substances including gallium compound fine particles that are by-produced as scrap or waste in a semiconductor manufacturing plant or the like.

〔従来技術〕(Prior art)

砒化ガリウムやリン化ガリウム等の半導体ウエハーの
製造に際しては、それら半導体単結晶を真円柱化するた
めの切削工程や、その半導体真円柱をウェハーへ切断す
るための切断工程において、多量の切削屑及び切断屑が
微粉として発生する。このような切削及び切断工程は、
切削油あるいは切削水を注加しながら行われるため、発
生した微粉はその切削油中に分散した状態で補集され
る。そしてこの分散液を沈降処理することにより、微粉
を含む濃縮液が回収される。この微粉を含む濃縮物は、
通常、ドロスと呼称されている。このようなドロスは、
切削工程や切断工程において混入した多量かつ多種類の
不純物を含む他に、鉱油タイプ又は水溶性タイプの切削
油や切削助剤を含むために非常に取扱いの困難なもの
で、従来は、金属ガリウム回収原料としては殆んど利用
されず、廃棄処理されている。しかしながら、ガリウム
資源不足を補うために、これをガリウム資源として有効
利用することが強く要望されている。
In the production of semiconductor wafers such as gallium arsenide and gallium phosphide, a large amount of cutting waste and a large amount of chips are generated in a cutting process for turning the semiconductor single crystal into a perfect cylinder and a cutting process for cutting the semiconductor perfect cylinder into a wafer. Cutting chips are generated as fine powder. Such cutting and cutting process,
Since the cutting is performed while pouring the cutting oil or the cutting water, the generated fine powder is collected in a state of being dispersed in the cutting oil. Then, a concentrated liquid containing fine powder is recovered by subjecting the dispersion to sedimentation. The concentrate containing this fine powder,
It is usually called dross. Such a dross
In addition to containing a large amount and many kinds of impurities mixed in the cutting process and the cutting process, it is very difficult to handle because it contains mineral oil type or water soluble type cutting oil and cutting aid. It is hardly used as recovered material and is disposed of. However, in order to compensate for the shortage of gallium resources, there is a strong demand for effective utilization of the gallium resources.

〔目的〕〔Purpose〕

本発明は、従来廃棄物として処理されていたドロスの
如きガリウム化合物微粒子を含むガリウム含有物を原料
とし、これから金属ガリウムを回収する新規な方法を提
供することを目的とする。
An object of the present invention is to provide a novel method for recovering metallic gallium from a gallium-containing material containing gallium compound fine particles such as dross, which has been conventionally treated as waste, as a raw material.

〔構成〕〔Constitution〕

本発明によれば、ガリウム化合物微粒子を含むガリウ
ム含有物から金属ガリウムを回収する方法において、該
ガリウム含有物に無機系及び/又は有機系バインダーを
添加混合し、不活性ガスの雰囲気下又は真空下に乾燥さ
せて温度300〜1000℃の条件下に加熱することにより焼
結化し、得られた焼結体を真空熱分解することにより液
体金属ガリウムを回収することを特徴とするガリウム含
有物からの金属ガリウムの回収方法が提供される。
According to the present invention, in a method of recovering metallic gallium from a gallium-containing material containing gallium compound fine particles, an inorganic and / or organic binder is added to and mixed with the gallium-containing material, and the mixture is added under an inert gas atmosphere or under vacuum. The gallium-containing material is characterized by recovering the liquid metal gallium by drying and heating to a temperature of 300 to 1000 ° C., and sintering the obtained sintered body by vacuum pyrolysis. A method for recovering metallic gallium is provided.

本発明において被処理原料として用い得るガリウム含
有物はガリウム化合物微粒子を含ものであれば粉状又は
液状を問わず用いることができ、前記したドロスの如
き、従来金属ガリウム回収資源として全く考慮されてな
かったものも用いることができる。また、このドロスの
乾燥微粉末や、ガリウム化合物の液状スクラップや塊状
スクラップの微粉砕化物も用いることができる。また、
被処理原料中のガリウム分は、砒化ガリウムやリン化ガ
リウム等の熱分解により金属ガリウムを与えるガリウム
化合物である。
The gallium-containing material that can be used as the raw material to be treated in the present invention can be used in any form of powder or liquid as long as it contains gallium compound fine particles, and is completely considered as a conventional metal gallium recovery resource, such as the aforementioned dross. Those that did not exist can also be used. In addition, a dry fine powder of the dross, a liquid scrap of the gallium compound, or a finely pulverized lump scrap can also be used. Also,
The gallium component in the raw material to be treated is a gallium compound that gives metallic gallium by thermal decomposition of gallium arsenide, gallium phosphide, or the like.

