JP2604235B2 - Jet ejector refrigeration system - Google Patents

Jet ejector refrigeration system

Info

Publication number
JP2604235B2
JP2604235B2 JP1172720A JP17272089A JP2604235B2 JP 2604235 B2 JP2604235 B2 JP 2604235B2 JP 1172720 A JP1172720 A JP 1172720A JP 17272089 A JP17272089 A JP 17272089A JP 2604235 B2 JP2604235 B2 JP 2604235B2
Authority
JP
Japan
Prior art keywords
chamber
pressure
jet ejector
low
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1172720A
Other languages
Japanese (ja)
Other versions
JPH0339867A (en
Inventor
勝己 山川
仁 栗山
Original Assignee
タジマエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タジマエンジニアリング株式会社 filed Critical タジマエンジニアリング株式会社
Priority to JP1172720A priority Critical patent/JP2604235B2/en
Publication of JPH0339867A publication Critical patent/JPH0339867A/en
Application granted granted Critical
Publication of JP2604235B2 publication Critical patent/JP2604235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水・油等の低圧下の冷媒液を略40乃至80℃
以下位の電力による熱、又は排熱等で加熱して発生させ
た冷媒蒸気の速度エネルギーをジェットエゼクタに用い
て、周囲の低圧低温冷媒蒸気を吸引することで結果的に
圧力エネルギーに変換し、これを冷凍機外部の周囲温度
に放熱して凝縮液化し、再びこの凝縮液を容器低圧側に
圧力差で送液し、容器低圧部でのその圧力に応じた飽和
蒸気(沸騰蒸気)を生じせしめ、該容器低圧部液中に配
置された冷却器中の作動媒体(水・油)を冷却する冷凍
方法及びその装置に関するものであり、一般空調、冷蔵
冷凍庫、倉庫、車内クーラー、室内クーラー、冷凍分野
に利用するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for cooling a refrigerant liquid under low pressure, such as water or oil, to approximately 40 to 80 ° C.
Heat by the power of the order below, or the velocity energy of the refrigerant vapor generated by heating with exhaust heat, etc., is used for the jet ejector, and the surrounding low-pressure low-temperature refrigerant vapor is converted into pressure energy as a result, This is radiated to the ambient temperature outside the refrigerator to condense and liquefy, and this condensate is again sent to the low-pressure side of the vessel with a pressure difference, producing saturated steam (boiling steam) corresponding to the pressure in the low-pressure section of the vessel. More specifically, the present invention relates to a refrigeration method and an apparatus for cooling a working medium (water or oil) in a cooler disposed in the liquid in the low-pressure part of the container, and includes a general air conditioner, a refrigerated freezer, a warehouse, an in-car cooler, an indoor cooler, It is used in the refrigeration field.

(従来の技術) 近年に於いて、従来のフロン系冷媒を用いる冷凍機は
地球規模の公害の一因として深刻な問題となって来た。
又、これに関連してエネルギーの無駄使いも将来的な温
度公害としてとらえられるようになって来た。そして、
クリーンエネルギーとしての太陽熱エネルギーの利用技
術分野に於いても、ソーラーエレクターで容易に得られ
る80℃以下の低温熱源を利用して、給湯だけでなく冷房
のエネルギー源として用いる事が出来る吸着式冷凍機等
の開発が行なわれるようになって来ている。
(Prior Art) In recent years, a refrigerator using a conventional chlorofluorocarbon-based refrigerant has become a serious problem as a cause of global pollution.
In connection with this, wasteful use of energy has come to be regarded as future temperature pollution. And
In the field of utilization of solar thermal energy as clean energy, an adsorption refrigerator that can be used not only as a hot water supply but also as an energy source for cooling, using a low-temperature heat source of 80 ° C or less that is easily obtained with a solar erector Etc. are being developed.

この吸着式冷凍機はシリカゲル等の物理的吸着剤の冷
媒(水)吸脱着作用を応用したものであり、原理的には
古くから知られていたものであるが、近年の小温度差で
機能する熱交換器の発達と吸着剤の物性データーの確立
化により実用化されてきたものである。然しながら、上
記の如き吸着式冷凍機に於いては、以下に列挙するよう
な問題があった。
This adsorptive refrigerator uses the adsorption and desorption of refrigerant (water) by a physical adsorbent such as silica gel, and has been known in principle for a long time. It has been put into practical use by the development of heat exchangers and the establishment of physical property data of adsorbents. However, the above-mentioned adsorption refrigerator has the following problems.

(a)シリカゲル等の吸着剤と水蒸気冷媒の結合力は単
にファンデルワールス力で表面と吸着分子(水蒸気)が
結合している物理吸着のみではなくて、実際には表面原
子と吸着分子(水蒸気)との間に弱い化学的な結合力
(化学吸着)が存在している事が吸着剤を真空排気する
場合の実験データーより明らかになっている。即ち、高
真空系を得る為に用いられるソープションポンプとスパ
ッタイオンポンプのドライ系に於いてみられるが如く、
ソープションポンプにバーンアウト(やき出し)熱源を
物理吸着熱の2乃至3倍(44.2KJ/mol×2or3)要する事
である。この様に従来の吸着式冷凍機に於いては冷媒移
動の為の熱エネルギーは理論値(物理吸着熱)の2乃至
3倍を必要としており、冷媒の物質移動に対する熱効率
は低いものであった。
(A) The binding force between an adsorbent such as silica gel and a water vapor refrigerant is not only physical adsorption in which the surface and the adsorbed molecule (water vapor) are bonded by van der Waals force, but actually the surface atom and the adsorbed molecule (water vapor) )), It is clear from the experimental data that the adsorbent is evacuated to a weak chemical bond (chemisorption). That is, as seen in the dry system of a sorption pump and a sputter ion pump used to obtain a high vacuum system,
This means that the sorption pump requires a burnout (heat-out) heat source two to three times (44.2 KJ / mol × 2 or 3) the heat of physical adsorption. As described above, in the conventional adsorption refrigerator, the heat energy required for the transfer of the refrigerant requires two to three times the theoretical value (physical heat of adsorption), and the heat efficiency for the mass transfer of the refrigerant is low. .

