JPH0269356A - Production of isotropic graphite material having high purity - Google Patents

Production of isotropic graphite material having high purity

Info

Publication number
JPH0269356A
JPH0269356A JP63218282A JP21828288A JPH0269356A JP H0269356 A JPH0269356 A JP H0269356A JP 63218282 A JP63218282 A JP 63218282A JP 21828288 A JP21828288 A JP 21828288A JP H0269356 A JPH0269356 A JP H0269356A
Authority
JP
Japan
Prior art keywords
coke
pitch
amorphous
graphite material
pitch coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63218282A
Other languages
Japanese (ja)
Inventor
Kenichi Fujimoto
研一 藤本
Koichiro Mukai
向井 幸一郎
Kenichiro Fujimoto
健一郎 藤本
Masafumi Orita
折田 政文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP63218282A priority Critical patent/JPH0269356A/en
Publication of JPH0269356A publication Critical patent/JPH0269356A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To easily obtain isotropic graphite material having high purity and a low anisotropy ratio by finely crushing amorphous pitch coke, bringing into contact with an aq. strong acid soln. for a fixed time period to remove ash, thereafter washing, drying, molding, sintering and graphitizing. CONSTITUTION:The amorphous pitch coke produced by carbonizing coal tar pitch, is crushed to <=250mum. Then, the crushed pitch coke is brought into contact with the aq. strong acid soln. (e.g., aq. hydrochloric acid soln.) for >=5min to remove metallic impurities contained in the coke. The coke powder obtd. after washing and drying, as raw material, is molded with or without pitch as binder, sintered and graphitized to obtain the isotropic graphite material having high purity and <=1.05 anisotropy ratio. Thereby, the load for highly purifying when the coke powder is graphitized, can be lightened, because the metallic impurities in the amorphous pitch coke as raw material, have been removed in advance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はコールタールピッチから製造されるアモルファ
スグリーンピッチコークス、アモルファス仮焼ピッチコ
ークスから純度の高い等方性黒鉛材を製造する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to amorphous green pitch coke produced from coal tar pitch and a method for producing isotropic graphite material of high purity from amorphous calcined pitch coke.

従来の技術 ピッチコークスの内、アモルファスコークスは等方性黒
鉛材料の原料である。このコークスはコールタールの蒸
留残分であるピッチを炭化して製造されるので、コール
タール中に含まれている灰分が1縮されてアモルファス
ピッチコークスに含まれることになる。灰分の成分はコ
ールタールの原料炭に由来するもの、およびコールター
ルの扉留時に防食剤として添加された化合物等に由来す
るが、主としてナトリウム等のアルカリ金属、カルシウ
ム等のアルカリ土類金属さらには鉄、シリカ等が含まれ
ている。
Among conventional pitch cokes, amorphous coke is a raw material for isotropic graphite material. Since this coke is produced by carbonizing pitch, which is a distillation residue of coal tar, the ash contained in the coal tar is condensed and contained in the amorphous pitch coke. The ash component is derived from the raw coal of coal tar, and from compounds added as anticorrosive agents during the coal tar door retention process, but mainly contains alkali metals such as sodium, alkaline earth metals such as calcium, and Contains iron, silica, etc.

異方比1.05以下の等方性黒鉛枝は通常、次の工程か
ら製造されている。
Isotropic graphite branches with an anisotropy ratio of 1.05 or less are usually manufactured through the following process.

(1)アモルファス仮焼コークスを数pm〜数十ルmに
粉砕する工程、 (2)粉砕されたアモルファスコークス粉末とバインダ
ーピッチを混合する工程、 (3)前記混合物を成形する工程、 (4)成形品を焼成する工程、 (5)焼成品を黒鉛化する工程、 (6)目的に応じて黒鉛材を加工する工程等である。
(1) A step of pulverizing amorphous calcined coke to several pm to several tens of lm, (2) A step of mixing the pulverized amorphous coke powder and binder pitch, (3) A step of molding the mixture, (4) (5) graphitizing the fired product; (6) processing the graphite material depending on the purpose.

さらに、最近、バインダレス法で等方性黒鉛材を製造す
る方法が開発されており、その場合、揮発分を含んだア
モルファスグリーンコークスヲ原料にし、上記の工程の
内、(2)の1程が省略される。
Furthermore, a method for producing isotropic graphite material using a binderless method has recently been developed. is omitted.

