JPS63270426A - Method for recovering metallic gallium from gallium-containing material - Google Patents

Method for recovering metallic gallium from gallium-containing material

Info

Publication number
JPS63270426A
JPS63270426A JP62102747A JP10274787A JPS63270426A JP S63270426 A JPS63270426 A JP S63270426A JP 62102747 A JP62102747 A JP 62102747A JP 10274787 A JP10274787 A JP 10274787A JP S63270426 A JPS63270426 A JP S63270426A
Authority
JP
Japan
Prior art keywords
gallium
binder
raw material
treated
fine grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62102747A
Other languages
Japanese (ja)
Other versions
JP2604590B2 (en
Inventor
Masayoshi Ioka
井岡 政禎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP10274787A priority Critical patent/JP2604590B2/en
Priority to US07/182,954 priority patent/US4812167A/en
Publication of JPS63270426A publication Critical patent/JPS63270426A/en
Application granted granted Critical
Publication of JP2604590B2 publication Critical patent/JP2604590B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To recover liquid-metal gallium in high purity, by adding and mixing a binder into a gallium-bearing material containing the fine grains of gallium compounds, by heating and burning the resulting mixture, and by applying vacuum thermal decomposition to the above. CONSTITUTION:A gallium-bearing material containing the fine grains of gallium compounds hitherto treated as waste, such as dross, is used as a raw material. An inorganic and/or organic binder is added and mixed into the above-mentioned raw material to be treated. At this time, alumina hydrosol, clay minerals, etc., are used as the inorganic binder and, as the organic binder, PVA, polyethylene glycol, etc., are used, and it is preferable the additive quantity to at least about 0.001pts.wt. per pts.wt. of the above-mentioned fine grains. The above mixture is preferably dried previously and is compacted, if necessary, into a sheet-like state, etc., and is then subjected to heating and burning at about 300-1,000 deg.C as pretreatment. The resulting burnt material in which the fine grains of gallium compound are bound together and made difficult to scatter is subjected to vacuum thermal decomposition at about 10<-5>-100mm at about 1,000-1,300 deg.C. The resulting liquid-metal gallium is recovered by separating the decomposition residue by filtration.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、半導体製造工場等においてスクラップや廃棄
物として副生されるガリウム化合物微粒子を含むガリウ
ム含有物から、金属ガリウムを回収する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for recovering metallic gallium from gallium-containing materials containing gallium compound fine particles that are by-produced as scrap or waste in semiconductor manufacturing factories and the like.

〔従来技術〕[Prior art]

砒化ガリウムやリン化ガリウム等の半導体ウェハーの製
造に際しては、それら半導体単結晶を真円柱化するため
の切削工程や、その半導体真円柱をウェハーへ切断する
ための切断工程において。
When manufacturing wafers of semiconductors such as gallium arsenide and gallium phosphide, there is a cutting process for converting these semiconductor single crystals into perfect cylinders, and a cutting process for cutting the semiconductor cylinders into wafers.

多量の切削屑及び切断屑が微粉として発生する。A large amount of cutting waste and cutting waste is generated as fine powder.

このような切削及び切断工程は、切削油あるいは切削水
を注加しながら行われるため、発生した微粉はその切削
油中に分散した状態で捕集される。
Since such cutting and cutting steps are performed while adding cutting oil or cutting water, the generated fine powder is collected while being dispersed in the cutting oil.

そしてこの分散液を沈降処理することにより、微粉を含
む濃縮液が回収される。この微粉を含む濃縮物は、通常
、ドロスと呼称されている。このようなドロスは、切削
工程や切断工程において混入した多量かつ多種類の不純
物を含む他に、鉱油タイプ又は水溶性タイプの切削油や
切削助剤を含むために非常に取扱いの困難なもので、従
来は、金属ガリウム回収原料としては殆んど利用されず
、廃棄処理されている。しかしながら、ガリウム資源不
足を補うために、これをガリウム資源として有効利用す
ることが強く要望されている。
Then, by subjecting this dispersion to a sedimentation treatment, a concentrated liquid containing fine powder is recovered. A concentrate containing this fine powder is usually called dross. Such dross is extremely difficult to handle because it contains a large amount and various types of impurities mixed in during the cutting and cutting processes, as well as mineral oil-type or water-soluble cutting oil and cutting aids. In the past, metallic gallium was hardly used as a raw material for recovery and was disposed of. However, in order to compensate for the shortage of gallium resources, there is a strong desire to effectively utilize this as a gallium resource.

〔目  的〕〔the purpose〕

本発明は、従来廃棄物として処理されていたドロスの如
きガリウム化合物微粒子を含むガリウム含有物を原料と
し、これから金属ガリウムを回収する新規な方法を提供
することを目的とする。
An object of the present invention is to provide a novel method for recovering metallic gallium from a gallium-containing material containing gallium compound fine particles such as dross, which has been conventionally treated as waste, as a raw material.