本発明において用いる無機系及び有機系バインダー
は、ガリウム化合物微粒子を相互に結合させ、真空熱分
解に際し、ガリウム化合物微粒子の飛散を防止するため
に用いるものである。ドロスの如きガリウム化合物微粒
子を含む濃縮液(泥状物)は、これを直接真空熱分解し
ようとしても、それに含まれる液体の揮散が起り、真空
系を汚染する等の不都合を生じると共に、また液体分の
揮発した後の乾燥微粉末の飛散が起るので好ましくな
い。また。ドロスの如きガリウム化合物微粒子を含む濃
縮液を乾燥し、この乾燥物を真空熱分解する時にも、同
様に微粉末の飛散が起るので好ましくない。前記無機系
及び有機系バインダーの使用により、このような不都合
は回避される。
The inorganic and organic binders used in the present invention are used for bonding gallium compound fine particles to each other to prevent scattering of the gallium compound fine particles during vacuum pyrolysis. Concentrated liquid (mud) containing gallium compound fine particles such as dross may cause inconveniences such as vaporization of the liquid contained therein even if it is intended to be directly pyrolyzed by vacuum, and contaminate the vacuum system. It is not preferable because the dry fine powder is scattered after the volatile matter is volatilized. Also. When a concentrated solution containing gallium compound fine particles such as dross is dried and the dried product is pyrolyzed in a vacuum, the fine powder is similarly scattered, which is not preferable. Such disadvantages are avoided by using the inorganic and organic binders.

本発明においては、先ず、予備処理工程において、被
処理原料に無機系及び/又は有機系バインダーを、この
混合物を必要に応じ成形した後、加熱焼成し、微粒子が
相互に結合した焼成物を得る。この場合、無機系や有機
系バインダーとしては、従来微粉末粒子相互の結合化の
ために用いられている従来公知の各種の物質を用いるこ
とができる。このようなものとしては、無機系バインダ
ーとして、例えば、アルミナヒドロゾル、アルミナシリ
カヒドロゾル、シリカヒドロゾル、マグネシアヒドロゾ
ル、チタニアヒドロゾル等の無機酸化物ヒドロゾル及び
その先駆体、アタパルジャイド、カオリン、モンモリロ
ナイト、セピオライト等の粘土鉱物、硅酸アルカリ、ア
ルミン酸アルカリ、アルミニウム塩、セメント、石灰等
がある。本発明では、ガリウムや砒素、リン等も用いる
ことができ、さらに、ウエーハーの研磨工程において発
生する泥状スクラップやこの泥状スクラップから得られ
たヒドロゾルを用いることができる。また、有機系バイ
ンダーとして、例えば、殿粉、ポリビニルアルコール、
カルボキシメチルセルロース、アルギン酸等の有機高分
子の他、ポリエチレングリコール、グリセリン、ピッ
チ、グラファイト等も用いることができる。この無機系
及び/又は有機系バインダー(以下、単にバインダーと
も言う)の添加量は、被処理原料中の微粒子1重量部
(乾燥物基準)当り、少なくとも0.001重量部、通常0.0
1〜0.2重量部の割合である。
In the present invention, first, in a pretreatment step, an inorganic and / or organic binder is formed as a raw material to be treated, and this mixture is molded as necessary, followed by heating and firing to obtain a fired product in which fine particles are mutually bonded. . In this case, as the inorganic or organic binder, various conventionally known substances conventionally used for binding fine powder particles can be used. Examples of such an inorganic binder include inorganic oxide hydrosols such as alumina hydrosol, alumina silica hydrosol, silica hydrosol, magnesia hydrosol, titania hydrosol and precursors thereof, attapulgide, kaolin, montmorillonite. And minerals such as sepiolite, alkali silicate, alkali aluminate, aluminum salts, cement, lime and the like. In the present invention, gallium, arsenic, phosphorus, and the like can be used, and further, mud scrap generated in a wafer polishing step and a hydrosol obtained from the mud scrap can be used. Further, as an organic binder, for example, starch, polyvinyl alcohol,
In addition to organic polymers such as carboxymethyl cellulose and alginic acid, polyethylene glycol, glycerin, pitch, graphite and the like can be used. The amount of the inorganic and / or organic binder (hereinafter, also simply referred to as a binder) is at least 0.001 part by weight, usually 0.0% by weight, per 1 part by weight of fine particles (dry matter basis) in the raw material to be treated.
The ratio is 1 to 0.2 parts by weight.