用途によっては等方性黒鉛材中に金属不純物が含まれる
ことは好ましくない、特に、原子炉用黒鉛として使用す
る場合、微量の不純物の混入も好ましくない、更に、電
子部品の製造に使用される場合、例えば、シリコン引き
上げ用ルツボホルダヒーターさらにはハーメチック封止
用治具材等に用いられる等方性黒鉛材にも金属不純物の
混入は極度に蝿われる。
Depending on the application, it is undesirable for isotropic graphite materials to contain metal impurities.Especially, when used as graphite for nuclear reactors, it is undesirable to have trace amounts of impurities mixed in.Furthermore, it is undesirable for isotropic graphite materials to be used in the manufacture of electronic components. In this case, for example, metal impurities are extremely likely to be mixed into isotropic graphite materials used in crucible holder heaters for silicon pulling, as well as jig materials for hermetic sealing.

そこで、一般には等方性黒鉛材から金属不純物を除去す
る方法としては、いわゆる、高純度化として前記黒鉛材
の製造工程の内、焼成品を黒鉛化する工程で雰囲気ガス
としてハロゲンガスを流通し、金属不純物を気化する方
法が行われている。
Therefore, in general, a method for removing metal impurities from isotropic graphite material is to distribute halogen gas as an atmospheric gas in the process of graphitizing the fired product in the manufacturing process of the graphite material to achieve so-called high purity. , a method of vaporizing metal impurities has been used.

さらに、炭素材からアルカリ金属、およびアルカリ土類
金属を除去する方法としては、特公昭62−45184
号公報に開示されている。この方法は未炭化状態のポリ
アクリロニトリル材料を37.7℃以上の温度で酸と接
触させ、金属類を可溶性の塩に変化させて除去する方法
であり、炭化前の段階で酸処理を行うことが特徴になっ
ている。
Furthermore, as a method for removing alkali metals and alkaline earth metals from carbon materials, Japanese Patent Publication No. 62-45184
It is disclosed in the publication No. This method is a method in which uncarbonized polyacrylonitrile material is brought into contact with acid at a temperature of 37.7°C or higher to convert metals into soluble salts and remove them, and acid treatment is performed before carbonization. is a feature.

現在工業的に実施されている高純度化処理で、等方性黒
鉛材中の金属不純物をほぼ完全に除去することが可能で
あるが、超高温でハロゲンガスを使用するので、安全、
公害問題に特に注意を払う必要があるし、ハロゲンガス
を多量に使用するので、経済的な方法とは言いがたい。
With the high purification treatment currently being carried out industrially, it is possible to almost completely remove metal impurities in isotropic graphite materials, but since it uses halogen gas at ultra-high temperatures, it is not safe or
It is difficult to say that it is an economical method because it requires special attention to pollution problems and uses a large amount of halogen gas.

更に、上記用途の内、電子部品の製造用に使用される等
方性黒鉛材の中には硬度の面から黒鉛化が進みすぎた材
料は好ましくない場合がある。しかし、現行の黒鉛化工
程でハロゲンガスを用いて不純物を除去する方法では、
黒鉛化温度に加熱することが必要であるため、黒鉛化が
必ず進行する。黒鉛化の進行に伴い、黒鉛材の硬度は低
下するので、現行の方法では硬度の高い等方性黒鉛材の
製造は困難である。
Furthermore, among the isotropic graphite materials used for manufacturing electronic components among the above-mentioned applications, materials with too much graphitization may not be preferable in terms of hardness. However, the current graphitization process uses halogen gas to remove impurities.
Since it is necessary to heat the material to a graphitization temperature, graphitization will definitely proceed. As the graphitization progresses, the hardness of the graphite material decreases, so it is difficult to manufacture an isotropic graphite material with high hardness using current methods.

また、コールタールに溶媒を添加し、粘度を低下させ、
不溶分を沈降分離したり濾過したりして、コールタール
からキノリンネ溶分(QI)を除去する技術は確立され
ており、この場合にはQI除去によって灰分ち同時に除
去されるが、このような処理をした、QIを含まないコ
ールタールピッチを炭化すると、製鋼用黒鉛電極用に適
したニードルコークスが製造される。
In addition, a solvent is added to coal tar to reduce the viscosity.
The technology to remove quinoline solubles (QI) from coal tar by sedimentation separation or filtration of insoluble matters has been established, and in this case, the ash content is simultaneously removed by QI removal. Carbonization of the treated, QI-free coal tar pitch produces needle coke suitable for use in graphite electrodes for steelmaking.