〔構  成〕〔composition〕

本発明によれば、ガリウム化合物微粒子を含むガリウム
含有物から金属ガリウムを回収する方法において、該ガ
リウム含有物に無機系及び/又は有機系バインダーを添
加混合し、この混合物を必要に応じて成形した後、加熱
焼成する予備処理工程と、該予備処理工程で得られたガ
リウム化合物微粒子が相互に結合した焼成物を真空熱分
解し、液体金属ガリウムを生成させる熱分解工程からな
ることを特徴とするガリウム含有物からの金属ガリウム
の回収方法が提供される。
According to the present invention, in a method for recovering metallic gallium from a gallium-containing material containing fine particles of a gallium compound, an inorganic and/or organic binder is added and mixed to the gallium-containing material, and the mixture is shaped as necessary. After that, it is characterized by comprising a pretreatment step of heating and firing, and a pyrolysis step of vacuum pyrolysis of the fired product in which the gallium compound fine particles obtained in the pretreatment step are bonded to each other to generate liquid metal gallium. A method of recovering metallic gallium from a gallium-containing material is provided.

本発明において被処理原料として用い得るガリウム含有
物はガリウム化合物微粒子を含ものであれば粉状又は液
状を問わず用いることができ、前記したドロスの如き、
従来金属ガリウム回収資源として全く考慮されてなかっ
たものも用いることができる6また、このドロスの乾燥
微粉末や、ガリウム化合物の液状スクラップや塊状スク
ラップの微粉砕化物も用いることができる。また、被処
理原料中のガリウム分は、砒化ガリウムやリン化ガリウ
ム等の熱分解により金属ガリウムを与えるガリウム化合
物である。
The gallium-containing material that can be used as the raw material to be treated in the present invention may be in powder or liquid form as long as it contains gallium compound fine particles, such as the above-mentioned dross,
Materials that have not been considered as metal gallium recovery resources can also be used6.Furthermore, dry fine powder of this dross, liquid scrap of gallium compounds, and finely pulverized bulk scrap can also be used. Further, the gallium component in the raw material to be treated is a gallium compound that yields metallic gallium through thermal decomposition, such as gallium arsenide or gallium phosphide.

本発明において用いる無機系及び有機系バインダーは、
ガリウム化合物微粒子を相互に結合させ、真空熱分解に
際し、ガリウム化合物微粒子の飛散を防止するために用
いるものである。ドロスの如きガリウム化合物微粒子を
含む濃縮液(泥状物)は。
The inorganic and organic binders used in the present invention are:
It is used to bind gallium compound fine particles to each other and prevent the gallium compound fine particles from scattering during vacuum pyrolysis. Concentrated liquid (sludge) containing fine particles of gallium compounds such as dross.

これを直接真空熱分解しようとしても、それに含まれる
液体の揮散が起り、真空系を汚染する等の不都合を生じ
ると共に、また液体分の揮発した後の乾燥微粉末の飛散
が起るので好ましくない。また。ドロスの如きガリウム
化合物微粒子を含む濃縮液を乾燥し、この乾燥物を真空
熱分解する時にも、同様に微粉末の飛散が起るので好ま
しくない。
Even if you try to directly vacuum pyrolyze it, the liquid contained in it will volatilize, causing problems such as contaminating the vacuum system, and it is also undesirable because the dry fine powder will scatter after the liquid has volatilized. . Also. When a concentrated liquid containing fine particles of a gallium compound such as dross is dried and this dried product is subjected to vacuum pyrolysis, it is also undesirable because the fine powder similarly scatters.

前記無機系及び有機系バインダーの使用により。By using the above-mentioned inorganic and organic binders.

このような不都合は回避される。Such inconveniences are avoided.