被処理原料とバインダーとの混合物は、これを加熱焼
成するが、被処理原料がドロスの如き泥状物の場合、多
量の水分や油分を含むため、この水分や油分を乾燥によ
り除去するため、あらかじめ乾燥するのがよい。この乾
燥は、通常、温度50〜300℃、好ましくは100〜200℃で
行われる。また、この乾燥は、不活性ガスの雰囲気下又
は真空下で行う。さらに、被処理原料とバインダーとの
混合物は、これを成形工程に付して成形物とすることが
できる。この場合、被処理原料がドロスの如き水分や油
分を含むものは、これにバインダーを添加混合した後、
水分や油分を乾燥等により除去し、成形に適したものに
調整し、成形する。また、被処理原料がドロス乾燥物
や、あるいは板状スクラップや塊状スクラップの微粉砕
化物の如き粉末状のものは、これにバインダーと共に適
量の水分を加えて成形する。成形物の形状は、板状、塊
状、球状、ペレット状、筒状等任意であり、またその寸
法は、飛散しない程度のものであればよい。通常は、長
軸の長さが2〜100mm程度のものである。バインダーの
種類は、被処理原料の種類との関係で適当に選定され、
例えば、被処理原料が油状泥状物の場合は、ポリエチレ
ングリコールやピッチ等の油溶性バインダーの使用が好
ましく、一方、水性泥状物の場合は、殿粉、アルギン酸
等の水溶性有機高分子や、ヒドロゾル、粘土鉱物等の親
水性バインダーの使用が好ましい。
The mixture of the raw material to be processed and the binder is heated and calcined.If the raw material to be processed is a mud such as dross, it contains a large amount of water and oil, so that the water and oil are removed by drying. It is better to dry in advance. This drying is usually performed at a temperature of 50 to 300 ° C, preferably 100 to 200 ° C. The drying is performed under an inert gas atmosphere or under vacuum. Further, the mixture of the raw material to be treated and the binder can be subjected to a molding step to form a molded product. In this case, if the raw material to be treated contains water or oil such as dross, after adding and mixing a binder thereto,
Moisture and oil are removed by drying or the like, adjusted to one suitable for molding, and molded. When the raw material to be processed is a powdered material such as a dried dross material or a finely pulverized plate scrap or a lump scrap, an appropriate amount of moisture is added to the raw material together with a binder. The shape of the molded product may be any shape such as a plate, a lump, a sphere, a pellet, and a cylinder, and the size may be any size as long as it does not scatter. Usually, the length of the major axis is about 2 to 100 mm. The type of binder is appropriately selected in relation to the type of raw material to be treated,
For example, when the raw material to be treated is an oily mud, it is preferable to use an oil-soluble binder such as polyethylene glycol or pitch.On the other hand, when an aqueous mud is used, starch or a water-soluble organic polymer such as alginic acid may be used. , Hydrosols, clay minerals, and other hydrophilic binders are preferred.

被処理原料とバインダーとの混合物を、前記のように
そのままあるいは成形物として乾燥する場合、その乾燥
物中の水分又は液体含量は、通常1〜50重量%、好まし
くは5〜20重量%である。
When the mixture of the raw material to be treated and the binder is dried as described above or as a molded product, the moisture or liquid content in the dried product is generally 1 to 50% by weight, preferably 5 to 20% by weight. .