このコークスは異方性が大さいので1等方性黒鉛材を製
造するための原料には適していない、従って、コールタ
ールから予め、QIおよび灰分を除去する前述の方法は
1等方性黒鉛材用原料のアモルファスコークスを製造す
る場合には採用することが出来ない。
Since this coke has a large anisotropy, it is not suitable as a raw material for producing monoisotropic graphite material. Therefore, the above-mentioned method of removing QI and ash from coal tar in advance is It cannot be used when producing amorphous coke, which is a raw material for wood.

発明が解決しようとする課題 黒鉛材の原料となるアモルファスピッチコークスから金
属不純物を低減させ、このアモルファスピッチコークス
を使い高純度の等方性黒鉛材を提供するものであ゛る。
Problem to be Solved by the Invention It is an object to reduce metal impurities from amorphous pitch coke, which is a raw material for graphite material, and to provide a high-purity isotropic graphite material using this amorphous pitch coke.

課題を解決するための手段 本発明はアモルファスピッチコークス鎖中の金属不純物
と強酸を反応させ、可溶性の塩とし除去、低減するもの
である。アモルファスピッチコークス中の金属の存在形
態は明らかではないが。
Means for Solving the Problems The present invention involves reacting metal impurities in amorphous pitch coke chains with strong acids to form soluble salts, which are then removed and reduced. The existence form of metals in amorphous pitch coke is not clear.

コールタールに由来する金属は、ピッチの炭化工程でア
モルファスピッチコークスの組織中に包含され、容易に
酸と反応するものではない0発明者等は鋭意検討の結果
、次の方法でアモルファスピッチコークス鎖中の金属不
純物を効果的に低減できることを見い出し、本発明を完
成した。
Metals derived from coal tar are included in the structure of amorphous pitch coke during the pitch carbonization process, and do not easily react with acids.The inventors have conducted extensive research to develop amorphous pitch coke chains using the following method. The present invention was completed based on the discovery that metal impurities in the material can be effectively reduced.

すなわち、本発明はアモルファスピッチコークスを25
0 g m以下に粉砕し、強酸水溶液に5分間以上接触
させた後、水洗、乾燥して得られるアモルファスピッチ
コークス粉を原料として、バインダーピッチを用いるか
、用いることなく、成形、焼成、黒鉛化することを特徴
とする金属不純物の含有量の少ない高純度等方性黒鉛材
の製造法である。
That is, in the present invention, amorphous pitch coke is
Using amorphous pitch coke powder obtained by pulverizing it to 0 g m or less, contacting it with a strong acid aqueous solution for 5 minutes or more, washing with water, and drying it as a raw material, it can be molded, fired, and graphitized with or without binder pitch. This is a method for producing a high-purity isotropic graphite material with a low content of metal impurities.

本発明で原料に用いるアモルファスピッチコークスとは
、コールタールピッチから製造されるアモルファスなグ
リーンピッチコークス、及びそれを仮焼して得られるア
モルファス仮焼ピッチコークスである。
The amorphous pitch coke used as a raw material in the present invention is amorphous green pitch coke produced from coal tar pitch, and amorphous calcined pitch coke obtained by calcining it.

本発明の製造方法は次のとおりである。The manufacturing method of the present invention is as follows.

原料のピッチコークスをジェットミル、振動ミル、ボー
ルミル、ハンマーミル等の通常の粉砕機で2501Lm
以下、好ましくは1004m以下に粉砕し、この粒子と
強酸水溶液を接触させる。アモルファスピッチコークス
粉の粒度が250.g、m超では、強酸水溶液との接触
で、Nがアモルファスピッチコークス中の金属不純物と
反応せず、金属不純物を低減させる効果が充分でない。
The raw material pitch coke is pulverized to 2501Lm using a regular crusher such as a jet mill, vibration mill, ball mill, or hammer mill.
Thereafter, the particles are preferably pulverized to 1004 m or less, and the particles are brought into contact with a strong acid aqueous solution. The particle size of amorphous pitch coke powder is 250. If it exceeds g and m, N will not react with metal impurities in the amorphous pitch coke upon contact with a strong acid aqueous solution, and the effect of reducing metal impurities will not be sufficient.