本発明においては、先ず、予備処理工程において、被処
理原料に無機系及び/又は有機系バインダーを混合し、
この混合物を必要に応じ成形した後、加熱焼成し、微粒
子が相互に結合した焼成物を得る。この場合、無機系や
有機系バインダーとしては、従来微粉末粒子相互の結合
化のために用いられている従来公知の各種の物質を用い
ることができる。このようなものとしては、無機系バイ
ンダーとして、例えば、アルミナヒドロシル、アルミナ
シリカヒドロシル、シリカヒドロシル、マグネシアヒド
ロシル、チタニアヒドロシル等の無機酸化物ヒドロシル
及びその先駆体、アタパルジャイト、カオリン、モンモ
リロナイト、セピオライト等の粘土鉱物、硅酸アルカリ
、アルミン酸アルカリ、アルミニウム塩、セメント、石
灰等がある。本発明では、ガリウムや砒素、リン等も用
いることができ、さらに、ウェーハーの研磨工程におい
て発生する泥状スクラップやこの泥状スクラップから得
られたヒドロシル等を用いることができる。また、有機
系バインダーとして1例えば。
In the present invention, first, in the pretreatment step, an inorganic and/or organic binder is mixed with the raw material to be treated,
This mixture is shaped as necessary and then heated and fired to obtain a fired product in which fine particles are bonded to each other. In this case, as the inorganic or organic binder, various conventionally known substances that are conventionally used for bonding fine powder particles to each other can be used. Examples of such inorganic binders include inorganic oxide hydrosyls such as alumina hydrosyl, alumina silica hydrosyl, silica hydrosyl, magnesia hydrosyl, and titania hydrosyl, and their precursors, attapulgite, kaolin, and montmorillonite. , clay minerals such as sepiolite, alkali silicates, alkali aluminates, aluminum salts, cement, lime, etc. In the present invention, gallium, arsenic, phosphorus, etc. can also be used, and furthermore, muddy scrap generated in the wafer polishing process and hydrosil obtained from this muddy scrap can be used. Further, as an organic binder, for example.

殿粉、ポリビニルアルコール、カルボキシメチルセルロ
ース、アルギン酸等の有機高分子の他、ポリエチレング
リコール、グリセリン、ピッチ、グラファイト等も用い
ることができる。この無機系及び/又は有機系バインダ
ー(以下、単にバインダーとも言う)の添加量は、被処
理原料中の微粒子1重量部(乾燥物基準)当り、少なく
とも0.001重量部、通常0.01〜0.2重量部の
割合である。
In addition to organic polymers such as starch, polyvinyl alcohol, carboxymethyl cellulose, and alginic acid, polyethylene glycol, glycerin, pitch, and graphite can also be used. The amount of the inorganic and/or organic binder (hereinafter also simply referred to as binder) added is at least 0.001 parts by weight, usually 0.01 to 1 part by weight, per 1 part by weight of fine particles (dry basis) in the raw material to be treated. The proportion is 0.2 parts by weight.

被処理原料とバインダーとの混合物は、これを加熱焼成
するが、被処理原料がドロスの如き泥状物の場合、多量
の水分や油分を含むため、この水分や油分を乾燥により
除去するため、あらかじめ乾燥するのがよい。この乾燥
は、通常、温度50〜300℃、好ましくは100〜2
00℃で行われる。また。
A mixture of the raw material to be treated and a binder is heated and baked, but if the raw material to be treated is a muddy substance such as dross, it contains a large amount of water and oil, so this water and oil are removed by drying. It is best to dry it beforehand. This drying is usually carried out at a temperature of 50 to 300°C, preferably 100 to 200°C.
It is carried out at 00°C. Also.

この乾燥は、真空下や不活性ガス雰囲気下で行うことも
できる。さらに、被処理原料とバインダーとの混合物は
、これを成形工程に付して成形物とすることができる。
This drying can also be performed under vacuum or an inert gas atmosphere. Furthermore, the mixture of the raw material to be treated and the binder can be subjected to a molding process to form a molded product.

この場合、被処理原料がドロスの如き水分や油分を含む
ものは、これにバインダーを添加混合した後、水分や油
分を乾燥等により除去し、成形に適したものに調整し、
成形する。
In this case, if the raw material to be processed contains water and oil, such as dross, a binder is added and mixed therein, and then the water and oil are removed by drying, etc., and the material is adjusted to be suitable for molding.
Shape.

また、被処理原料がドロス乾燥物や、あるいは板状スク
ラップや塊状スクラップの微粉砕化物の如き粉末状のも
のは、これにバインダーと共に適量の水分を加えて成形
する。成形物の形状は、板状、塊状1球状、ペレット状
、筒状等任意であり、またその寸法は、飛散しない程度
のものであればよい。通常は、長軸の長さが2〜100
+o+m程度のものである。バインダーの種類は、被処
理原料の種類との関係で適当に選定され、例えば、被処
理原料が油状泥状物の場合は、ポリエチレングリコール
やピッチ等の油溶性バインダーの使用が好ましく、一方
、水性泥状物の場合は、殿粉、アルギン酸等の水溶性有
機高分子や、ヒドロシル、粘土鉱物等の親水性バインダ
ーの使用が好ましい。
If the raw material to be processed is powdery, such as dried dross, or finely pulverized plate-like scrap or block-like scrap, a binder and an appropriate amount of water are added thereto to form the material. The shape of the molded product may be arbitrary, such as a plate, a single sphere, a pellet, or a cylinder, and its dimensions may be such that it does not scatter. Usually, the length of the major axis is 2 to 100
It is about +o+m. The type of binder is appropriately selected in relation to the type of raw material to be treated. For example, when the raw material to be treated is an oily slurry, it is preferable to use an oil-soluble binder such as polyethylene glycol or pitch. In the case of slurry, it is preferable to use water-soluble organic polymers such as starch and alginic acid, and hydrophilic binders such as hydrosil and clay minerals.