本発明の予備処理工程における加熱焼成は、通常、温
度300〜1000℃の温度条件で実施される。この焼成によ
り、微粒子相互がバインダーを介して強く結合された焼
結体が得られる。このような焼結体は、微粉末とは異な
り、これを真空熱分解する際に飛散を生じることはな
い。なお、バインダーとして、有機系のものを用いる場
合、このものはこの焼成に際し、熱分解・コーキング化
され、コーク(炭素分)に変換されるが、このコーク分
が焼結体のバインダーとして作用する。
The heating and firing in the pretreatment step of the present invention is usually performed at a temperature of 300 to 1000 ° C. By this firing, a sintered body in which the fine particles are strongly bonded to each other via the binder is obtained. Unlike a fine powder, such a sintered body does not scatter when vacuum pyrolyzing it. When an organic binder is used as the binder, it is thermally decomposed and coked during the firing, and is converted into coke (carbon content). This coke acts as a binder for the sintered body. .

本発明で用いる予備処理工程において、その加熱乾燥
や加熱焼成は、ガリウム化合物が酸化を受けやすいこと
から、不活性ガス雰囲気中や減圧条件下で実施する。不
活性ガスとしては、ガリウム化合物と反応しないもので
あれば任意のものが使用され、一般には窒素ガス、アル
ゴン等が用いられる。また、減圧条件は、通常、10-4
100mmHg程度の圧力条件が採用される。
In the pretreatment step used in the present invention, the heat drying and heat baking are performed in an inert gas atmosphere or under reduced pressure, since the gallium compound is easily oxidized. Any inert gas may be used as long as it does not react with the gallium compound. Generally, nitrogen gas, argon, or the like is used. The decompression condition is usually 10 -4 to
A pressure condition of about 100 mmHg is adopted.

次に、前記の如き予備処理工程から得られた焼成物
(焼結物)は、ガリウム金属回収のために、真空熱分解
処理に付される。この真空熱分解処理は、一般的には、
残留ガス10-5〜100mmHgの真空条件及び1000〜1300℃の
加熱条件下で実施される。高真空、高温度条件程ガリウ
ム化合物の分解率は高くなるが、ガリウムの蒸発ロスが
大きくなる。従って、通常は、10-4〜10-1mmHg、1050〜
1150℃の条件下で行われる。
Next, the calcined product (sintered product) obtained from the pretreatment step as described above is subjected to a vacuum pyrolysis treatment in order to recover gallium metal. This vacuum pyrolysis process generally comprises
It is carried out under a vacuum condition of residual gas 10 −5 to 100 mmHg and a heating condition of 1000 to 1300 ° C. The higher the vacuum and temperature conditions, the higher the decomposition rate of the gallium compound, but the greater the loss of gallium evaporation. Therefore, usually, 10 -4 ~ 10 -1 mmHg, 1050 ~
It is performed under the condition of 1150 ° C.

この真空熱分解処理により、被処理原料中に含まれる
ガリウム化合物は、熱分解を受けて、そのガリウム分は
液状のガリウム金属に変換され、また、他の成分、例え
ば砒素やリン分は気体状の砒素やリンに変換される。そ
して、この熱分解で発生した気体状の砒素やリンは、こ
れを200℃以下の冷却面に接触させ、固形物として析出
させることによって回収することができる。一方、液体
金属ガリウム及びバインダー、不純物、未反応物を含む
分解残渣物は、これを、濾過等の固液分離処理に付す。
これによって、分解残渣物に含まれる金属ガリウムを液
状で回収することができる。分解残渣物を濾過処理する
場合、通常、50メッシュより細かな網目を持つ篩が使用
される。本発明で用いたバインダーは、この固液分離処
理により分離され、液体金属ガリウムへの混入は起らな
い。このようにして回収された金属ガリウムのインジウ
ムを除く純度は、通常3N(ナイン)〜5N(ナイン)であ
る。
By this vacuum pyrolysis process, the gallium compound contained in the raw material to be processed undergoes thermal decomposition, and the gallium component is converted to liquid gallium metal, and other components such as arsenic and phosphorus are converted to gaseous form. Is converted to arsenic and phosphorus. The gaseous arsenic and phosphorus generated by the thermal decomposition can be recovered by bringing the gaseous arsenic and phosphorus into contact with a cooling surface at a temperature of 200 ° C. or lower and precipitating them as solids. On the other hand, the decomposition residue containing the liquid metal gallium and the binder, impurities and unreacted substances is subjected to a solid-liquid separation treatment such as filtration.
Thereby, metallic gallium contained in the decomposition residue can be recovered in a liquid state. When filtering the decomposition residue, a sieve having a mesh finer than 50 mesh is usually used. The binder used in the present invention is separated by this solid-liquid separation treatment, and does not mix with the liquid metal gallium. The purity of the metal gallium thus recovered excluding indium is usually 3N (nine) to 5N (nine).