(b)シリカゲル等の吸着剤を用いた吸着式冷凍機に於
いては、吸着剤の加熱再生とその冷却が本質的に必要で
あるから、連続して冷凍機としての冷却作用を行う為に
は2組の吸着式冷凍機サイクルを組み合わせて1式の冷
凍機ユニットを構成せるを得なかった。この為に、従来
の吸着式冷凍機は大型化し高価となっている。又、配管
系も切替等が必要で複雑なものとなった。
(B) In an adsorption-type refrigerator using an adsorbent such as silica gel, heating and regeneration of the adsorbent and its cooling are essentially required. Cannot combine the two sets of adsorption refrigeration cycles to form a single refrigeration unit. For this reason, the conventional adsorption type refrigerator becomes large and expensive. In addition, the piping system is complicated due to the necessity of switching and the like.

(c)更に、従来の吸着式冷凍機に於いては、シリカゲ
ル等の吸着剤の充填を密にすることが冷媒の移動効率を
低下させる為、シリカゲルをフィン間に充填する熱交換
器は充填層を薄くするために大型化せざるを得ず、この
為に凝縮器として働く熱交換器も相対的に大型化してい
る。又、吸着剤再生運転時に於いては蒸発凝縮器側の冷
却水入口及び冷却水出口の間の温度差が生じる為に、凝
縮器表面の冷媒液膜の厚みにバラツキが生じ、蒸発スピ
ードの劣化、冷媒液の冷凍機胴体低部への落下による冷
凍能力の低下が生じていた。これを防ぐ為に胴体底部の
加熱等の手段がとられているが本質的に冷凍能力の効率
向上ではなかった。
(C) Further, in the conventional adsorption refrigerator, since the packing of the adsorbent such as silica gel is made denser to lower the transfer efficiency of the refrigerant, the heat exchanger for filling the silica gel between the fins is not filled. In order to make the layer thinner, the size of the heat exchanger has to be increased, and the heat exchanger acting as a condenser has also become relatively larger. In addition, during the adsorbent regeneration operation, a temperature difference occurs between the cooling water inlet and the cooling water outlet on the side of the evaporating condenser, and the thickness of the refrigerant liquid film on the surface of the condenser varies, and the evaporating speed deteriorates. In this case, the refrigeration capacity is reduced due to the drop of the refrigerant liquid to the lower part of the refrigerator body. In order to prevent this, measures such as heating of the bottom of the fuselage are taken, but this does not essentially improve the efficiency of the refrigeration capacity.

(d)又、従来の吸着式冷凍機に於いては、加熱再生後
の吸着剤の冷却が必要であり、その為の冷却水回路及び
クーリングタワーが必須のものであった。この為に温
水、冷却水回路は交互に切り替える必要があり、温水
系、冷却水系を密閉サイクルとして、スケールの発生を
防止する事は設備的に高価なものとなり、それ故一般の
クーリングタワーを使う事が多く、熱交換器内圧のスケ
ールスラッジの発生を併いメンテナンスを必要としてい
る。
(D) Further, in the conventional adsorption refrigerator, it is necessary to cool the adsorbent after heating and regeneration, and a cooling water circuit and a cooling tower for that purpose are essential. For this reason, it is necessary to alternately switch the hot water and cooling water circuits, and it is expensive to install scales by using a closed cycle for the hot water system and cooling water system. And maintenance is required along with the generation of scale sludge due to the internal pressure of the heat exchanger.

そして日本の大気の事情を考え、又クーリングタワー
の保守点検の必要性からみても一般家庭に応用する事は
困難であった。
And considering the atmosphere of Japan and the necessity of maintenance and inspection of the cooling tower, it was difficult to apply it to ordinary households.

以上の如く、低温熱源(80℃以下)を駆動源として用
いる吸着式冷凍機には現実的に種々の問題が内蔵してい
た。
As described above, the adsorption refrigerator using the low-temperature heat source (80 ° C. or lower) as a driving source actually has various problems.

(技術的課題) 而して、本発明は従来技術の問題に鑑みなされたもの
で、特に、低位熱入力(80℃以下乃至40℃位迄)を用い
て連続的に冷房、冷凍出来従来の吸着式冷凍機に比べて
装置の簡便化と大幅なエネルギー効率向上及び装置コス
トの低減、公害の発生防止という優れた効果を発揮する
ことが出来る冷凍機を得ることを技術的課題とするもの
である。
(Technical Problems) The present invention has been made in view of the problems of the prior art, and in particular, has been able to continuously cool and freeze using a low heat input (80 ° C. or lower to 40 ° C.). The technical task is to obtain a refrigerator that can exhibit the excellent effects of simplifying the device, greatly improving energy efficiency, reducing the cost of the device, and preventing the occurrence of pollution compared to the adsorption refrigerator. is there.

(技術的手段) 本発明では上記の技術的課題を解決する為に従来の低
温熱源を利用した吸着式冷凍機に代表される冷凍機シス
テムに於ける問題点を解消し、エネルギー効率の向上を
図り、冷凍機としての連続冷却なる目的を達成する為
に、水、油、水とエタノールとの混合等の所定量の冷媒
を封入した真空容器中にヒーター、又は熱源側熱媒を通
過させる熱交換器をジェットエゼクタの蒸発発生部とし
て用い、冷媒蒸気をエゼクタ効果により吸引、加圧、加
熱させ、冷媒蒸発を促進させ冷媒液の冷却を行い、この
冷媒液中に設置した冷却器中の作動媒体を冷却させると
共に、前記真空容器中にて冷媒蒸発の凝縮を行わしめ、
又容器中の冷媒液の蒸発を促進せしめる為の高電場発生
用電極装置(絶縁被膜型電極)を有し、更に又、ヒート
パイプ式熱交換器を有して成るものである。
(Technical Means) In order to solve the above technical problems, the present invention solves a problem in a refrigerator system represented by a conventional adsorption refrigerator using a low-temperature heat source, and improves energy efficiency. In order to achieve the purpose of continuous cooling as a refrigerator, heat that passes a heater or a heat source side heat medium into a vacuum vessel filled with a predetermined amount of refrigerant such as water, oil, a mixture of water and ethanol, etc. Using the exchanger as an evaporation generator of the jet ejector, the refrigerant vapor is sucked, pressurized, and heated by the ejector effect to promote the evaporation of the refrigerant, cool the refrigerant liquid, and operate the cooler installed in the refrigerant liquid. While cooling the medium, perform condensation of refrigerant evaporation in the vacuum vessel,
It also has a high electric field generating electrode device (insulating coating type electrode) for accelerating the evaporation of the refrigerant liquid in the container, and further has a heat pipe type heat exchanger.