被処理原料とバインダーとの混合物を、前記のようにそ
のままあるいは成形物として乾燥する場合、その乾燥物
中の水分又は液体含量は、通常1〜50重量2.好まし
くは5〜20重量%である。
When the mixture of the raw material to be treated and the binder is dried as described above or as a molded product, the moisture or liquid content of the dried product is usually 1 to 50% by weight2. Preferably it is 5 to 20% by weight.

本発明の予備処理工程における加熱焼成は1通常、温度
300〜1000℃の温度条件で実施される。この焼成
により、微粒子相互がバインダーを介して強く結合され
た焼結体が得られる。このような焼結体は、微粉末とは
異なり、これを真空熱分解する際に飛散を生じることは
ない。なお、バインダーとして、有機系のものを用いる
場合、このものはこの焼成に際し、熱分解・コーキング
化され、コーク(炭素分)に変換されるが、このコーク
分が焼結体のバインダーとして作用する。
The heating and baking in the pretreatment step of the present invention is usually carried out at a temperature of 300 to 1000°C. By this firing, a sintered body in which fine particles are strongly bonded to each other via a binder is obtained. Unlike fine powder, such a sintered body does not cause scattering when it is subjected to vacuum pyrolysis. Note that when an organic binder is used, this binder is thermally decomposed and coked during firing and converted to coke (carbon content), and this coke content acts as a binder for the sintered body. .

本発明で用いる予備処理工程において、その加熱乾燥や
加熱焼成は、ガリウム化合物が酸化を受けやすいことか
ら、不活性ガス雰囲気中や減圧条件下で実施するのが好
ましい、不活性ガスとしては、ガリウム化合物と反応し
ないものであれば任意のものが使用され、一般には窒素
ガス、アルゴン等が用いられる。また、減圧条件は1通
常、10−4〜100mmHg程度の圧力条件が採用さ
れる。
In the pretreatment step used in the present invention, the heating drying and heating baking are preferably carried out in an inert gas atmosphere or under reduced pressure conditions because gallium compounds are easily oxidized. Any material can be used as long as it does not react with the compound, and nitrogen gas, argon, etc. are generally used. Further, as the reduced pressure condition, a pressure condition of about 10 −4 to 100 mmHg is usually adopted.

次に、前記の如き予備処理工程から得られた焼成物(焼
結物)は、ガリウム金属回収のために、真空熱分解処理
に付される。この真空熱分解処理は。
Next, the fired product (sintered product) obtained from the pretreatment process as described above is subjected to vacuum pyrolysis treatment in order to recover gallium metal. This vacuum pyrolysis treatment.

一般的には、残留ガス圧が10″″S〜100m+aH
gの真空条件及び1000〜1300℃の加熱条件下で
実施される。
Generally, the residual gas pressure is 10″S~100m+aH
The test is carried out under vacuum conditions of 1,000 to 1,300°C and heating conditions of 1,000 to 1,300°C.

高真空、高温度条件程ガリウム化合物の分解率は高くな
るが、ガリウムの蒸発ロスが大きくなる。
The higher the vacuum and temperature conditions, the higher the decomposition rate of gallium compounds, but the greater the evaporation loss of gallium.

従って、通常は、10−’〜10””mmHg、105
0〜1150℃の条件下で行われる。
Therefore, normally 10-' to 10'' mmHg, 105
It is carried out under conditions of 0 to 1150°C.

この真空熱分解処理により、被処理原料中に含まれるガ
リウム化合物は、熱分解を受けて、そのガリウム分は液
状のガリウム金属に変換され、また、他の成分、例えば
、砒素やリン分は気体状の砒素やリンに変換される。そ
して、この熱分解で発生した気体状の砒素やリンは、こ
れを200℃以下の冷却面に接触させ、固形物として析
出させることによって回収することができる。一方、液
体金属ガリウム及びバインダー、不純物、未反応物を含
む分解残漬物は、これを、濾過等の固液分離処理に付す
。これによって、分解残渣物に含まれる金属ガリウムを
液状で回収することができる。
Through this vacuum pyrolysis treatment, the gallium compound contained in the raw material to be treated undergoes thermal decomposition, and the gallium component is converted into liquid gallium metal, and other components, such as arsenic and phosphorus, are converted into gas. It is converted into arsenic and phosphorus. The gaseous arsenic and phosphorus generated by this thermal decomposition can be recovered by bringing them into contact with a cooling surface of 200° C. or lower and precipitating them as solids. On the other hand, the decomposition residue containing liquid metal gallium, binder, impurities, and unreacted substances is subjected to solid-liquid separation treatment such as filtration. Thereby, metal gallium contained in the decomposition residue can be recovered in liquid form.