金属不純物を含んだアモルファスピッチコークスを粉砕
し、粗粉、微粉に分け、それぞれに含まれる金属不純物
を測定した結果、微粉に金属不純物が濃縮されているこ
とが判った。したがって。
Amorphous pitch coke containing metal impurities was pulverized and divided into coarse powder and fine powder, and the metal impurities contained in each were measured. As a result, it was found that metal impurities were concentrated in the fine powder. therefore.

原料アモルファスピッチコークスを一旦、粗粉砕し、微
粉を取り除いた後、粗粉を再度250gm以下に粉砕し
、本発明の方法を適応すると、再粉砕をしない場合と比
較して金属不純物除去効果が増大する。
If the raw material amorphous pitch coke is first coarsely pulverized to remove fine powder, and then the coarse powder is pulverized again to 250 gm or less and the method of the present invention is applied, the effect of removing metal impurities will be increased compared to the case where re-pulverization is not performed. do.

以下に具体的方法を記載する0例えば、グラスライニン
グした容器に、250 ILm以下に粉砕したアモルフ
ァスピッチコークス粉と強酸水溶液を入れ、攪拌する。
A specific method is described below. For example, amorphous pitch coke powder pulverized to 250 ILm or less and a strong acid aqueous solution are placed in a glass-lined container and stirred.

所定時間攪拌後、スラリーを取り出し、濾過してアモル
ファスピッチコークス粉を濾別する0次に、アモルファ
スピッチコークス類に酸の付着がなくなるまで水ですす
いだ後、乾燥する。この方法は比較的低温でかつ常圧で
操作出来るので、装置および操作は非常に簡単である。
After stirring for a predetermined time, the slurry is taken out and filtered to remove the amorphous pitch coke powder.Next, the amorphous pitch coke is rinsed with water until no acid is attached to it, and then dried. Since this method can be operated at relatively low temperatures and normal pressure, the equipment and operation are very simple.

このような処理をしたアモルファスピッチコークス粉を
原料にして異方比が1.05以下の等方性黒鉛材を製造
するが、その製造法は公知の方法が適用される。すなわ
ち、アモルファスピッチコークスが揮発分を約lO%含
んだグリーンコークスの場合、そのまま成形、焼成、黒
鉛化して黒鉛材が製造出来るし、アモルファスピッチコ
ークスが仮焼コークスの場合は結合材としてバインダー
ピッチを添加して混練後、成形、焼成、黒鉛化して等方
性黒鉛材が製造される。
An isotropic graphite material having an anisotropy ratio of 1.05 or less is produced using the amorphous pitch coke powder subjected to such treatment as a raw material, and a known method is applied to the production method. In other words, if amorphous pitch coke is green coke containing about 10% volatile matter, it can be molded, fired, and graphitized to produce graphite material, and if amorphous pitch coke is calcined coke, binder pitch can be used as a binder. After addition and kneading, isotropic graphite material is produced by molding, firing, and graphitization.

本発明で使用する酸は強酸であれば良いが、経済的には
塩酸、硫酸、硝酸等安価な鉱酸の使用が望ましい1本発
明による方法は、まず、アモルファスピッチコークス中
の灰分と酸の水素イオンとの間に実質的なイオン交換を
行わせて塩類を生成させるのに十分な濃度、温度及び時
間で抽出する。酸の濃度は、使用する酸の種類によって
0.1〜35重量%あるいはそれ以上と変化させる事が
出来るが、酸の濃度が低すぎると効果が十分でない。ま
た、酸の濃度が高すぎると、ピッチコークス粉を十分濡
らす為に余分な酸を使用しなければならず、経済的でな
い。
The acid used in the present invention may be any strong acid, but from an economic standpoint, it is preferable to use inexpensive mineral acids such as hydrochloric acid, sulfuric acid, and nitric acid. The extraction is performed at a concentration, temperature, and time sufficient to effect substantial ion exchange with hydrogen ions to form salts. The acid concentration can be varied from 0.1 to 35% by weight or more depending on the type of acid used, but if the acid concentration is too low, the effect will not be sufficient. Furthermore, if the acid concentration is too high, excess acid must be used to sufficiently wet the pitch coke powder, which is not economical.