具体的には図示(第1図乃至第5図)に示す如く下記
の構成となる。
Specifically, as shown in FIGS. 1 to 5, the following configuration is provided.

尚、本発明に於いて使用する冷媒は水(蒸留水)、又
はエステル系DEP(ジエチルフタレート)油等であり、
水は一般冷房空調用、油は一般冷蔵冷凍用に使用される
が、ここでは冷媒として水を採用するが他に油等を用い
ても原理的に本発明の主旨から逸脱するものではない。
The refrigerant used in the present invention is water (distilled water) or ester-based DEP (diethyl phthalate) oil, and the like.
Water is used for general cooling and air conditioning, and oil is used for general refrigeration and freezing. Here, water is used as the refrigerant, but the use of oil or the like does not depart from the gist of the present invention in principle.

1はジェットエゼクタ式冷凍装置であり、高圧蒸気発
生器室2と、ジェットエゼクタ本体3と、凝縮室4と、
低圧蒸発室5との各室から構成されている。前記、高圧
蒸気発生器室2の内底部にはそこに貯溜された冷媒液W
を加熱蒸発せしめるための低位熱エネルギー入力又は電
気ヒーター等6を配設せしめてあり、該冷媒液W面上に
は前記凝縮室4底部の導管7に接続した処のフロートバ
ルブ8のボールタップ8Aを浮かせてある。
Reference numeral 1 denotes a jet ejector-type refrigeration apparatus, which includes a high-pressure steam generator chamber 2, a jet ejector body 3, a condensation chamber 4,
It comprises a low pressure evaporation chamber 5 and each chamber. The refrigerant liquid W stored in the inner bottom of the high-pressure steam generator chamber 2
A low heat energy input or an electric heater or the like 6 for heating and evaporating the refrigerant is provided. On the surface of the refrigerant liquid W, a ball tap 8A of a float valve 8 connected to a conduit 7 at the bottom of the condensation chamber 4 is provided. Floating.

而して、凝縮室4の内底部に液化して溜った冷媒液W
は導管7を経て前記フロートバルブ8に制御されて高圧
蒸気発生器室2内へ送り込まれるように成してある。
又、この凝縮室4の底部とフロートバルブ8との高低差
は約400mm以上に保たれる様にしてある為、重力作用に
より冷媒液Wは高圧蒸気発生器室2内の蒸気圧P1と凝縮
室4内の蒸気圧Pmとの圧力差(P1−Pm)に抗して充分に
流れ易いようにしてある。
Thus, the refrigerant liquid W liquefied and stored in the inner bottom of the condensation chamber 4
Is supplied to the high-pressure steam generator chamber 2 through the conduit 7 under the control of the float valve 8.
Also, since the height difference between the bottom of the condensing chamber 4 and the float valve 8 is kept at about 400 mm or more, the refrigerant liquid W is caused to act by the gravity action with the vapor pressure P 1 in the high-pressure steam generator chamber 2. The flow is made sufficiently easy against the pressure difference (P 1 −P m ) from the vapor pressure P m in the condensation chamber 4.

前記ジェットエゼクタ本体3は第2図に示す如く、流
体のもつ運動エネルギーを圧力エネルギーに有効に変換
させるための亜音速のディフューザー9と、吸引口10を
有する処の低圧室11内に超速速一次ノズルとしての噴射
ノズル12とを該亜音速のディフューザー9の開口方向と
同軸に臨ませてあり、蒸気圧P1を有する高圧蒸発の供給
口13からの流れで前記吸引口10より前記低圧蒸発室5内
の蒸気圧P0を有する低圧蒸気を吸引するものである。
As shown in FIG. 2, the jet ejector body 3 has a supersonic primary diffuser 9 in a subsonic diffuser 9 for effectively converting kinetic energy of a fluid into pressure energy and a low-pressure chamber 11 having a suction port 10. An injection nozzle 12 as a nozzle faces coaxially with the opening direction of the subsonic diffuser 9, and flows from the suction port 10 through the high-pressure evaporation supply port 13 having the vapor pressure P 1 to the low-pressure evaporation chamber. the low-pressure steam having a vapor pressure P 0 of 5 is for suction.

即ち、前記高圧蒸気発生器室2より発生した高圧蒸気
はジェットエゼクタ本体3の供給口13へ入り、低圧室11
内に形成した噴射ノズル12より混合部14に向けて噴出し
該高圧蒸気は前記吸引口10の低圧蒸気の有する蒸気圧P0
まで降下し噴射ノズル12の出口に於いて高速となる。
That is, the high-pressure steam generated from the high-pressure steam generator chamber 2 enters the supply port 13 of the jet ejector body 3 and
The high-pressure steam is ejected from the ejection nozzle 12 formed therein toward the mixing section 14, and the high-pressure steam has a steam pressure P 0 of the low-pressure steam at the suction port 10.
At the exit of the injection nozzle 12 and at a high speed.

この噴射された高圧蒸気(蒸気圧P1)と吸引口10より
吸引された低圧蒸発室5からの低圧蒸気とは第4図に示
した混合点Mに於いて衝撃を起こし、高圧蒸気の流れに
巻き込まれて吸引され連続的に混合部14へ突進して行
く。
The injected high-pressure steam (steam pressure P 1 ) and the low-pressure steam sucked from the suction port 10 from the low-pressure evaporation chamber 5 cause an impact at the mixing point M shown in FIG. And is sucked and continuously rushed to the mixing section 14.