〔効果〕〔effect〕

本発明によれば、ガリウム化合物微粒子を含み、ガリ
ウム回収資源として有効利用することの困難であったが
ガリウム含有物から、金属ガリウムを高純度で回収する
ことができ、その産業的意義は多大である。
According to the present invention, gallium compound fine particles are contained, and it is difficult to effectively use it as a gallium recovery resource, but from gallium-containing substances, metallic gallium can be recovered with high purity, and its industrial significance is great. is there.

〔実施例〕〔Example〕

次に、本発明を実施例によりさらに詳細に説明する。
なお以下において示す部及び%はいずれも重量基準であ
る。
Next, the present invention will be described in more detail with reference to examples.
All parts and percentages shown below are based on weight.

実施例1 油分(主として軽質油)を約18%含む砒化ガリウム微
粒子の油性泥状スクラップを、不活性ガス雰囲気中にて
蒸留したのち、さらに約500℃にて、1時間加熱して軽
質分を除去し、炭素3.1%、ガリウム44%、砒素46%、
その他の不純物(In、P、Si、Fe等)5%の元素組成を
示す粉末を得た。
Example 1 An oily mud-like scrap of gallium arsenide fine particles containing about 18% of oil (mainly light oil) was distilled in an inert gas atmosphere, and further heated at about 500 ° C. for 1 hour to remove the light fraction. 3.1% carbon, 44% gallium, 46% arsenic,
A powder having an elemental composition of 5% of other impurities (In, P, Si, Fe, etc.) was obtained.

次に、この粉末に炭素89.4%、灰分2.7%、トルエン
不溶分40.4%を含む溶剤抽出炭(石炭の水素加圧下で溶
剤抽出によって得られたピッチ)を有機系バインダーと
して5%加えてよく混合したもの500gを石英製反応管に
入れ、不活性ガスを流しながら150℃にて3時間保った
のち、さらに500℃にて1時間保持して焼成した。この
焼成により、有機系バインダーは熱分解コーク化し、ま
た微粉末は粒子相互がコークで接合された焼成物に変換
された。
Next, to this powder, 5% of an organic binder containing solvent-extracted coal containing 89.4% carbon, 2.7% ash, and 40.4% toluene-insoluble matter (pitch obtained by solvent extraction under hydrogen pressure of coal) was added and mixed well. 500 g of the resulting product was put into a quartz reaction tube, kept at 150 ° C. for 3 hours while flowing an inert gas, and then further fired at 500 ° C. for 1 hour. By this firing, the organic binder was pyrolyzed to coke, and the fine powder was converted into a fired product in which the particles were joined by coke.

次に、この反応管を砒素析出トラップを備えた真空排
気装置(反応管からトラップまでは約500℃に加熱)に
接続して、300℃/Hrの割合で1,100℃まで昇温したの
ち、この温度に3時間保ち、焼成物中のガリウム化合物
を熱分解した。1,100℃における熱分解中の砒素トラッ
プの真空側の真空度は10-2〜10-4mmHgであった。次い
で、得られた真空熱分解残渣物を取出して、100メッシ
ュ濾布で濾過し、不純物としてSi、Fe、Cu、Caを各々1
〜10ppm、Asを1.7ppm、Inを3.1%含む金属ガリウム150.
1gを液状で得た。
Next, this reaction tube was connected to a vacuum exhaust device equipped with an arsenic precipitation trap (the temperature from the reaction tube to the trap was heated to about 500 ° C), and the temperature was raised to 1,100 ° C at a rate of 300 ° C / Hr. The temperature was maintained for 3 hours to thermally decompose the gallium compound in the fired product. The degree of vacuum on the vacuum side of the arsenic trap during thermal decomposition at 1,100 ° C was 10 -2 to 10 -4 mmHg. Next, the obtained vacuum pyrolysis residue was taken out and filtered with a 100-mesh filter cloth.
150 g of metallic gallium containing ~ 10 ppm, 1.7 ppm of As, and 3.1% of In.
1 g was obtained in liquid form.