分解残漬物を濾過処理する場合、通常、50メツシユよ
り細かな網目を持つ篩が使用される6本発明で用いたバ
インダーは、この固液分離処理により分離され、液体金
属ガリウムへの混入は起らない。
When filtering decomposition residue, a sieve with a mesh size of 50 mesh or finer is usually used.6 The binder used in the present invention is separated by this solid-liquid separation process, and no contamination with the liquid metal gallium occurs. No.

このようにして回収された金属ガリウムのインジウムを
除く純度は、通常3N(ナイン)〜5N(ナイン)であ
る。
The purity of the metal gallium thus recovered, excluding indium, is usually 3N (nine) to 5N (nine).

〔効  果〕〔effect〕

本発明によれば、ガリウム化合物微粒子を含み、ガリウ
ム回収資源として有効利用することの困難であったガリ
ウム含有物から、金属ガリウムを高純度で回収すること
ができ、その産業的意義は多大である。
According to the present invention, metallic gallium can be recovered with high purity from gallium-containing materials that contain fine particles of gallium compounds and have been difficult to effectively utilize as a gallium recovery resource, and this has great industrial significance. .

〔実施例〕〔Example〕

次に、本発明を実施例によりさらに詳細に説明する。な
お以下において示す部及び%はいずれも重量基準である
Next, the present invention will be explained in more detail with reference to Examples. Note that all parts and percentages shown below are based on weight.

実施例1 油分(主として軽質油)を約18%含む砒化ガリウム微
粒子の油性泥状スクラップを、不活性ガス雰囲気中にて
蒸留したのち、さらに約500℃にて、1時間加熱して
軽質分を除去し、炭素3.1%、ガリウム44%、砒素
46%、その他の不純物(In、 P、 SL、 Fe
等)5%の元素組成を示す粉末を得た。
Example 1 Oily muddy scrap of gallium arsenide fine particles containing about 18% oil content (mainly light oil) was distilled in an inert gas atmosphere, and then further heated at about 500°C for 1 hour to remove light content. 3.1% carbon, 44% gallium, 46% arsenic, and other impurities (In, P, SL, Fe
etc.) A powder with an elemental composition of 5% was obtained.

次に、この粉末に炭素89.4%、灰分2.7%、トル
エン不溶分40.4%を含む溶剤抽出炭(石炭の水素加
圧下での溶剤抽出によって得られたピッチ)を有機系バ
インダーとして5%加えてよく混合したちの500gを
石英製反応管に入れ、不活性ガスを流しながら150℃
にて3時間保ったのち、さらに500℃にて1時間保持
して焼成した。この焼成により、有機系バインダーは熱
分解コーク化し、また微粉末は粒子相互がコークで接合
された焼成物に変換された。
Next, solvent-extracted coal (pitch obtained by solvent extraction of coal under hydrogen pressure) containing 89.4% carbon, 2.7% ash, and 40.4% toluene-insoluble content is added to this powder as an organic binder. Add 5% of the mixture and mix well. Place 500g of the mixture in a quartz reaction tube and heat at 150°C while flowing inert gas.
After being kept at 500° C. for 3 hours, it was further kept at 500° C. for 1 hour and fired. Through this firing, the organic binder was thermally decomposed into coke, and the fine powder was converted into a fired product in which the particles were bonded to each other by coke.

次に、この反応管を砒素析出トラップを備えた真空排気
装置(反応管からトラップまでは約500℃に加熱)に
接続して、300℃/Hrの割合で1,100℃まで昇
温したのち、この温度に3時間保ち、焼成物中のガリウ
ム化合物°を熱分解した。 1,100℃における熱分
解中の砒素トラップの真空側の真空度は104〜10−
’mm11gであった。次いで、得られた真空熱分解残
渣物を取出して、100メツシユ濾布で濾過し、不純物
としてSi、 Fe、 Cu、 Caを各々1〜10p
pm、 Asを1.7ppm、Inを3.1%含む金属
ガリウム150.1gを液状で得た。
Next, this reaction tube was connected to a vacuum evacuation device equipped with an arsenic precipitation trap (the area from the reaction tube to the trap was heated to approximately 500°C), and the temperature was raised to 1,100°C at a rate of 300°C/Hr. This temperature was maintained for 3 hours to thermally decompose the gallium compound in the fired product. The degree of vacuum on the vacuum side of the arsenic trap during pyrolysis at 1,100°C is 104 to 10-
'mm11g. Next, the obtained vacuum pyrolysis residue was taken out and filtered through a 100-mesh filter cloth to remove 1 to 10 p of each of Si, Fe, Cu, and Ca as impurities.
pm, 150.1 g of metallic gallium containing 1.7 ppm of As and 3.1% of In was obtained in liquid form.