温度は常温でもさしつかえないが、短時間に金属を抽出
するためには、酸水溶液の沸騰温度以下まで加熱するこ
とが望ましい、酸との接触時間はアモルファスピッチコ
ークス粉の粒径、処理温度、酸濃度によっても変化する
が、少なくとも5分以上洗浄時1iftをとることが必
要である。また。
Room temperature is fine, but in order to extract metals in a short time, it is desirable to heat it to below the boiling temperature of the acid aqueous solution.The contact time with the acid depends on the particle size of the amorphous pitch coke powder, the processing temperature, and the acid Although it varies depending on the concentration, it is necessary to take 1 ift for at least 5 minutes or more during washing. Also.

接触時間の上限としては120分程度で充分である。As an upper limit of the contact time, about 120 minutes is sufficient.

強酸水溶液による抽出の後、このアモルファスピッチコ
ークス粉を金属塩、灰分を含まない水で洗浄する。この
水洗工程は、実質的に全ての残留酸および酸水溶液との
接触で生成した塩類を溶解して洗い落とすためのもので
あり、十分行う必要がある。このため、この水洗は十分
長い時間をかけて行うことが必要である。
After extraction with a strong acid aqueous solution, the amorphous pitch coke powder is washed with metal salt and ash-free water. This water washing step is for dissolving and washing off substantially all the residual acid and salts generated by contact with the acid aqueous solution, and must be carried out sufficiently. Therefore, it is necessary to perform this washing with water for a sufficiently long time.

水洗に続いて、アモルファスピッチコークス類に付着し
ている水分を乾燥により除く、乾燥は100℃前後で行
う、乾燥温度は仮焼コークスを原料にした場合、還元雰
vI4気であれば、高温で乾燥してもさしつかえないが
、グリーンコークスを原料に用いた場合、高温で乾燥す
ると、コークス中に含まれる揮発分の質、量が変化する
ので好ましくない、100℃前後の乾燥温度であれば、
グリーンピッチコークス中の揮発分の質、量は変化しな
いので、バインダレス法等方性黒鉛材用原料にそのまま
使用してもさしつかえない。
Following water washing, water adhering to the amorphous pitch coke is removed by drying.Drying is carried out at around 100℃.The drying temperature is high if calcined coke is used as the raw material and in a reducing atmosphere vI4 atmosphere. Drying is fine, but when green coke is used as a raw material, drying at high temperatures changes the quality and amount of volatile matter contained in the coke, which is undesirable.If the drying temperature is around 100°C,
Since the quality and quantity of volatile components in green pitch coke do not change, it can be used as is as a raw material for binderless isotropic graphite material.

本発明の方法は、アモルファスピッチコークスを250
pm以下に粉砕した後、強酸水溶液との接触を行うので
、−見経済的でないようであるが、等方性黒鉛材は前記
のように粉砕コークスを原料にして製造されるので、粉
砕工程は元々必須であるため、本発明のために余分な工
程を追加したわけではなく、デメリットとなる訳ではな
い。
The method of the present invention uses amorphous pitch coke at 250
After pulverizing to below pm, it is contacted with a strong acid aqueous solution, which may seem uneconomical, but since isotropic graphite material is manufactured from pulverized coke as mentioned above, the pulverization process is Since this step is originally essential, no extra steps were added for the purpose of the present invention, and it does not constitute a disadvantage.

本発明の方法で、アモルファスピッチコークス中のすべ
ての灰分が除去されるわけではないが、アルカリ金属、
アルカリ土類金属および鉄等は効果的に除去される。珪
素等は本発明で除去されにくいので、残留割合が高い。
Although the method of the present invention does not remove all the ash in the amorphous pitch coke, the alkali metal,
Alkaline earth metals, iron, etc. are effectively removed. Since silicon and the like are difficult to remove in the present invention, their residual ratio is high.

このようにして得られたアモルファスピッチコークス粉
を、そのまま等方性黒鉛材の原料にすることが出来るが
、黒鉛材の用途によっては再粉砕して原料にすることも
出来る。黒鉛材製造工程は通常の方法と同一でよいが、
黒鉛化工程でのハロゲンガスによる高純度化では、黒鉛
化温度を通常より低くしても黒鉛材中の不純物量は減少
する。
The amorphous pitch coke powder thus obtained can be used as a raw material for isotropic graphite material as it is, but depending on the use of the graphite material, it can also be re-pulverized and used as a raw material. The graphite material manufacturing process may be the same as the usual method, but
In high purification using halogen gas in the graphitization process, the amount of impurities in the graphite material is reduced even if the graphitization temperature is lower than usual.