実施例2 実施例1で示した油性泥状スクラップ500gを約90℃に
加温しながら不活性ガスを流して油分を8%まで減少さ
せた。次にこの乾燥物にコーンスターチ75gと水120gを
加えてよく混合・混練した。この混練物を金型を用いて
直径10mm、高さ約10mmの円柱に圧縮成形した。この成形
物を120℃にて5時間乾燥したのち、窒素気流中で500℃
にて2時間、ついで700℃にて2時間焼成した。焼成物
の炭素含有率は5.2%であった。次にこの焼成物を実施
例1と同様にして、1,120℃にて5時間真空熱分解し、
分解残渣物を濾過することによって、金属ガリウム163.
3gを得た。この金属ガリウム中には、不純物としてはIn
が3.4%、Asが0.7ppm、Fe、Mg、Caが各々1〜10ppm認め
られた。
Example 2 500 g of the oily muddy scrap shown in Example 1 was heated to about 90 ° C. while flowing an inert gas to reduce the oil content to 8%. Next, corn starch (75 g) and water (120 g) were added to the dried product and mixed and kneaded well. This kneaded material was compression-molded into a cylinder having a diameter of 10 mm and a height of about 10 mm using a mold. After drying this molded product at 120 ° C. for 5 hours, it is heated at 500 ° C. in a nitrogen stream.
For 2 hours and then at 700 ° C. for 2 hours. The carbon content of the fired product was 5.2%. Next, the fired product was subjected to vacuum pyrolysis at 1,120 ° C. for 5 hours in the same manner as in Example 1,
By filtering the decomposition residue, metallic gallium 163.
3 g were obtained. In this metallic gallium, the impurity is In.
3.4%, As 0.7 ppm, Fe, Mg, and Ca 1 to 10 ppm each.

実施例3 水分約14%含む砒化ガリウム微粒子の水性泥状スクラ
ップを被処理原料として用いた。このものを500℃で1
時間乾燥したものの元素分析は、炭素0.3%、ガリウム4
3%、砒素50%、In、Fe等の不純物0.1%を示した。
Example 3 An aqueous slurry of gallium arsenide fine particles containing about 14% of water was used as a raw material to be treated. This one at 500 ℃
Elemental analysis of the dried material for 0.3 hours revealed that
3%, 50% arsenic, and 0.1% impurities such as In and Fe.

先ず、無機系バインダーを得るために、塊状のセピオ
ライト鉱石をボールミルで乾式粉砕した後、100メッシ
ュ篩で粗粒子を分離除去して、微粉末状のセピオライト
を得た。次に、このセピオライト100部に水200部を加え
て充分に混練し、この混練物100部及び水50部を、前記
被処理原料200部に加えてさらに充分に混合・混練した
のち、直径約2mmの円柱に押出し成形した。この成形物
を実施例2と同様に乾燥・焼成し、Ga含有率39%の焼成
物を得た。この焼成物500gを実施例2と同一反応条件で
真空熱分解し、分解残渣物を濾過したところ、148.3gの
金属Gaが回収された。このGa中の不純物として、Asが0.
3ppm、In、Fe、Cu、Caが1〜10ppm認められた。
First, in order to obtain an inorganic binder, lump sepiolite ore was dry-pulverized with a ball mill, and coarse particles were separated and removed with a 100-mesh sieve to obtain fine powder-form sepiolite. Next, 200 parts of water was added to 100 parts of this sepiolite and sufficiently kneaded, and 100 parts of the kneaded material and 50 parts of water were further sufficiently mixed and kneaded with 200 parts of the raw material to be treated, and then the diameter was reduced to about 100 parts. It was extruded into a 2 mm cylinder. This molded product was dried and fired in the same manner as in Example 2 to obtain a fired product having a Ga content of 39%. 500 g of this calcined product was pyrolyzed in vacuum under the same reaction conditions as in Example 2, and the decomposition residue was filtered. As a result, 148.3 g of metallic Ga was recovered. As an impurity in Ga, the content of As is 0.
3 ppm, 1-10 ppm of In, Fe, Cu, and Ca were observed.