実施例2 実施例1で示した油性泥状スクラップ500 gを約9
0℃に加温しながら不活性ガスを流して油分を部まで減
少させた。次にこの乾燥物にコーンスターチ75gと水
120gを加えてよく混合・混練した。この混線物を金
型を用いて直径1011III+、高さ約10mmの円
柱に圧縮成形した。この成形物を120℃にて5時間乾
燥したのち、窒素気流中で500℃にて2時間。
Example 2 500 g of oily mud scrap shown in Example 1 was
While heating to 0° C., inert gas was passed through the solution to reduce the oil content to 1.5%. Next, 75 g of cornstarch and 120 g of water were added to this dried product and thoroughly mixed and kneaded. This mixed wire was compression molded into a cylinder having a diameter of 1011III+ and a height of about 10 mm using a mold. This molded product was dried at 120°C for 5 hours, and then at 500°C for 2 hours in a nitrogen stream.

ついで700℃にて2時間焼成した。焼成物の炭素含有
率は5.2%であった。次にこの焼成物を実施例1と同
様にして、1,120℃にて5時間真空熱分解し、分解
残漬物を濾過することによって、金属ガリウム163.
3 gを得た。この金属ガリウム中には、不純物として
はInが3.4%、 Asが0.7ppm+、 Fa、
 Mg、 Caが各々工〜10ppm認められた。
Then, it was baked at 700°C for 2 hours. The carbon content of the fired product was 5.2%. Next, this calcined product was subjected to vacuum pyrolysis at 1,120°C for 5 hours in the same manner as in Example 1, and the decomposition residue was filtered to obtain metallic gallium 163.
3 g was obtained. Impurities in this metallic gallium include 3.4% In, 0.7ppm+ As, Fa,
Mg and Ca were found in amounts of ~10 ppm each.

実施例3 水分約14%含む砒化ガリウム微粒子の水性泥状スクラ
ップを被処理原料として用いた。このものを500℃で
1時間乾燥したものの元素分析は、炭素0.3%、ガリ
ウム43%、砒素50%、In、 Fe等の不純物0.
1%を示した。
Example 3 Aqueous slurry scrap of gallium arsenide fine particles containing about 14% water was used as the raw material to be treated. Elemental analysis of this material after drying it at 500°C for 1 hour revealed 0.3% carbon, 43% gallium, 50% arsenic, and 0.0% impurities such as In and Fe.
It showed 1%.

先ず、無機系バインダーを得るために、塊状のセピオラ
イト鉱石をボールミルで乾式粉砕した後。
First, in order to obtain an inorganic binder, a block of sepiolite ore is dry-pulverized using a ball mill.

100メツシユ篩で粗粒子を分離除去して、微粉末状の
セピオライトを得た6次に、このセピオライト100部
に水200部を加えて充分に混練し、この混線物100
部及び水50部を、前記被処理原料200部に加えてさ
らに充分に混合・混練したのち、直径約2mWの円柱に
押出し成形した。この成形物を実施例2と同様に乾燥・
焼成し、Ga含有率39%の焼成物を得た。この焼成物
500gを実施例2と同一反応条件で真空熱分解し、分
解残渣物を濾過したところ、148.3 gの金属Ga
が回収された。このGa中の不純物として、Asが0.
3ppm、In、 Fe、 Cu、 Caが11−1O
pp認められた。
Coarse particles were separated and removed using a 100 mesh sieve to obtain finely powdered sepiolite.Next, 200 parts of water was added to 100 parts of this sepiolite and thoroughly kneaded to obtain 100 parts of this mixed wire.
After adding 200 parts of the raw material to be treated and sufficiently mixing and kneading, the mixture was extruded into a cylinder having a diameter of about 2 mW. This molded product was dried in the same manner as in Example 2.
It was fired to obtain a fired product with a Ga content of 39%. When 500 g of this calcined product was subjected to vacuum pyrolysis under the same reaction conditions as in Example 2 and the decomposition residue was filtered, 148.3 g of metallic Ga
was recovered. As an impurity in this Ga, As is 0.
3ppm, In, Fe, Cu, Ca is 11-1O
pp approved.