然る時、混合は前記ディフューザー9内で速度エネル
ギーが高い圧力のポテンシャルエネルギーに変換される
ときに行なわれてゆく。
Then, mixing takes place in the diffuser 9 when velocity energy is converted to high pressure potential energy.

ジェットエゼクタ本体3の熱力学的サイクルであるモ
リエル線図(圧力−エンタルピー曲線図)は第4図に示
す如く、第一にA→Bの噴射ノズル12内の噴射蒸気の断
熱膨張過程と、C→Dの吸引口10からの吸入ガスの断熱
膨張過程との共に等エントロピー曲線に沿ってのエンタ
ルピー減少過程と、D→Mのエンタルピー減少及びB→
Mのエンタルピー増大との混合点Mでの混合過程(不可
逆過程)と、M→Eのディフューザー9に於ける断熱圧
縮過程(エンタルピー増大)とによって表わされる。
As shown in FIG. 4, a Mollier diagram (pressure-enthalpy curve diagram) which is a thermodynamic cycle of the jet ejector body 3 firstly shows the adiabatic expansion process of the injected steam in the injection nozzle 12 of A → B and C The enthalpy reduction process along the isentropic curve together with the adiabatic expansion process of the suction gas from the suction port 10 of D, the enthalpy reduction of D → M, and B →
The mixing process (irreversible process) at the mixing point M with the enthalpy increase of M and the adiabatic compression process (enthalpy increase) in the diffuser 9 of M → E are represented.

15は冷媒液W面上約20〜30mmの位置に複数配設せしめ
た、浅川効果を生じる略15KV程度の直流又は交流の高圧
電場を形成するための絶縁被覆電極であり、この様な高
電場により冷媒液Wの表面張力の低下、粘性の低下が生
じ(浅川効果)冷媒液Wの蒸発が促進するように成して
ある。
Reference numeral 15 denotes an insulating coating electrode which is disposed at a position of about 20 to 30 mm on the surface of the refrigerant liquid W and forms a DC or AC high piezoelectric field of about 15 KV which produces the Asakawa effect. As a result, the surface tension and the viscosity of the refrigerant liquid W decrease (the Asakawa effect), and the evaporation of the refrigerant liquid W is promoted.

即ち、第3図に示す如く、BXチューブによる絶縁導線
15Aの先端金属電極15Bをポリプロピレン15C等で被覆し
たものを使えば良い。
That is, as shown in FIG.
It is only necessary to use a 15A tip metal electrode 15B coated with polypropylene 15C or the like.

例えば冷媒液として水を採用した場合温度12℃に於い
て蒸発速度が数10倍にも達する。
For example, when water is used as the refrigerant liquid, the evaporation rate reaches several tens of times at a temperature of 12 ° C.

一方、この時のジェットエゼクタ式冷凍装置1全体は
アースが施されてある。
On the other hand, the entire jet ejector refrigeration system 1 at this time is grounded.

前記凝縮室4内には前記ジェットエゼクタ本体3より
噴射された蒸気を凝縮液化するための凝縮用熱交換器16
としてのヒートパイプ式熱交換器を設置してある。この
凝縮室4内の中圧蒸気の蒸気圧はPmである。即ち、P1
Pm>P0の関係にある。前記凝縮用熱交換器16内には冷媒
Qが密封されており液化、気化を繰り返している。
A condensing heat exchanger 16 for condensing and liquefying the steam injected from the jet ejector body 3 is provided in the condensing chamber 4.
As a heat pipe type heat exchanger. The vapor pressure of the gas intermediate pressure in this condensation chamber 4 is P m. That is, P 1 >
P m > P 0 . A refrigerant Q is sealed in the condenser heat exchanger 16 and liquefaction and vaporization are repeated.

16Aは沸騰部で凝縮室4内に配設してあり、凝縮部16B
は大気中に配設し且つ送風機17から空気を送り冷媒Q蒸
気を冷却し冷媒Q液に液化するものである。
16A is a boiling section, which is disposed in the condensation chamber 4;
Is disposed in the atmosphere and sends air from the blower 17 to cool the refrigerant Q vapor and liquefy it into the refrigerant Q liquid.

而して、ジェットエゼクタ本体3より噴射された蒸気
は凝縮室4内へ送出され、ここで該蒸気は前記した凝縮
用熱交換器16により液化される。
Thus, the steam injected from the jet ejector main body 3 is sent out into the condensing chamber 4, where the steam is liquefied by the above-mentioned condensing heat exchanger 16.

19は絞り装置としてのオリフィスで導管7に接続した
導管18を介して低圧蒸発室5と導通してある。而して、
凝縮室4内の蒸気圧Pmと低圧蒸発室5内の蒸気圧P0との
差圧がオリフィス19に加わり冷媒液Wは低圧蒸発室5へ
一部気化した状態で送り込まれる。20は冷却器として内
部に冷媒Qを充填したヒートパイプ式熱交換器で放熱部
20Aを低圧蒸発室5内の冷媒液W内に臨ませ、吸熱部20B
を被冷却室V内に配設してある。21は送風機である。而
して、空気冷却器20の吸熱部20Bにおいては冷媒Q液が
吸熱して気化し、その際の気化熱により被冷却室Vを冷
却する。
Reference numeral 19 denotes an orifice as a restrictor, which communicates with the low-pressure evaporation chamber 5 via a conduit 18 connected to the conduit 7. Thus,
The differential pressure between the vapor pressure P 0 of the condensing chamber vapor pressure P m and the low pressure evaporator chamber 5 in the 4 refrigerant liquid W applied to the orifice 19 is fed in a state of being partially vaporized into the low pressure evaporation chamber 5. Reference numeral 20 denotes a heat pipe type heat exchanger in which a refrigerant Q is filled as a cooler, and
20A faces the refrigerant liquid W in the low-pressure evaporation chamber 5, and the heat absorbing section 20B
Is disposed in the cooled room V. 21 is a blower. Thus, in the heat absorbing portion 20B of the air cooler 20, the refrigerant Q liquid absorbs heat and is vaporized, and the cooled room V is cooled by the vaporization heat at that time.