実施例4 実施例3で示した被処理原料100gに水20g、直径1〜2
0μmのシリカ微粒子からなるホワイトカーボン2gをよ
く混合し、この混合物を石英ルツボに入れ、これをさら
に石英反応管に入れて実施例1と同様にして窒素気流中
で乾燥し、次いで500℃で1時間焼成した。
Example 4 20 g of water and a diameter of 1 to 2 were added to 100 g of the raw material to be treated shown in Example 3.
2 g of white carbon composed of 0 μm silica fine particles were mixed well, and this mixture was placed in a quartz crucible, further placed in a quartz reaction tube, dried in a nitrogen stream in the same manner as in Example 1, and then dried at 500 ° C. for 1 hour. Fired for hours.

次に、この焼成物を実施例1と同様にして、1,150℃
にて1時間真空熱分解した。得られた熱分解残渣を100
メッシュ濾布で濾過したところ28.0gの金属Gaが回収さ
れた。このものには、不純物として、Asが10ppm、Inが7
8ppm、Fe、Ca、Mgが各々1〜10PPm認められた。
Next, the fired product was heated at 1,150 ° C. in the same manner as in Example 1.
For 1 hour under vacuum. The obtained pyrolysis residue is 100
When filtered through a mesh filter cloth, 28.0 g of metallic Ga was recovered. This substance contains 10 ppm of As and 7 ppm of In as impurities.
8 ppm, Fe, Ca, and Mg were found in amounts of 1 to 10 PPm, respectively.

実施例5 90℃にて3時間乾燥したものの元素組成が炭素0.4
%、Ga46%、As53%、その他の不純物(Si、In、Fe、A
l)が合計0.8%であり、90%以上が20メッシュパスの微
粉状砒化ガリウムスクラップを被処理原料として用い
た。この被処理原料を90℃にて3時間乾燥したのち、こ
の粉末100部に対して4N金属ガリウム20部を加えてミキ
サーにて充分に混合した。このようにして得られた混合
物を実施例2と同様にして直径10mm、高さ10mmに圧縮成
形した。この成形物を窒素気流中で500℃にて約2時間
焼成した。
Example 5 After drying at 90 ° C. for 3 hours, the element composition was 0.4 carbon.
%, Ga46%, As53%, and other impurities (Si, In, Fe, A
l) was 0.8% in total, and 90% or more used 20 mesh pass fine pulverized gallium arsenide scrap as a raw material to be treated. After the raw material to be treated was dried at 90 ° C. for 3 hours, 20 parts of 4N metal gallium was added to 100 parts of the powder, and the mixture was sufficiently mixed with a mixer. The mixture thus obtained was compression molded to a diameter of 10 mm and a height of 10 mm in the same manner as in Example 2. This molded product was fired at 500 ° C. for about 2 hours in a nitrogen stream.

次にこの成形物100gを石英ルツボに入れ、1080℃にて
3時間真空熱分解した。熱分解残渣物を100メッシュ濾
布で濾過したところ、48.1gの金属Gaが得られた。これ
よりGa、Asスクラップから31.4gのGaが回収されたこと
が認められる。Gaの不純物としてはAsが3.1ppm、In、F
e、Ca、Cuが各々1〜10ppm認められた。
Next, 100 g of this molded product was placed in a quartz crucible and vacuum pyrolyzed at 1080 ° C. for 3 hours. Filtration of the pyrolysis residue with a 100 mesh filter cloth gave 48.1 g of metallic Ga. This indicates that 31.4 g of Ga was recovered from the Ga and As scrap. As an impurity of Ga, As is 3.1 ppm, In, F
e, Ca, and Cu were observed in amounts of 1 to 10 ppm, respectively.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガリウム化合物微粒子を含むガリウム含有
物から金属ガリウムを回収する方法において、該ガリウ
ム含有物に無機系及び/又は有機系バインダーを添加混
合し、不活性ガスの雰囲気下又は真空下に乾燥させて温
度300〜1000℃の条件下に加熱することにより焼結化
し、得られた焼結体を真空熱分解することにより液体金
属ガリウムを回収することを特徴とするガリウム含有物
からの金属ガリウムの回収方法。
In a method for recovering metallic gallium from a gallium-containing material containing gallium compound fine particles, an inorganic and / or organic binder is added to and mixed with the gallium-containing material, and the mixture is mixed under an inert gas atmosphere or under vacuum. Metal from gallium-containing material, characterized in that it is dried and sintered under heating at a temperature of 300 to 1000 ° C., and liquid metal gallium is recovered by vacuum pyrolysis of the obtained sintered body. Gallium recovery method.
JP10274787A 1987-04-24 1987-04-24 Method for recovering metallic gallium from gallium-containing materials Expired - Lifetime JP2604590B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10274787A JP2604590B2 (en) 1987-04-24 1987-04-24 Method for recovering metallic gallium from gallium-containing materials
US07/182,954 US4812167A (en) 1987-04-24 1988-04-18 Process for recovering metallic gallium from gallium compound-containing waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10274787A JP2604590B2 (en) 1987-04-24 1987-04-24 Method for recovering metallic gallium from gallium-containing materials