実施例 実施例1〜9、比較例1.2 アモルファスグリーンピッチコークスを原料に使用した
。振動ボールミルで粉砕したコークス粉100gと強酸
水溶液150 gをビーカーに入れ、加8攪拌した6強
酸水溶液との接触後、グラスフィルターで酸を濾過し、
濾液が中性になるまで、木で洗浄した。その後、80℃
で乾燥を行った。
Examples Examples 1 to 9, Comparative Example 1.2 Amorphous green pitch coke was used as a raw material. Put 100 g of coke powder crushed in a vibrating ball mill and 150 g of a strong acid aqueous solution into a beaker, and after contacting with the stirred 6 strong acid aqueous solution, filter the acid with a glass filter.
The filtrate was washed with wood until it became neutral. After that, 80℃
It was dried with

強酸水溶液との接触の条件及びその前後の灰分の含有量
を表1に示す。
Table 1 shows the conditions of contact with the strong acid aqueous solution and the ash content before and after contact.

塩酸を使用した場合も硫酸を使用した場合も。Both when using hydrochloric acid and when using sulfuric acid.

灰分が減少していることがわかる。また、コークス粒径
が大きい場合には、比較例1に示したように灰分の除去
率は少なかった。
It can be seen that the ash content has decreased. Furthermore, when the coke particle size was large, as shown in Comparative Example 1, the ash removal rate was low.

比較のため、75〜45g、mの粒径の試料を強酸水溶
液との接触を行わず、水洗だけを行った場合のコークス
中に含まれる灰分量を比較例2に示す。
For comparison, Comparative Example 2 shows the amount of ash contained in coke when a sample having a particle size of 75 to 45 g, m was not brought into contact with a strong acid aqueous solution and only washed with water.

水洗工程だけではコークス粉中の灰分がほとんど減少し
ていないことがわかる。
It can be seen that the ash content in the coke powder is hardly reduced by the water washing process alone.

実施例10、比較例3 仮焼ピッチコークスを使用して実施例1〜9と同様の処
理を行った。処理条件、灰分量などは表2に示した。
Example 10, Comparative Example 3 The same treatments as in Examples 1 to 9 were performed using calcined pitch coke. The treatment conditions, ash content, etc. are shown in Table 2.

粉砕粒度を小さくすることによって仮焼コークスを原料
にした場合も灰分が除去されることがわかる。また、比
較例3に示したように粒度が大きいと灰分が除去される
程度が少ないことがわかる。
It can be seen that by reducing the pulverized particle size, ash can be removed even when calcined coke is used as a raw material. Furthermore, as shown in Comparative Example 3, it can be seen that when the particle size is large, the extent to which ash is removed is small.

実施例11.比較例4 実施例1〜9と同一のアモルファスグリーンピッチコー
クスを粒径が74gm以下になるように振動ボールミル
で粉砕した。この粉末100gに濃度18%の塩酸20
0gを加え、ビーカー中で、50℃、30分間攪拌した
後、3Gグラスフイルターで濾過し、濾液が中性になる
まで水洗した。
Example 11. Comparative Example 4 The same amorphous green pitch coke as in Examples 1 to 9 was pulverized using a vibrating ball mill so that the particle size was 74 gm or less. To 100g of this powder, 20g of hydrochloric acid with a concentration of 18%
After adding 0g of the mixture and stirring in a beaker at 50°C for 30 minutes, the mixture was filtered with a 3G glass filter and washed with water until the filtrate became neutral.

得られたコークス粉を原料として、バインダーピッチを
使用することなく、成形、焼成、黒鉛化して等方性黒鉛
材を製造し、黒鉛材中の灰分および物性を測定した。な
お、比較例として塩酸で処理していない粉末についても
同様の手順で黒鉛材を製造し、比較材とした。黒鉛材の
物性は比較例4とともに表3に示した。
Using the obtained coke powder as a raw material, an isotropic graphite material was produced by molding, firing, and graphitization without using binder pitch, and the ash content and physical properties of the graphite material were measured. In addition, as a comparative example, a graphite material was manufactured using the same procedure using a powder that was not treated with hydrochloric acid, and was used as a comparative material. The physical properties of the graphite material are shown in Table 3 together with Comparative Example 4.