一方、気化された冷媒Q蒸気は放熱部20Aで放熱して
液化され、その際低圧蒸発室5内の冷媒液Wを温めて蒸
気化せしめる。
On the other hand, the vaporized refrigerant Q vapor dissipates heat in the radiating section 20A and is liquefied. At this time, the refrigerant liquid W in the low-pressure evaporation chamber 5 is heated and vaporized.

又、低圧蒸発室5内にも前記高圧蒸気発生器室2内と
同様に浅川効果を生じる直流又は交流略15KV程度の高圧
電場を発生する為の絶縁被覆電極15を冷媒液W面上略20
〜30mmの位置に複数配設せしめてある。
Similarly, in the low-pressure evaporation chamber 5, the insulating coating electrode 15 for generating a high piezoelectric field of about 15 KV of direct current or alternating current of about 15 KV which generates the Asakawa effect as in the high-pressure steam generator chamber 2 is formed on the surface of the refrigerant liquid W by about 20 cm.
Multiple pieces are arranged at the position of ~ 30mm.

具体的に冷媒液Wとして水を採用した場合、各室内で
の圧力はP06mmHg(3℃〜5℃)、P1≧56mmHg(45℃
〜50℃)、Pm32mmHg(30℃〜)位の圧力である。
Specifically when employing water as the refrigerant liquid W, the pressure in each chamber is P 0 6mmHg (3 ℃ ~5 ℃ ), P 1 ≧ 56mmHg (45 ℃
5050 ° C.), P m 32 mmHg (30 ° C. or higher).

水の飽和曲線(沸騰曲線)は第5図に示す如くなる。 The water saturation curve (boiling curve) is as shown in FIG.

(作 用) 上記の技術的手段は下記の如く作用する。(Operation) The above technical means operate as follows.

先ず、凝縮用熱交換器16と空気冷却器20の夫々空気送
風機(17,21)を運転せしめると共に、浅川効果用の絶
縁被覆電極15に高電場約15Kvを印加せしめ、又低位熱入
力(例えば太陽熱エネルギーより得られた温水)、又は
電気ヒーター6等により高圧蒸気発生器室2内の冷媒液
Wとしての水を45℃〜50℃位に沸騰蒸発せしめて圧力を
高める。(蒸気圧P1) 次いで、蒸気圧P1を有する高圧蒸気は毎秒約200程度
の速度となってジェットエゼクタ本体3の供給口13へ送
出せしめられる。
First, while operating the air blowers (17, 21) of the condensing heat exchanger 16 and the air cooler 20, respectively, applying a high electric field of about 15 Kv to the insulating coating electrode 15 for the Asakawa effect, and applying a low heat input (for example, Hot water obtained from solar thermal energy) or water as the refrigerant liquid W in the high-pressure steam generator chamber 2 is boiled down to about 45 ° C. to 50 ° C. by the electric heater 6 or the like to increase the pressure. (Steam pressure P 1 ) Next, the high-pressure steam having the steam pressure P 1 is sent out to the supply port 13 of the jet ejector main body 3 at a speed of about 200 per second.

然る時、低圧蒸発室5内の冷媒液Wは高電場15Kvを印
加されているので蒸発作用が通常の数10倍に促進され且
つ空気冷却器20の放熱部20Aよりの熱が冷媒液W中に放
熱される為に激しく沸騰蒸発をはじめる。然し、この低
圧蒸発室5内の冷媒温度は約30℃程度が最大であり、高
圧蒸気発生器室2内の蒸気圧P1に比し圧力が低いものと
なっている。因って、ジェットエゼクタ本体3によりこ
の低圧蒸発室5内の冷媒W蒸気は吸引され、蒸発作用が
連続していくことが出来る。
At that time, since the refrigerant liquid W in the low-pressure evaporation chamber 5 is applied with a high electric field of 15 Kv, the evaporating action is promoted to several tens of times the normal temperature, and the heat from the radiating portion 20A of the air cooler 20 is reduced to the refrigerant liquid W. It begins to evaporate violently to be radiated inside. However, the maximum refrigerant temperature in the low-pressure evaporation chamber 5 is about 30 ° C., which is lower than the vapor pressure P 1 in the high-pressure steam generator chamber 2. Therefore, the refrigerant W vapor in the low-pressure evaporation chamber 5 is sucked by the jet ejector main body 3, and the evaporation operation can be continued.

又、その為、被冷却室V側に在る空気冷却器20の吸熱
部20Bのヒートパイプ内の冷媒Q液の温度は被冷凍物品
から蒸発熱を奪うので上昇し、気化し(蒸発潜熱を奪
う)被冷却室Vの温度を冷媒Qの蒸発温度近くまで冷や
すと共に、前記ヒートパイプ内の気化した冷媒Qは、低
圧蒸発室5内の空気冷却器20のヒートパイプの放熱部20
Aの周囲を浸漬した冷媒液Wの温度を極めて早く上昇せ
しめ該冷媒Qを再び液化せしめる。
Further, for this reason, the temperature of the refrigerant Q liquid in the heat pipe of the heat absorbing portion 20B of the air cooler 20 located on the side of the cooled room V rises because it takes away the evaporation heat from the frozen article, and evaporates (the latent heat of evaporation is reduced). The temperature of the cooled room V is cooled down to near the evaporation temperature of the refrigerant Q, and the vaporized refrigerant Q in the heat pipe is released by the heat radiating portion 20 of the heat pipe of the air cooler 20 in the low-pressure evaporation chamber 5.
The temperature of the refrigerant liquid W immersed around A is raised very quickly, and the refrigerant Q is liquefied again.

而して、被冷却室V内の熱はこの低圧蒸発室5内の冷
媒液Wに吸収される。
Thus, the heat in the cooled chamber V is absorbed by the refrigerant liquid W in the low-pressure evaporation chamber 5.