実施例4 実施例3で示した被処理原料100 gに水20g、直
径1〜20μmのシリカ微粒子からなるホワイトカーボ
ン2gをよく混合し、この混合物を石英ルツボに入れ、
これをさらに石英反応管に入れて実施例1と同様にして
窒素気流中で乾燥し、次いで500℃で1時間焼成した
Example 4 100 g of the raw material to be treated shown in Example 3, 20 g of water, and 2 g of white carbon made of fine silica particles with a diameter of 1 to 20 μm were thoroughly mixed, and this mixture was placed in a quartz crucible.
This was further placed in a quartz reaction tube, dried in a nitrogen stream in the same manner as in Example 1, and then fired at 500°C for 1 hour.

次に、この焼成物を実施例1と同様にして、1,150
℃にて1時間真空熱分解した。得られた熱分解残渣物を
100メツシユ濾布で濾過したところ28.0 gの金
属Gaが回収された。このものには、不純物として、A
sが10pp+a、 Inが78ppm、Fe、 Ca
、 Mgが各々1〜10PP+認められた。
Next, this fired product was treated in the same manner as in Example 1, and 1,150
Vacuum pyrolysis was carried out at ℃ for 1 hour. When the resulting thermal decomposition residue was filtered through a 100 mesh filter cloth, 28.0 g of metallic Ga was recovered. This product contains A as an impurity.
s is 10pp+a, In is 78ppm, Fe, Ca
, Mg was observed at 1 to 10 PP+, respectively.

実施例5 90℃にて3時間乾燥したものの元素組成が炭素0.4
%、Ga46%、As53%、その他の不純物(SL、
 In、Fe、AQ)が合計0.8%であり、90%以
上が20メツシユパスの微粉状砒化ガリウムスクラップ
を被処理原料として用いた。この被処理原料を90℃に
て3時間乾燥したのち、この粉末100部に対して4N
金属ガリウム20部を加えてミキサーにて充分に混合し
た。このようにして得ら九た混合物を実施例2と同様に
して直径10mm、高さ10mmに圧縮成形した。
Example 5 The elemental composition of the product dried at 90°C for 3 hours is carbon 0.4
%, Ga46%, As53%, other impurities (SL,
Finely powdered gallium arsenide scrap containing 0.8% (In, Fe, AQ) in total and 90% or more of 20 mesh passes was used as the raw material to be processed. After drying this raw material to be treated at 90°C for 3 hours, 4N was added to 100 parts of this powder.
20 parts of metallic gallium was added and thoroughly mixed using a mixer. The thus obtained mixture was compression molded in the same manner as in Example 2 to a diameter of 10 mm and a height of 10 mm.

この成形物を窒素気流中で500℃にて約2時間焼成し
た。
This molded product was fired at 500° C. for about 2 hours in a nitrogen stream.

次にこの成形物100gを石英ルツボに入れ、1080
°Cにて3時間真空熱分解した。熱分解残渣物を100
メツシユ濾布で濾過したところ、4L1gの金RGaが
得られた。これよりGa、Asスクラップから31.4
gのGaが回収されたことが認められる。 Gaの不純
物としてはAsが3.lppm、In、 Fe、 Ca
、 Cuが各々1〜10ppm認められた。
Next, put 100g of this molded product into a quartz crucible and
Vacuum pyrolysis was performed at °C for 3 hours. 100% of thermal decomposition residue
When filtered through a mesh filter cloth, 4L1g of gold RGa was obtained. From this, 31.4 from Ga and As scrap
It is recognized that g of Ga was recovered. As an impurity of Ga, As is 3. lppm, In, Fe, Ca
, Cu were observed in amounts of 1 to 10 ppm, respectively.

Claims (1)

【特許請求の範囲】[Claims] (1)ガリウム化合物微粒子を含むガリウム含有物から
金属ガリウムを回収する方法において、該ガリウム含有
物に無機系及び/又は有機系バインダーを添加混合し、
この混合物を必要に応じて成形した後、加熱焼成する予
備処理工程と、該予備処理工程で得られたガリウム化合
物微粒子が相互に結合した焼成物を真空熱分解し、液体
金属ガリウムを生成させる熱分解工程からなることを特
徴とするガリウム含有物からの金属ガリウムの回収方法
(1) In a method for recovering metallic gallium from a gallium-containing material containing gallium compound fine particles, an inorganic and/or organic binder is added and mixed to the gallium-containing material,
After shaping this mixture as necessary, there is a pretreatment process in which the mixture is heated and fired, and the fired product in which the gallium compound fine particles obtained in the pretreatment process are bonded to each other is vacuum pyrolyzed to produce liquid metal gallium. A method for recovering metallic gallium from a gallium-containing material, comprising a decomposition step.
JP10274787A 1987-04-24 1987-04-24 Method for recovering metallic gallium from gallium-containing materials Expired - Lifetime JP2604590B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10274787A JP2604590B2 (en) 1987-04-24 1987-04-24 Method for recovering metallic gallium from gallium-containing materials
US07/182,954 US4812167A (en) 1987-04-24 1988-04-18 Process for recovering metallic gallium from gallium compound-containing waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10274787A JP2604590B2 (en) 1987-04-24 1987-04-24 Method for recovering metallic gallium from gallium-containing materials

Publications (2)

Publication Number Publication Date
JPS63270426A true JPS63270426A (en) 1988-11-08
JP2604590B2 JP2604590B2 (en) 1997-04-30

Family

ID=14335816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10274787A Expired - Lifetime JP2604590B2 (en) 1987-04-24 1987-04-24 Method for recovering metallic gallium from gallium-containing materials

Country Status (1)

Country Link
JP (1) JP2604590B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147956A (en) * 2014-02-05 2015-08-20 Jx日鉱日石金属株式会社 Method for recovering gallium
CN111519024A (en) * 2020-04-24 2020-08-11 朔州西廊煤炭科技有限公司 Method for extracting gallium metal by using coal solid waste or bauxite solid waste through sintering method
CN113652559A (en) * 2021-08-20 2021-11-16 安徽工业大学 Method for recovering rare and scattered metal gallium in gallium nitride waste material by pyrogenic process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837889A (en) * 1971-09-18 1973-06-04
JPS57101625A (en) * 1980-12-15 1982-06-24 Gnii Pi Redkometa Manufacture of high purity gallium
JPS6176627A (en) * 1984-09-21 1986-04-19 Showa Alum Ind Kk Recoverying method of callium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837889A (en) * 1971-09-18 1973-06-04
JPS57101625A (en) * 1980-12-15 1982-06-24 Gnii Pi Redkometa Manufacture of high purity gallium
JPS6176627A (en) * 1984-09-21 1986-04-19 Showa Alum Ind Kk Recoverying method of callium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147956A (en) * 2014-02-05 2015-08-20 Jx日鉱日石金属株式会社 Method for recovering gallium
CN111519024A (en) * 2020-04-24 2020-08-11 朔州西廊煤炭科技有限公司 Method for extracting gallium metal by using coal solid waste or bauxite solid waste through sintering method
CN111519024B (en) * 2020-04-24 2022-05-24 朔州西廊煤炭科技有限公司 Method for extracting gallium metal by using coal solid waste or bauxite solid waste through sintering method
CN113652559A (en) * 2021-08-20 2021-11-16 安徽工业大学 Method for recovering rare and scattered metal gallium in gallium nitride waste material by pyrogenic process

Also Published As

Publication number Publication date
JP2604590B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
KR101735425B1 (en) System and method for aluminium black dross recycling
WO2017111334A1 (en) Method for synthesizing aluminum nitride and aluminum nitride-based composite material
KR101711363B1 (en) Apparatus and method for recycling black dross of aluminium scrap
JP7040862B2 (en) Hexagonal boron nitride molded product, heat-treated hexagonal boron nitride molded product and its manufacturing method
JPS60221365A (en) Manufacture of high strength silicon carbide sintered body
JPH0159995B2 (en)
JP2604590B2 (en) Method for recovering metallic gallium from gallium-containing materials
JP2020001968A (en) Method of manufacturing granulated particle for producing ceramic
CN1541782A (en) Method for utilizing aluminium cinder as resource
US4528119A (en) Metal borides, carbides, nitrides, silicides, oxide materials and their method of preparation
US4812167A (en) Process for recovering metallic gallium from gallium compound-containing waste
JP2605034B2 (en) Metal gallium recovery method
US5080879A (en) Process for producing silicon carbide platelets and the platelets so produced
KR20040055218A (en) a manufacturing method for high purity silicon carbide from the wafer cutting slurry
JP3147840B2 (en) Treatment method of residual aluminum ash
KR100976554B1 (en) Grain growth control method through Mg compound addition when synthesis of hexagonal born nitride
AU2005254404A1 (en) Process for producing low-soda alumina, apparatus therefor, and alumina
JPH0519486B2 (en)
EP3947278B1 (en) Method for preparing agglomerates comprising metallic silikon
JPH0790165B2 (en) Purification method of powder
CN108342637B (en) Method for producing polysilane/siloxene and ferrosilicon by reacting carbide slag iron with acid
RU2164259C2 (en) Method of gallium recovery from gallium-containing oxides of rare-earth metals
US5380686A (en) Process for producing composite raw material for ceramics and composite raw material for ceramics produced by said process
JP2610645B2 (en) Method for producing cubic boron nitride sintered body
JP4073551B2 (en) Gallium recovery method