Publications (2)

Publication Number Publication Date
JPS63270426A JPS63270426A (en) 1988-11-08
JP2604590B2 true JP2604590B2 (en) 1997-04-30

Family

ID=14335816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10274787A Expired - Lifetime JP2604590B2 (en) 1987-04-24 1987-04-24 Method for recovering metallic gallium from gallium-containing materials

Country Status (1)

Country Link
JP (1) JP2604590B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147956A (en) * 2014-02-05 2015-08-20 Jx日鉱日石金属株式会社 Method for recovering gallium
CN111519024B (en) * 2020-04-24 2022-05-24 朔州西廊煤炭科技有限公司 Method for extracting gallium metal by using coal solid waste or bauxite solid waste through sintering method
CN113652559B (en) * 2021-08-20 2022-07-29 安徽工业大学 Method for recovering rare and scattered metal gallium in gallium nitride waste material by pyrogenic process

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837889A (en) * 1971-09-18 1973-06-04
JPS57101625A (en) * 1980-12-15 1982-06-24 Gnii Pi Redkometa Manufacture of high purity gallium
JPS6176627A (en) * 1984-09-21 1986-04-19 Showa Alum Ind Kk Recoverying method of callium

Also Published As

Publication number Publication date
JPS63270426A (en) 1988-11-08

Similar Documents

Publication Publication Date Title
JP5466455B2 (en) Method for producing silicon carbide
TWI498281B (en) Method for producing silicon carbide powder
JP2604590B2 (en) Method for recovering metallic gallium from gallium-containing materials
CN113880136B (en) Zirconium tetrachloride and/or silicon tetrachloride, preparation method and preparation device thereof
US4812167A (en) Process for recovering metallic gallium from gallium compound-containing waste
RU2314275C2 (en) Method of manufacturing antifriction parts from silicon carbide
US4528119A (en) Metal borides, carbides, nitrides, silicides, oxide materials and their method of preparation
JP2605034B2 (en) Metal gallium recovery method
US4889702A (en) Process for removing metallic constituents from dust obtained during the electrothermal production of yellow phosphorus
KR20130033290A (en) Method for recovering a solid particle
US5080879A (en) Process for producing silicon carbide platelets and the platelets so produced
KR20040055218A (en) a manufacturing method for high purity silicon carbide from the wafer cutting slurry
JPH062565B2 (en) Method for producing silicon carbide
EP3947278B1 (en) Method for preparing agglomerates comprising metallic silikon
KR840008789A (en) High purity aluminum nitride fine powder, compositions thereof and sintered bodies thereof, and methods for producing them
JP6014012B2 (en) Coke production method and coke
JPH0790165B2 (en) Purification method of powder
JP5449685B2 (en) Method for producing highly reactive coke
JPH0519486B2 (en)
CN108342637B (en) Method for producing polysilane/siloxene and ferrosilicon by reacting carbide slag iron with acid
CA2075466C (en) Method of producing silicon and an electric-arc low-shaft furnace and briquette for carrying out the process
EP0476422A1 (en) Process for preparing a beta-type silicon carbide powder
JPH0269356A (en) Production of isotropic graphite material having high purity
JP2610645B2 (en) Method for producing cubic boron nitride sintered body
RU2164259C2 (en) Method of gallium recovery from gallium-containing oxides of rare-earth metals