次いで、前記ジェットエゼクタ本体3の噴射ノズル12
により吐出された高圧蒸気発生器室2の蒸気とこれによ
り牽引されて吸引せしめられた低圧蒸発室5の低圧蒸気
とが混合され、ジェットエゼクタ本体3から凝縮室4へ
と送られる。
Next, the injection nozzle 12 of the jet ejector body 3
The steam discharged from the high-pressure steam generator chamber 2 and the low-pressure steam drawn and sucked by the low-pressure evaporation chamber 5 are mixed and sent from the jet ejector main body 3 to the condensation chamber 4.

この送られて来た蒸気は凝縮用熱交換器16に於ける沸
騰部16Aの冷媒Qにより熱が吸収されて液化され冷媒液
Wとなって凝縮室4内の底部へ貯溜せしめられる。又、
この凝縮室4内の冷媒液Wは内底部にある導管7を経
て、夫々高圧蒸気発生器室2内へはフロートバルブ8の
ボールタップ8Aに制御されて送り込まれると共に、低圧
蒸発室5内へは絞り装置としてのオリフィス19を経て送
り込まれる而して、前述の熱力学的サイクルが繰り返さ
れて冷房冷却作用が続行せしめられる。
The sent vapor is absorbed by the refrigerant Q in the boiling portion 16A in the heat exchanger 16 for condensation, is liquefied and liquefied as the refrigerant liquid W, and is stored at the bottom in the condensation chamber 4. or,
The refrigerant liquid W in the condensing chamber 4 is sent into the high-pressure steam generator chamber 2 through the conduit 7 at the inner bottom under control of the ball tap 8A of the float valve 8 while being sent into the low-pressure evaporation chamber 5 respectively. As the air is fed through the orifice 19 as the expansion device, the above-described thermodynamic cycle is repeated, and the cooling and cooling operation is continued.

又、前述の如き絶縁被覆電極15の高電場によって冷媒
液Wとしての水の表面張力の低下、粘性の低下が生じ
(浅川効果)、水の蒸発が促進され熱伝達が極めて効率
の良い状態となるので、今まで吸着剤を用いた吸着式冷
凍機で問題であった化学的吸着(分子間結合)を解離さ
せるのに必要な熱エネルギーが本質的に不要となる為、
熱エネルギーの使用効率は極めて高くなり高電場に依る
寄与を含めれば冷凍機の成績係数COPは略1.1以上とな
る。
In addition, the high electric field of the insulating coating electrode 15 causes the surface tension and the viscosity of the water as the coolant liquid W to decrease (the Asakawa effect), and the evaporation of the water is promoted, so that the heat transfer is extremely efficient. Therefore, the thermal energy required to dissociate chemical adsorption (intermolecular bonding), which has been a problem in adsorption refrigerators using an adsorbent, is essentially unnecessary,
The efficiency of use of heat energy is extremely high, and the coefficient of performance COP of the refrigerator becomes approximately 1.1 or more if the contribution by the high electric field is included.

これは吸着式冷凍機のCOPが増大で0.7程度である事を
考えれば約50%以上の効率上昇となる。更に又、本発明
では冷却状態を連続的に保つ事が出来、又冷凍機構成が
今までの吸着式冷凍機に比し極めて簡単であり、配管系
の切替えも不要であるから、一般の吸着式冷凍機に比し
本体で約1/3の容積とすることが出来る。
This is an increase of more than about 50%, considering that the COP of the adsorption refrigerator is about 0.7. Furthermore, in the present invention, the cooling state can be continuously maintained, the refrigerator configuration is extremely simple compared to conventional adsorption refrigerators, and switching of piping systems is not necessary, so that general adsorption is not required. The volume of the main body can be reduced to about 1/3 of that of the refrigerator.

尚、以下の各実施例に於いて本発明と実施的に同じ部
分には同じ番号を附してある。
In the following embodiments, the same parts as those of the present invention are denoted by the same reference numerals.

(実施例1) 第6図に示す如く、本実施例の特徴は全体をアース接
続Eしたジェットエゼクタ式冷凍装置1を夫々高圧蒸気
発生器室2と低圧蒸発室5と凝縮室4とに各室に仕切り
構成とすると共に、該高圧蒸気発生器室2の上部にジェ
ットエゼクタ本体3を凝縮室4へ向けて直立状態に付設
せしめる一方、前記フロートバルブ8を有する導管7及
びオリフィス19を有する導管18とを夫々凝縮室4内に突
き出たオーバーフローの部分を逆U字管22状に形成せし
めて臨ませる他方、前方絶縁被覆電極15に交換電場15KV
ACを印加せしめるためにAC100V・50〜60Hzのネオントラ
ンス23を採用せしめたものである。而して、其の具体的
構成に基く作用効果は本発明と略同一である。
(Embodiment 1) As shown in Fig. 6, the feature of this embodiment is that a jet ejector type refrigeration system 1 in which the whole is grounded E is provided in a high-pressure steam generator room 2, a low-pressure evaporation room 5, and a condensation room 4, respectively. The jet ejector main body 3 is provided upright on the upper part of the high-pressure steam generator chamber 2 toward the condensing chamber 4 while the conduit 7 having the float valve 8 and the conduit having the orifice 19 are provided. 18 and the overflow portions protruding into the condensing chamber 4, respectively, are formed in the shape of an inverted U-shaped tube 22 so as to face the front insulating coating electrode 15, while the exchange electric field 15KV
In order to apply AC, a neon transformer 23 of 100 VAC, 50-60 Hz is employed. Thus, the operation and effect based on the specific configuration are substantially the same as those of the present invention.