黒鉛材の製造条件は次のとおり: 成形・Φ・ 一次成形: 50kg/ cm2の成形圧力でプレス成
形二次成形ニラバープレスを用い、成形圧2トン/C厘
2で成形 二次成形後の寸法:径=25層■、高さ= 48m■焼
成・番・3℃/時の昇温速度で1100℃まで昇温黒鉛
化・・・10℃/分の昇温速度で2500℃まで昇温 表3の様に塩酸で洗浄したコークス粉を原料にした黒鉛
材は、黒鉛化温度が2500℃と低く、ハロゲンガスに
よる高純度化を行っていないにもかかわらず、灰分の含
有量が少ない。
The manufacturing conditions for the graphite material are as follows: Molding, Φ, Primary forming: Press molding with a molding pressure of 50 kg/cm2 Secondary molding using a Nirabar press, and molding with a molding pressure of 2 tons/C 2 cm After secondary molding Dimensions: Diameter = 25 layers■, height = 48m■ Firing/Number: Temperature raised to 1100℃ at a temperature increase rate of 3℃/hour Graphitization... Temperature raised to 2500℃ at a temperature increase rate of 10℃/minute As shown in Table 3, the graphite material made from coke powder washed with hydrochloric acid has a low graphitization temperature of 2500° C. and has a low ash content even though it is not purified using halogen gas.

実施例12、比較例5 実施例1Oと同一のアモルファス仮焼ピッチコークスを
、50Bm以下になるようにジェットミルで粉砕した。
Example 12, Comparative Example 5 The same amorphous calcined pitch coke as in Example 1O was pulverized with a jet mill to a particle size of 50 Bm or less.

この粉末100gに濃度18%の塩酸200gを加え、
ビーカー中で、50℃、30分間撹拌した後、3Gグラ
スフイルターで濾過し、濾液が中性になるまで水洗した
。得られたコークス粉に、軟化点90℃のバインダーピ
ッチ80gを加え、ニーグーを用いて120℃で混線後
、成形、焼成、黒鉛化して黒鉛材を製造し、黒鉛材中の
灰分および物性を測定した。
Add 200g of hydrochloric acid with a concentration of 18% to 100g of this powder,
After stirring in a beaker at 50°C for 30 minutes, the mixture was filtered through a 3G glass filter and washed with water until the filtrate became neutral. 80 g of binder pitch with a softening point of 90°C was added to the obtained coke powder, mixed at 120°C using a Ni-Goo, molded, fired, and graphitized to produce a graphite material, and the ash content and physical properties of the graphite material were measured. did.

なお、比較例として塩酸で処理していない粉末について
も同様の手順で黒鉛材を製造し、比較材とした。黒鉛材
の物性は比較例5とともに表4に示した。
In addition, as a comparative example, a graphite material was manufactured using the same procedure using a powder that was not treated with hydrochloric acid, and was used as a comparative material. The physical properties of the graphite material are shown in Table 4 together with Comparative Example 5.

黒鉛材の製造条件は次のとおり: 成形・・φ 一次成形: 50kg/ cm2の成形圧力でプレス成
形二次成形ニラバープレスを用い、成形圧2トン/C腸
2で成形 二次成形後の寸法:径= 27mm、高さ=48■焼成
・@−3℃/時の昇温速度で1100℃まで昇温黒鉛化
・・・10℃/分の昇温速度で2600℃まで昇温 表4のように実施例ではハロゲンガスによる高純度化を
行っていないにもかかわらず、金属不純物の含有量が少
ない。
The manufacturing conditions for the graphite material are as follows: Molding... φ Primary forming: Press molding at a molding pressure of 50 kg/cm2 Secondary molding using a nirabar press, molding at a molding pressure of 2 tons/C2 after secondary molding Dimensions: Diameter = 27mm, Height = 48 ■ Firing - Temperature raised to 1100°C at a heating rate of -3°C/hour Graphitization... Temperature raised to 2600°C at a heating rate of 10°C/min Table 4 As shown in the examples, the content of metal impurities is small even though high purification using halogen gas is not performed.

表3 純度化の負荷が低減できる。Table 3 The burden of purification can be reduced.

Claims (1)

【特許請求の範囲】[Claims]  アモルファスピッチコークスを250μm以下に粉砕
し、強酸水溶液に5分間以上接触させた後、水洗、乾燥
して得られるコークス粉を原料として、バインダーピッ
チを用いるか、用いることなく、成形、焼成、黒鉛化す
ることを特徴とする異方比1.05以下の高純度等方性
黒鉛材の製造法。
Amorphous pitch coke is crushed to 250 μm or less, brought into contact with a strong acid aqueous solution for 5 minutes or more, washed with water, and dried. Using the coke powder obtained as a raw material, molding, firing, and graphitization can be performed with or without binder pitch. A method for producing a high-purity isotropic graphite material having an anisotropy ratio of 1.05 or less.
JP63218282A 1988-09-02 1988-09-02 Production of isotropic graphite material having high purity Pending JPH0269356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63218282A JPH0269356A (en) 1988-09-02 1988-09-02 Production of isotropic graphite material having high purity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63218282A JPH0269356A (en) 1988-09-02 1988-09-02 Production of isotropic graphite material having high purity

Publications (1)

Publication Number Publication Date
JPH0269356A true JPH0269356A (en) 1990-03-08

Family

ID=16717408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63218282A Pending JPH0269356A (en) 1988-09-02 1988-09-02 Production of isotropic graphite material having high purity

Country Status (1)

Country Link
JP (1) JPH0269356A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306666A (en) * 2005-04-28 2006-11-09 Japan Energy Corp Carbonaceous substance for electrode material
CN113816370A (en) * 2021-11-23 2021-12-21 山西沁新能源集团股份有限公司 Coal-based graphite composite material, preparation method thereof and battery using same
CN114292106A (en) * 2021-12-03 2022-04-08 曲阜师范大学 Preparation method for high-quality graphite by rapid coal conversion

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306666A (en) * 2005-04-28 2006-11-09 Japan Energy Corp Carbonaceous substance for electrode material
JP4684734B2 (en) * 2005-04-28 2011-05-18 Jx日鉱日石エネルギー株式会社 Carbonaceous materials for electrode materials
CN113816370A (en) * 2021-11-23 2021-12-21 山西沁新能源集团股份有限公司 Coal-based graphite composite material, preparation method thereof and battery using same
CN113816370B (en) * 2021-11-23 2022-02-08 山西沁新能源集团股份有限公司 Coal-based graphite composite material, preparation method thereof and battery using same
CN114292106A (en) * 2021-12-03 2022-04-08 曲阜师范大学 Preparation method for high-quality graphite by rapid coal conversion

Similar Documents

Publication Publication Date Title
KR101792753B1 (en) A method for recovering lithium compound from waste comprising lithium
CN112299849A (en) Method for preparing battery carbon rod by using regenerated graphite
KR20220087916A (en) Lithium sulfide and its manufacturing method
KR101618773B1 (en) Method for manufacturing fullerene
JP5431780B2 (en) A processing method for obtaining a niobium raw material or a tantalum raw material, a method for separating and purifying niobium or tantalum, and a method for producing niobium oxide or tantalum oxide.
JPH0269356A (en) Production of isotropic graphite material having high purity
JP6749001B2 (en) Graphite production method
KR101835715B1 (en) The method of Preparing Porous Carbon using Coal-Tar Materials
JPS6325216A (en) Manufacture of boron oxide
CN114380320A (en) Method for recycling valuable resources in rare earth molten salt electrolytic slag through fluorination conversion and vacuum distillation
JP6014012B2 (en) Coke production method and coke
CN113651343A (en) Method for preparing high-purity lithium carbonate by recycling lithium hydroxide for air purification
JPS5858284B2 (en) Tansozaino Seizouhouhou
CN112661162B (en) Treatment method of petroleum coke hydrogen production ash slag and mesoporous silicon material
JP5449685B2 (en) Method for producing highly reactive coke
KR102703820B1 (en) Method for surface modification and purification of coke
EP0663370B1 (en) Method of producing active carbon from waste tires
CN110668498B (en) Preparation method of high-purity molybdenum disulfide
CN114606383B (en) Method for comprehensively recovering valuable elements in spodumene industrial leaching residues
CA2050705A1 (en) Process for the production of beta-silicon carbide powder
JPS6358767B2 (en)
JPS6213284B2 (en)
TW559628B (en) Process for producing mesophase powders
CN114634183A (en) Treatment method of heavy metal-containing silicon-aluminum-based waste residue, silicon-aluminum gel and application thereof
JPS6239689A (en) Method of modifying pitch