(実施例2) 第7図に示す如く本実施例の特徴は本発明装置とし
て、真空装置として使われる油拡散ポンプの構造を採用
せしめた点にあり、オリフィス24Aを各所に有するジェ
ット系24を介して超音速の蒸気噴流を得、水冷パイプ25
によって水冷されたポンプ容器の内壁で凝結固化せしめ
て高圧蒸気発生器室2に戻るようなサイクルに於いて、
ジェットエゼクタ本体3によって吸入口側10の低圧蒸発
室5内の冷媒蒸気を排出口側の凝縮室4内へ導くもので
あり、又、前記高圧蒸気発生器室2内の冷媒液W面上に
は浅川効果を発生させる絶縁被覆電極15を配設せしめて
ある。
(Embodiment 2) As shown in Fig. 7, the feature of this embodiment lies in that the structure of an oil diffusion pump used as a vacuum device is adopted as the device of the present invention, and a jet system 24 having orifices 24A at various places is provided. Supersonic steam jet through the water cooling pipe 25
In the cycle in which the water is cooled and condensed and solidified on the inner wall of the pump vessel and returned to the high-pressure steam generator chamber 2,
The jet ejector main body 3 guides the refrigerant vapor in the low-pressure evaporation chamber 5 on the suction port side 10 into the condensation chamber 4 on the discharge port side, and the refrigerant vapor W on the surface of the refrigerant liquid W in the high-pressure steam generator chamber 2. Has an insulating coating electrode 15 for generating the Asakawa effect.

然る際、前記ジェット系24によって噴射する冷媒液W
の方向が確定するので逆流の心配は全んど無い。而し
て、其の具体的構成に基く作用効果は本発明と略同一と
なる。
At that time, the refrigerant liquid W injected by the jet system 24
Since the direction of is determined, there is no worry about backflow. Thus, the operation and effect based on the specific configuration are substantially the same as those of the present invention.

(実施例3) 第8図に示す如く本実施例の特徴は、本発明装置とし
て分溜の考え方を利用した真空装置であるヒックマンポ
ンプの構造を採用せしめた点にある。即ち、第1、第
2、第3噴射ノズル(12A,12B,12c)から噴き出した油
等の冷媒蒸気はディフューザー9にて凝縮して液化せし
められ、第2ボイラー26B、第3ボイラー26C、第4ボイ
ラー26Dの夫々の蒸発した溜分は戻り管27を通して全部
第1ボイラー26Aへ戻すように成してある。又、蒸気戻
り管28の一端側28Aが高圧蒸気発生器室2側であり、高
真空側配管29側が低圧蒸発室5側であり、低真空側配管
30側が凝縮室4側に対応せしめられている。
(Embodiment 3) As shown in Fig. 8, the feature of the present embodiment lies in that the structure of the Hickman pump which is a vacuum apparatus utilizing the concept of fractionation is adopted as the apparatus of the present invention. That is, refrigerant vapor such as oil ejected from the first, second, and third injection nozzles (12A, 12B, 12c) is condensed and liquefied in the diffuser 9, and the second boiler 26B, the third boiler 26C, The evaporated fractions of the four boilers 26D are all returned to the first boiler 26A through the return pipe 27. One end 28A of the steam return pipe 28 is the high pressure steam generator chamber 2 side, the high vacuum side pipe 29 side is the low pressure evaporation chamber 5 side, and the low vacuum side pipe
The 30 side corresponds to the condensation chamber 4 side.

又、前記各ボイラー(26A,26B,26C,26D)内の液面上
に浅川効果を導く処の絶縁被覆電極15を夫々配設してあ
る。
Further, an insulating coating electrode 15 for guiding the Asakawa effect is provided on the liquid level in each of the boilers (26A, 26B, 26C, 26D).

而して、其の具体的構成に基く作用効果は本発明と略
同一となる。
Thus, the operation and effect based on the specific configuration are substantially the same as those of the present invention.

(効 果) 而して、本発明は下記の如き特有の効果を有する。特
に、本発明によるジェットエゼクタ式冷凍装置に基き、
低位熱入力を用いて連続的に冷却を行うことが出来、従
来の吸着式冷凍機に比し装置の簡便化と大幅な効率向上
という優れた効果を発揮し得、又装置のコストも低減可
能となり公害の発生も生じない。
(Effects) Thus, the present invention has the following specific effects. In particular, based on the jet ejector type refrigeration apparatus according to the present invention,
Cooling can be continuously performed using low heat input, which can achieve the excellent effects of simplified equipment and greatly improved efficiency compared to conventional adsorption refrigerators, and can reduce equipment costs. No pollution occurs.

【図面の簡単な説明】[Brief description of the drawings]

第1図乃至第5図は本発明装置を示すもので、第1図は
本発明方法の原理図であり、第2図はジェットエゼクタ
本体の原理を説明する断面図、第3図は絶縁被覆電極の
縦断面図、第4図はジェットエゼクタ本体のモリエル線
図であり、縦軸に圧力、横軸にエンタルピーを採ってあ
る。第5図は水の飽和曲線を示す状態図で、縦軸に圧
力、横軸に温度を採ってある。第6図は第一の実施例を
示すものである。第7図は第二の実施例を示すものであ
る。第8図は第三の実施例を示すものである。
1 to 5 show the apparatus of the present invention, FIG. 1 is a principle view of the method of the present invention, FIG. 2 is a sectional view for explaining the principle of the jet ejector body, and FIG. FIG. 4 is a Mollier diagram of the jet ejector body, in which the vertical axis represents pressure and the horizontal axis represents enthalpy. FIG. 5 is a state diagram showing a saturation curve of water, in which the vertical axis represents pressure and the horizontal axis represents temperature. FIG. 6 shows the first embodiment. FIG. 7 shows a second embodiment. FIG. 8 shows a third embodiment.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】所定量の冷媒液Wを封入した高圧蒸気発生
器室2と該高圧蒸気発生器室2から高圧の蒸気を受け入
れるジェットエゼクタ本体3と該ジェットエゼクタ本体
3による吸引力により低圧の蒸気が吸引される低圧蒸発
室5と前記ジェットエゼクタ本体3から噴出する中圧の
混合された蒸気を受け入れる凝縮室4と該凝縮室4で液
化された冷媒液Wを受け入れるように成した前記低圧蒸
発室5と高圧蒸気発生器室2と前記低圧蒸発室5に配設
した冷却器20とから成り、前記冷媒液Wのタイミング的
蒸気化または液化により被冷却室Vを冷却すべく成し、
前記高圧蒸気発生器室2、低圧蒸発室5内の冷媒液W面
上に蒸発を促進せしめる為の高電場発生用の絶縁被覆電
極15を配設したジェットエゼクタ式冷凍装置。
1. A high-pressure steam generator chamber 2 filled with a predetermined amount of refrigerant liquid W, a jet ejector main body 3 for receiving high-pressure steam from the high-pressure steam generator chamber 2, and a low-pressure steam generated by the suction force of the jet ejector main body 3. A low-pressure evaporating chamber 5 into which steam is sucked, a condensing chamber 4 for receiving medium-pressure mixed vapor ejected from the jet ejector body 3, and a low-pressure chamber for receiving the refrigerant liquid W liquefied in the condensing chamber 4. The cooling chamber 20 includes an evaporating chamber 5, a high-pressure steam generator chamber 2, and a cooler 20 disposed in the low-pressure evaporating chamber 5. The cooling chamber V is cooled by timing vaporization or liquefaction of the refrigerant liquid W.
A jet ejector type refrigeration system in which an insulating coating electrode 15 for generating a high electric field for promoting evaporation is disposed on the surface of the refrigerant liquid W in the high-pressure steam generator chamber 2 and the low-pressure evaporation chamber 5.
【請求項2】前記ジェットエゼクタ本体3に対して油拡
散ポンプの構造に置き替える請求項(1)記載のジェッ
トエゼクタ式冷凍装置。
2. The jet ejector type refrigeration system according to claim 1, wherein said jet ejector body 3 is replaced with an oil diffusion pump structure.
【請求項3】前記ジェットエゼクタ本体3に対してヒッ
クマンポンプの構造に置き替える請求項(1)記載のジ
ェットエゼクタ式冷凍装置。
3. A jet ejector type refrigeration system according to claim 1, wherein said jet ejector body 3 is replaced with a structure of a Hickman pump.
JP1172720A 1989-07-04 1989-07-04 Jet ejector refrigeration system Expired - Fee Related JP2604235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1172720A JP2604235B2 (en) 1989-07-04 1989-07-04 Jet ejector refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1172720A JP2604235B2 (en) 1989-07-04 1989-07-04 Jet ejector refrigeration system

Publications (2)

Publication Number Publication Date
JPH0339867A JPH0339867A (en) 1991-02-20
JP2604235B2 true JP2604235B2 (en) 1997-04-30

Family

ID=15947080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1172720A Expired - Fee Related JP2604235B2 (en) 1989-07-04 1989-07-04 Jet ejector refrigeration system

Country Status (1)

Country Link
JP (1) JP2604235B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102268283B1 (en) * 2020-01-06 2021-06-22 엘지전자 주식회사 Ejector and an Absorption type cooler and heater including the same
KR102267893B1 (en) * 2019-12-24 2021-06-23 한국에너지기술연구원 Cooling device using membrane and cooling method using same
KR102295566B1 (en) * 2020-10-26 2021-08-31 한국에너지기술연구원 Cooling system using ejector and membrane

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388050B1 (en) * 1995-11-30 2003-10-11 삼중테크 주식회사 Adsorption-type solution cycle making use of ejector
JP2848359B2 (en) * 1996-09-24 1999-01-20 住友電気工業株式会社 Ceramic terminal plate, hermetically sealed container for semiconductor, and composite semiconductor device
JP4666078B2 (en) * 2008-03-12 2011-04-06 株式会社デンソー Ejector
JP5620081B2 (en) 2009-09-28 2014-11-05 富士フイルム株式会社 Method for manufacturing photoelectric conversion element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184375U (en) * 1986-05-16 1987-11-24

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102267893B1 (en) * 2019-12-24 2021-06-23 한국에너지기술연구원 Cooling device using membrane and cooling method using same
KR102268283B1 (en) * 2020-01-06 2021-06-22 엘지전자 주식회사 Ejector and an Absorption type cooler and heater including the same
KR102295566B1 (en) * 2020-10-26 2021-08-31 한국에너지기술연구원 Cooling system using ejector and membrane
US20220128260A1 (en) * 2020-10-26 2022-04-28 Korea Institute Of Energy Research Cooling system using ejector and membrane
US11761668B2 (en) * 2020-10-26 2023-09-19 Korea Institute Of Energy Research Cooling system using ejector and membrane

Also Published As

Publication number Publication date
JPH0339867A (en) 1991-02-20

Similar Documents

Publication Publication Date Title
US8302425B2 (en) Regenerative adsorption system with a spray nozzle for producing adsorbate vapor and condensing desorbed vapor
CN110319613B (en) Single-stage carbon dioxide refrigerating system
JP2012510601A (en) Cooling method and cooling device
US7159407B2 (en) Atomized liquid jet refrigeration system
JP2604235B2 (en) Jet ejector refrigeration system
JPH0423185B2 (en)
KR101808167B1 (en) Refrigerating system with vacuum cooler
JP2002266656A (en) Gas turbine cogeneration system
CN1124456C (en) Thermal spray type refrigerating and heating system with separated heat tubes
JPH01105000A (en) Vacuum ejector device
CN1403763A (en) Refrigerating/heating latent-energy storing technology
Wang et al. Adsorption heat pump using an innovative coupling refrigeration cycle
KR101949679B1 (en) Refrigeration system of recycling wasted heat type
CN101694334B (en) Prevacuum jet evaporative refrigeration system
JPH08121911A (en) Absorption refrigerating machine utilizing engine exhaust heat
JP2011191032A (en) Compression refrigerating cycle
CN216204433U (en) Forced supercooling type condensing system
CN218645688U (en) Air conditioner refrigeration and heat supply unit based on siphon principle
CN218764104U (en) Novel hot gas and liquid return separator for refrigerating system
RU2690896C1 (en) Low-temperature absorption cooling machine based on a solution of salt in alcohols
CN1170126A (en) One pump, vertical pipe and downward film lithium bromide refrigeration technology
JP7145679B2 (en) Hybrid heat pump device
Biswas Numerical Modeling And Performance Analysis of A Solar Energy Based Single Bed Adsorption Refrigeration System
Wu Investigation of ejector re-compression absorption refrigeration cycle
KR0145972B1 (en) Low temperature absorptive airconditioner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees