JP2603430Y2 - Solar radiation detection sensor - Google Patents

Solar radiation detection sensor

Info

Publication number
JP2603430Y2
JP2603430Y2 JP1993043405U JP4340593U JP2603430Y2 JP 2603430 Y2 JP2603430 Y2 JP 2603430Y2 JP 1993043405 U JP1993043405 U JP 1993043405U JP 4340593 U JP4340593 U JP 4340593U JP 2603430 Y2 JP2603430 Y2 JP 2603430Y2
Authority
JP
Japan
Prior art keywords
solar radiation
photoelectric conversion
light receiving
receiving means
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1993043405U
Other languages
Japanese (ja)
Other versions
JPH0713516U (en
Inventor
英樹 須永
貴久 長友
久永 平林
Original Assignee
カルソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニック株式会社 filed Critical カルソニック株式会社
Priority to JP1993043405U priority Critical patent/JP2603430Y2/en
Publication of JPH0713516U publication Critical patent/JPH0713516U/en
Application granted granted Critical
Publication of JP2603430Y2 publication Critical patent/JP2603430Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、自動車用空気調和装置
の温度制御装置に用いられる日射検出センサに係り、特
に、車両の二方位からの斜め日射を検出する日射検出セ
ンサの改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar radiation detecting sensor used for a temperature control device of an air conditioner for a vehicle, and more particularly to an improvement of a solar radiation detecting sensor for detecting oblique solar radiation from two directions of a vehicle.

【0002】[0002]

【従来の技術】最近の自動車用空気調和装置は、外気温
度や内気温度の他に車両が受ける日射量を感知して車室
内の気温を所望の温度に自動調整する温度制御部を有し
ている。車室内にいる乗員の体感温度は、単に自動車用
空気調和装置からの吹出し温度のみでなく、日射量によ
っても変化するので、車両が受ける日射量を日射検出セ
ンサにより検知し、室温を微調整している。
2. Description of the Related Art Recent air conditioners for automobiles have a temperature control unit for automatically adjusting the temperature in a passenger compartment to a desired temperature by sensing the amount of solar radiation received by a vehicle in addition to the outside air temperature and the inside air temperature. I have. The sensible temperature of the occupant in the passenger compartment varies not only with the temperature of air blown from the air conditioner for the car but also with the amount of solar radiation, so the amount of solar radiation received by the vehicle is detected by the solar radiation detection sensor, and the room temperature is finely adjusted. ing.

【0003】しかし、太陽光の最も強い真上日射の場
合、斜め日射に比べて車室内に入る日射量は少なく、体
感温度にあまり影響しないので、日射検出センサの検出
出力のピークを真上日射のときには減衰させ、斜め日射
に合わせる必要がある。
However, in the case of direct sunlight having the strongest sunlight, the amount of sunlight entering the passenger compartment is smaller than that of oblique sunlight, and does not significantly affect the sensed temperature. In such cases, it is necessary to attenuate it and adjust to oblique solar radiation.

【0004】さらに、車室内の左右方向の温度調整を個
々に行う左右独立温調タイプの自動車用空気調和装置に
あっては、左右二方位からの斜め日射を個別に検出する
必要がある。また、前後二方位からの斜め日射のうちフ
ロントガラスを通して車室内に照射される日射が体感温
度に大きな影響を与えることから、前方からの斜め日射
も正確に検出する必要がある。
Further, in an air conditioner for a vehicle of a left and right independent temperature control type for individually adjusting the temperature in the left and right directions in a vehicle cabin, it is necessary to individually detect oblique solar radiation from two directions from left and right. In addition, among the diagonal solar radiations from the two front and rear directions, the solar radiation irradiated into the vehicle interior through the windshield greatly affects the sensed temperature, so that it is necessary to accurately detect diagonal solar radiation from the front.

【0005】そこで、例えば左右二方位の斜め日射を確
実に検出すべく、図8および図9に示すような二方位か
らの日射を検出する日射検出センサが提案されている。
Therefore, in order to reliably detect, for example, diagonal solar radiation in two directions, a solar radiation detection sensor for detecting solar radiation from two directions as shown in FIGS. 8 and 9 has been proposed.

【0006】図8に示す日射検出センサ10は、透明ま
たは半透明のカバー部11内に、2個の受光手段12
R、12Lをベース13上に水平方向に配置し、これら
受光手段12R、12Lの間の隙間19の中央に遮光板
14を立設して各受光手段12R、12Lを左右に分
け、一方を左側斜め日射を検出する左方検出受光手段1
2Lとし、他方を右側斜め日射を検出する右方検出受光
手段12Rとしている。
The solar radiation detecting sensor 10 shown in FIG. 8 includes two light receiving means 12 in a transparent or translucent cover portion 11.
R and 12L are horizontally arranged on a base 13, and a light shielding plate 14 is provided upright at the center of a gap 19 between the light receiving means 12R and 12L to divide each of the light receiving means 12R and 12L into left and right, and one of them is on the left side. Left detecting light receiving means 1 for detecting oblique solar radiation
2L, and the other is right-side detection light-receiving means 12R for detecting oblique right-sided solar radiation.

【0007】図9に示す日射検出センサ10aは、透明
または半透明のカバー部内11に、断面山形形状を有す
るベース15の各斜面15R、15Lのそれぞれに受光
手段12R、12Lを配置し、一方の斜面15Lに設け
た受光手段を左側斜め日射を検出する左方検出受光手段
12Lとし、他方の斜面15Rに設けた受光手段を右側
斜め日射を検出する右方検出受光手段12Rとしてい
る。
In the solar radiation detecting sensor 10a shown in FIG. 9, light receiving means 12R and 12L are disposed on a slope 15R and 15L of a base 15 having a mountain-shaped cross section in a transparent or translucent cover portion 11, respectively. The light receiving means provided on the slope 15L is a left detection light receiving means 12L for detecting left oblique sunlight, and the light receiving means provided on the other slope 15R is a right detection light receiving means 12R for detecting right oblique sunlight.

【0008】これらの日射検出センサ10、10aは、
車のダッシュボード等に載置されており、左方検出受光
手段12L及び右方検出受光手段12Rが受光した光量
に基づいて、日射強度の他、日射光の入射方向、入射角
度等の日射状態を算出し、この日射状態に基づいて車室
内に吹き出す空気温度の調整が行われるようになってい
る。
These solar radiation detecting sensors 10, 10a are:
Based on the amount of light received by the left detection light receiving means 12L and the right detection light receiving means 12R, it is placed on a dashboard or the like of the car, and the solar radiation state such as the incident direction and the incident angle of the solar light in addition to the solar radiation intensity. Is calculated, and the temperature of the air blown into the vehicle interior is adjusted based on the solar radiation state.

【0009】図示した受光手段12R、12Lのそれぞ
れは、半導体チップからなる光電変換素子16R(16
L)を一素子だけ導電性基板17上に取り付け、さらに
光電変換素子16R(16L)と導電性基板17とを透
明樹脂により封止したつまり樹脂モールドした構造を有
している。この透明樹脂により、保護体18が形成され
ている。このような受光手段12R、12Lは、その外
周の保護体18が樹脂からなることから、ベース13、
15が金属製であっても半田を用いて固定することがで
きないため、接着剤を用いてベース13、15上に固着
するようになっている。
Each of the illustrated light receiving means 12R and 12L has a photoelectric conversion element 16R (16
L) is mounted on the conductive substrate 17 by one element, and the photoelectric conversion element 16R (16L) and the conductive substrate 17 are sealed with a transparent resin, that is, resin-molded. The protective body 18 is formed by this transparent resin. Such light receiving means 12R and 12L have the base 13,
Even if the metal 15 is made of metal, it cannot be fixed using solder, so that it is fixed on the bases 13 and 15 using an adhesive.

【0010】[0010]

【考案が解決しようとする課題】上述した左右二方位か
らの日射を検出する従来の日射検出センサ10、10a
にあっては、光電変換素子16R(16L)が一素子だ
け封止された受光手段12R(12L)を2個配置しな
ければならないため、ベース13、15やカバー部11
が必然的に大きくなってしまい、日射検出センサ10、
10aの小型化を図ることができなかった。
SUMMARY OF THE INVENTION Conventional solar radiation detecting sensors 10, 10a for detecting solar radiation from the above-mentioned two directions.
In the case of (2), two light receiving means 12R (12L) in which only one photoelectric conversion element 16R (16L) is sealed must be arranged.
Becomes inevitably large, and the solar radiation detection sensor 10,
10a could not be reduced in size.

【0011】また、複数の受光手段12R、12Lを配
置した日射検出センサ10、10aでは、以下に詳述す
るように、測定精度の向上にも一定の限界があった。
Further, in the solar radiation detecting sensors 10 and 10a in which a plurality of light receiving means 12R and 12L are arranged, as described in detail below, there is a certain limit in improving the measurement accuracy.

【0012】つまり、図8に示した日射検出センサ10
では、2つの受光手段12R、12Lをベース13の水
平な上端面13aに接着剤で固着し、さらに隙間19の
中心に遮光板14を接着剤で固着しなければならず、遮
光板14の中心線を隙間19の中心線に一致させること
が困難であった。このため、遮光板14と右方の光電変
換素子16Rの距離と、遮光板14と左方の光電変換素
子16Lの距離とが等しくなるとは限らない。このた
め、遮光板14が日射光を遮光する光量が右方検出受光
手段12Rと左方検出受光手段12Lとで異なり、左右
の検出感度が非対称となってしまうことがあった。さら
に、個々の受光手段12R、12Lを固着する際の接着
剤の量の不均一等によって、個々の受光手段12R、1
2Lがベース13の同一平面13a上に取り付けられた
としても、各光電変換素子16R、16Lの受光面20
R、20Lが同一平面上に位置するとは限らず、この点
においても遮光板14の遮光量が光電変換素子16Rと
16Lとで相違することになり、左右の検出感度が非対
称となると共に、個々の日射検出センサごとに検出感度
のばらつきが生じていた。
That is, the solar radiation detecting sensor 10 shown in FIG.
In this case, the two light receiving means 12R and 12L must be fixed to the horizontal upper end surface 13a of the base 13 with an adhesive, and the light shielding plate 14 must be fixed to the center of the gap 19 with an adhesive. It was difficult to make the line coincide with the center line of the gap 19. Therefore, the distance between the light shielding plate 14 and the right photoelectric conversion element 16R is not always equal to the distance between the light shielding plate 14 and the left photoelectric conversion element 16L. For this reason, the right and left detection light receiving means 12R and 12L may differ in the amount of light that the light shielding plate 14 blocks the sunlight, and the left and right detection sensitivity may be asymmetric. Further, due to unevenness in the amount of the adhesive when the individual light receiving means 12R and 12L are fixed, etc., the individual light receiving means 12R and 12L
Even if 2L is mounted on the same plane 13a of the base 13, the light receiving surface 20 of each of the photoelectric conversion elements 16R, 16L
R and 20L are not necessarily located on the same plane. In this regard, the light shielding amount of the light shielding plate 14 is different between the photoelectric conversion elements 16R and 16L. The detection sensitivity varied among the solar radiation detection sensors.

【0013】図9に示した日射検出センサ10aでは、
受光手段12R、12Lが、断面山形形状の基板15の
2つの斜面15R、15L上に接着剤で固着されている
ため、右方の光電変換素子16Rの位置と、左方の光電
変換素子16Lの位置とが斜面方向に沿って多少ずれた
としても、検出感度が左右方向で非対称になる虞は少な
い。しかしながら、個々の受光手段12R、12Lを斜
面15R、15Lに接着剤を介して取り付ける構造であ
る以上、右方の光電変換素子16Rの受光面20Rがベ
ース15の底面15aとの間でなす傾斜角度と、左方の
光電変換素子16Lの受光面20Lが前記底面15aと
の間でなす傾斜角度とが等しいとは限らず、この傾斜角
度の相違に起因して、左右の検出感度が非対称となると
共に、個々の日射検出センサごとに検出感度のばらつき
が生じていた。
In the solar radiation detecting sensor 10a shown in FIG.
Since the light receiving means 12R and 12L are fixed on the two slopes 15R and 15L of the substrate 15 having a mountain-shaped cross section with an adhesive, the position of the right photoelectric conversion element 16R and the position of the left photoelectric conversion element 16L are determined. Even if the position slightly deviates along the slope direction, there is little possibility that the detection sensitivity becomes asymmetric in the left-right direction. However, since the individual light receiving means 12R and 12L are attached to the inclined surfaces 15R and 15L via an adhesive, the inclination angle formed between the light receiving surface 20R of the right photoelectric conversion element 16R and the bottom surface 15a of the base 15 Is not always equal to the inclination angle formed between the light receiving surface 20L of the left photoelectric conversion element 16L and the bottom surface 15a, and the left and right detection sensitivity becomes asymmetric due to the difference in the inclination angle. At the same time, the detection sensitivity varies among the individual solar radiation detection sensors.

【0014】このように、従来技術の受光手段を用いた
場合には、個々の日射検出センサ10、10aごとに検
出感度のばらつきがあるので、精度良く日射状態を検出
することができなかった。
As described above, when the light receiving means of the prior art is used, since the detection sensitivity varies among the individual solar radiation detecting sensors 10, 10a, the solar radiation state cannot be accurately detected.

【0015】図8に示した日射検出センサ10において
左右の検出感度のばらつきをなくすためには、上述した
ように、右方の光電変換素子16Rと左方の光電変換素
子16Lとの間の中間位置に遮光板14を精度良く取り
付けなければならず、ベース13に固定する作業が著し
く煩雑となり、また、接着剤による固定であるので固定
強度も十分なものではなかった。しかも、遮光板14を
2個の受光手段12R、12Lの間に設ける構造では、
部品点数そのものが増えるため、日射検出センサ10の
コストアップも招来する問題があった。
In order to eliminate variations in the left and right detection sensitivities in the solar radiation detection sensor 10 shown in FIG. 8, as described above, the intermediate position between the right photoelectric conversion element 16R and the left photoelectric conversion element 16L is used. The light-shielding plate 14 must be attached to the position with high precision, and the work of fixing the light-shielding plate 14 to the base 13 becomes extremely complicated, and the fixing strength is not sufficient because it is fixed by an adhesive. Moreover, in the structure in which the light shielding plate 14 is provided between the two light receiving units 12R and 12L,
Since the number of parts itself increases, the cost of the solar radiation detection sensor 10 also increases.

【0016】本考案は、上記従来技術に伴う課題を解決
するためになされたものであり、個々の日射検出センサ
ごとに検出感度のばらつきがなく、信頼性が高く、高精
度に日射状態を検出し得る日射検出センサを提供するこ
とを目的とする。
The present invention has been made in order to solve the problems associated with the prior art described above, and there is no variation in detection sensitivity among the individual solar radiation detection sensors, and the solar radiation state is detected with high reliability and high accuracy. It is an object of the present invention to provide a solar radiation detection sensor capable of performing the following.

【0017】[0017]

【課題を解決するための手段】上記目的を達成する請求
項1に記載の本考案は、光電変換素子が樹脂封止された
受光手段を平坦なベース上に固定してなる日射検出セン
サにおいて、前記受光手段は、日射光を受光して受光光
量に応じた光量信号を出力する半導体チップからなる少
なくとも2個の光電変換素子と、基準面に対して等しい
角度で傾斜する少なくとも2つの斜面部が形成され、こ
れら斜面部のそれぞれに前記光電変換素子のそれぞれが
取り付けられた基板と、を有し、前記複数個の光電変換
素子と前記基板とを日射光透過材料で封止して当該日射
光透過材料により保護体を形成したことを特徴とする日
射検出センサである。
According to a first aspect of the present invention, there is provided a solar radiation detecting sensor in which a light-receiving means in which a photoelectric conversion element is sealed with a resin is fixed on a flat base. The light receiving means includes at least two photoelectric conversion elements formed of a semiconductor chip for receiving sunlight and outputting a light amount signal corresponding to the amount of received light, and at least two slopes inclined at an equal angle with respect to a reference plane. Formed on each of the slope portions, the substrate having each of the photoelectric conversion elements attached thereto, and the plurality of photoelectric conversion elements and the substrate are sealed with a solar light transmitting material to form the solar light. This is a solar radiation detection sensor in which a protective body is formed from a transparent material.

【0018】[0018]

【0019】[0019]

【作用】半導体チップからなる光電変換素子は平坦性が
優れているため、光電変換素子を基準面に対して等しい
角度で傾斜する斜面部が設けられた基板に取り付けるだ
けで、各光電変換素子の受光面は、基準面に対して等し
い角度で傾斜することになる。このため、受光手段は光
電変換素子ごとに検出感度がばらつくことがなく、この
受光手段を備えた日射検出センサによれば、少なくとも
二方位からの斜め日射が対称的にかつ正確に検出され
る。また、1個の受光手段をベース上に固定するだけ
で、少なくとも二方位からの斜め日射を検出し得る日射
検出センサとなるため、センサの組み立ても容易にな
る。
The photoelectric conversion element made of a semiconductor chip has excellent flatness. Therefore, simply mounting the photoelectric conversion element on a substrate provided with a slope portion inclined at an equal angle with respect to a reference plane allows each photoelectric conversion element to be mounted. The light receiving surface will be inclined at an equal angle with respect to the reference surface. Therefore, the detection sensitivity of the light receiving means does not vary for each photoelectric conversion element, and according to the solar radiation detection sensor provided with the light receiving means, oblique solar radiation from at least two directions is detected symmetrically and accurately. In addition, simply fixing one light receiving means on the base provides a solar radiation detection sensor capable of detecting oblique solar radiation from at least two directions, so that the sensor can be easily assembled.

【0020】[0020]

【0021】[0021]

【実施例】以下、本考案の一実施例を図面に基づいて説
明する。図1は、本考案の一実施例に係る日射検出セン
サを示す概略構成図、図2は、図1に示される受光手段
の平面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a solar radiation detection sensor according to an embodiment of the present invention, and FIG. 2 is a plan view of a light receiving unit shown in FIG.

【0022】図1に示す日射検出センサ30は左右二方
位の斜め日射を検出するためのもであり、この日射検出
センサ30は、透明または半透明のカバー部31内に、
1個の受光手段32がベース33上に水平方向に配置さ
れている。
The solar radiation detecting sensor 30 shown in FIG. 1 is for detecting diagonal solar radiation in two directions, left and right. The solar radiation detecting sensor 30 is provided in a transparent or translucent cover portion 31.
One light receiving means 32 is arranged on the base 33 in the horizontal direction.

【0023】本実施例の受光手段32は、基板34上に
取り付けられた複数個の光電変換素子35R、35Lが
一体的に樹脂モールドされた構造となっている。詳述す
れば、この受光手段32は、図2に示すように、2個の
光電変換素子35R、35Lと、これら2個の光電変換
素子35R、35Lが分離帯39を介して配置され導電
ペースト等の導電材料を介して固着される基板34と、
該基板34と一体的に構成された第1リード部36a、
36bと、光電変換素子35R、35Lとボンディング
ワイヤーを介して接続される第2リード部37a、37
bとを有する。基板34には、光電変換素子35R、3
5Lをリード部36a、36b、37a、37bと電気
的に接続する回路がパターン印刷されている。そして、
これら光電変換素子35R、35L、基板34、リード
部36a、36b、37a、37bは、透明樹脂又は半
透明樹脂等の封止材料を加熱成形した保護体38により
封止され、一体となって固定されている。
The light receiving means 32 of this embodiment has a structure in which a plurality of photoelectric conversion elements 35R and 35L mounted on a substrate 34 are integrally molded with a resin. More specifically, as shown in FIG. 2, the light receiving means 32 includes two photoelectric conversion elements 35R, 35L, and a conductive paste in which the two photoelectric conversion elements 35R, 35L are arranged via a separation band 39. A substrate 34 fixed via a conductive material such as
A first lead portion 36a integrally formed with the substrate 34,
36b, and second lead portions 37a, 37 connected to the photoelectric conversion elements 35R, 35L via bonding wires.
b. The substrate 34 includes photoelectric conversion elements 35R, 3R,
A circuit for electrically connecting 5L to the leads 36a, 36b, 37a, 37b is printed on a pattern. And
The photoelectric conversion elements 35R, 35L, the substrate 34, and the leads 36a, 36b, 37a, 37b are sealed with a protective body 38 formed by heating and molding a sealing material such as a transparent resin or a translucent resin, and are integrally fixed. Have been.

【0024】前記保護体38を構成する透明樹脂又は半
透明樹脂は光を透過するので、光電変換素子35R、3
5Lは日射光を受光し、受光光量に応じた光量信号を出
力する。これら光電変換素子35R、35Lのそれぞれ
は半導体チップからなる電子部品であるため、厚みが等
しくかつ平坦性が極めて良好である。また、光電変換素
子35R、35Lが取り付けられる基板34も、平坦面
が精度良く形成された部品である。このため、光電変換
素子35R、35Lを基板34上に取り付けるだけで、
各々の光電変換素子35R、35Lの受光面47R、4
7L(図3参照)は基板34と平行をなす同一平面上に
位置することになる。また、光電変換素子35R、35
Lを取り付けるにあたっては、その取り付け位置を容易
に調整できるため、各光電変換素子35R、35Lを分
離帯39の中心線40と平行に、かつ、中心線40から
等距離の位置に容易に配置することができる。
Since the transparent resin or the translucent resin forming the protective body 38 transmits light, the photoelectric conversion elements 35R,
5L receives the solar light and outputs a light quantity signal corresponding to the received light quantity. Since each of the photoelectric conversion elements 35R and 35L is an electronic component made of a semiconductor chip, the thickness is equal and the flatness is extremely good. The substrate 34 to which the photoelectric conversion elements 35R and 35L are attached is also a component having a flat surface formed with high accuracy. Therefore, simply attaching the photoelectric conversion elements 35R and 35L on the substrate 34,
The light receiving surface 47R of each photoelectric conversion element 35R, 35L, 4
7L (see FIG. 3) is located on the same plane parallel to the substrate 34. Also, the photoelectric conversion elements 35R, 35R
When mounting L, since the mounting position can be easily adjusted, each photoelectric conversion element 35R, 35L is easily arranged at a position parallel to the center line 40 of the separation band 39 and equidistant from the center line 40. be able to.

【0025】前記リード部36a、36b、37a、3
7bによって、光電変換素子35R、35Lから出力さ
れる光量信号を伝達する信号伝達部材が構成されてい
る。これらリード部36a、36b、37a、37bは
保護体38から導出され、光量信号は、保護体38の外
部に設けられた温度制御部(図示せず)に入力される。
そして、温度制御部では、光電変換素子35R、35L
から出力される光量信号に基づいて所定の日射補正を行
い、乗員が快適に感じる温度に車室内の温度を制御す
る。
The lead portions 36a, 36b, 37a, 3
7b constitutes a signal transmission member that transmits a light amount signal output from the photoelectric conversion elements 35R and 35L. These leads 36a, 36b, 37a, and 37b are led out of the protection body 38, and the light amount signal is input to a temperature control unit (not shown) provided outside the protection body 38.
Then, in the temperature control unit, the photoelectric conversion elements 35R, 35L
A predetermined solar radiation correction is performed based on the light amount signal output from the vehicle, and the temperature in the vehicle cabin is controlled to a temperature at which the occupant feels comfortable.

【0026】本実施例の受光手段32にあってはさら
に、保護体38を成形する樹脂成形型に突部を設けるこ
とにより、あるいは、インサート成形することにより、
斜め日射を遮る遮光手段44が分離帯39の中心線40
に沿って保護体38と一体的に形成されるようになって
いる。
In the light receiving means 32 of the present embodiment, furthermore, a projection is provided on a resin molding die for molding the protection body 38 or by insert molding.
The light shielding means 44 for blocking oblique solar radiation is provided at the center line 40 of the separation band 39.
Along with the protection body 38.

【0027】つまり、図3(a)に示す遮光手段44
は、突部が設けられ樹脂成形型を使用して保護体38と
一体的に形成されるものであり、型の突部に対応した形
状を有する深溝45が中心線40に沿って、かつ、基板
34に対して直交するように形成されている。深溝45
により受光手段32が左右に分けられ、図中右側の光電
変換素子35Rは左側の斜め日射が遮光されて右側斜め
日射を検出する右方日射検出素子として機能し、図中左
側の光電変換素子35Lは右側の斜め日射が遮光されて
左側斜め日射を検出する左方日射検出素子として機能す
る。なお、深溝45中に、保護体38よりも屈折率の小
さい材料や、光を透過しない材料等で充填すれば、遮光
効果はより高まり左右の分離感度が増して好ましい。
That is, the light shielding means 44 shown in FIG.
Is formed integrally with the protection body 38 using a resin molding die provided with a protrusion, and a deep groove 45 having a shape corresponding to the protrusion of the die is formed along the center line 40, and It is formed so as to be orthogonal to the substrate 34. Deep groove 45
, The light receiving means 32 is divided into left and right, the right photoelectric conversion element 35R in the figure functions as a right sunlight detecting element for detecting the right oblique sunlight by blocking the left oblique sunlight, and the left photoelectric conversion element 35L in the figure. Functions as a left solar radiation detecting element for detecting oblique solar radiation on the left side while oblique solar radiation on the right is shielded. It is preferable to fill the deep groove 45 with a material having a lower refractive index than the protective body 38 or a material that does not transmit light, because the light shielding effect is further increased and the left and right separation sensitivity is increased.

【0028】一方、図3(b)に示す遮光手段44は、
深溝45に代えて、樹脂モールドの際に中心線40に沿
ってインサート成形された遮光板46により構成されて
いる。この場合にも、遮光板46により受光手段32が
左右に分けられ、図中右側の光電変換素子35Rは右方
日射検出素子として機能し、図中左側の光電変換素子3
5Lは左方日射検出素子として機能する。遮光板46は
保護体38や光電変換素子35R、35L等と一緒に封
止され一体的に固定されているため、遮光板14をベー
ス13上に立設した従来の日射検出センサ10と比較す
ると、衝撃や振動等に対して著しく強度が向上する。
On the other hand, the light shielding means 44 shown in FIG.
Instead of the deep groove 45, the light shielding plate 46 is formed by insert molding along the center line 40 at the time of resin molding. Also in this case, the light receiving means 32 is divided into right and left by the light shielding plate 46, the photoelectric conversion element 35R on the right side in the figure functions as a right solar radiation detecting element, and the photoelectric conversion element 3 on the left side in the figure.
5L functions as a left solar radiation detecting element. Since the light shielding plate 46 is sealed and integrally fixed together with the protective body 38 and the photoelectric conversion elements 35R, 35L, etc., compared with the conventional solar radiation detection sensor 10 in which the light shielding plate 14 is erected on the base 13, In addition, the strength is remarkably improved against impact, vibration and the like.

【0029】保護体38の上端面および下端面は、光電
変換素子35R、35Lの受光面47R、47Lと平行
をなすように成形されている。そして、受光手段32
は、その保護体38の下端面を接着剤等を介してベース
33上に固定してある。
The upper end surface and the lower end surface of the protective body 38 are formed so as to be parallel to the light receiving surfaces 47R, 47L of the photoelectric conversion elements 35R, 35L. And the light receiving means 32
The lower end surface of the protective body 38 is fixed on the base 33 via an adhesive or the like.

【0030】上記構成の受光手段32によれば、まず、
寸法精度の高い半導体チップからなる光電変換素子35
R、35Lを精度良く加工可能な基板34上に直接配置
することができるため、分離帯39の中心線40に対す
る各光電変換素子35R、35Lの取り付け位置の精度
が著しく高まり、各光電変換素子35R、35Lの受光
面47R、47Lも同一平面上に配置されることにな
る。このような光電変換素子35R、35Lの取り付け
位置精度の向上に加えて、さらに、精度良く形成できる
樹脂成形型を用いた樹脂モールドの際に遮光手段44
(45、46)が前記中心線40に沿って保護体38と
一体的に形成されるため、遮光板14を2個の光電変換
素子12R、12Lの中間位置でベース13上に取り付
ける従来例に比べると、遮光手段44の中心線と分離帯
39の中心線40とを精度良く一致させることが容易で
あり、また、受光面47R、47Lに対して垂直をなす
ように設けることができる。
According to the light receiving means 32 having the above structure, first,
Photoelectric conversion element 35 composed of a semiconductor chip with high dimensional accuracy
Since R and 35L can be directly arranged on the substrate 34 that can be processed with high precision, the accuracy of the mounting position of each of the photoelectric conversion elements 35R and 35L with respect to the center line 40 of the separation band 39 is significantly increased, and each of the photoelectric conversion elements 35R , 35L are also arranged on the same plane. In addition to the improvement of the mounting position accuracy of the photoelectric conversion elements 35R and 35L, the light shielding means 44 is used in a resin molding using a resin mold that can be formed with high accuracy.
Since (45, 46) is formed integrally with the protective body 38 along the center line 40, the light shielding plate 14 is mounted on the base 13 at an intermediate position between the two photoelectric conversion elements 12R and 12L. By comparison, the center line of the light shielding means 44 and the center line 40 of the separation band 39 can be easily matched with high accuracy, and the light receiving surfaces 47R and 47L can be provided so as to be perpendicular to the light receiving surfaces 47R and 47L.

【0031】したがって、右側の光量変換素子35Rと
遮光手段44との距離VR と、左側の光量変換素子35
Lと遮光手段44との距離VL を容易に等しくすること
ができ、遮光手段44の遮光量が左右の光電変換素子3
5Rと35Lとで相違せず、図4に示される特性線図か
ら明らかなように、左右の検出感度が対称となる。しか
も、個々の受光手段32ごとの検出特性(例えば検出ピ
ーク等)のばらつきが極めて小さくなり、これを組み付
けた日射検出センサ30によれば、日射状態を精度良く
かつ均一に検出することが可能となる。
Therefore, the distance VR between the right light quantity conversion element 35R and the light shielding means 44 and the left light quantity conversion element 35R
L and the distance VL between the light shielding means 44 can be easily equalized, and the light shielding amount of the light
There is no difference between 5R and 35L, and the left and right detection sensitivities are symmetric as is clear from the characteristic diagram shown in FIG. In addition, variations in detection characteristics (for example, detection peaks) of the individual light receiving means 32 are extremely small. According to the solar radiation detection sensor 30 in which this is assembled, it is possible to accurately and uniformly detect the solar radiation state. Become.

【0032】また、日射検出センサ30の組み立ては、
2個の光電変換素子35R、35Lが組み込まれると共
に遮光手段44が一体的に形成された1個の受光手段3
2をベース33上に固着するだけでよい。このため、1
個の受光手段32をベース33に取り付ける際の精度を
管理するだけで一定の検出精度を確保することができ、
さらに、部品点数の削減をも通して組立作業が容易にな
り、コスト的にも優れたものとなる。
The assembling of the solar radiation detecting sensor 30 is as follows.
One light receiving unit 3 in which two photoelectric conversion elements 35R and 35L are incorporated and a light shielding unit 44 is integrally formed.
2 only needs to be fixed on the base 33. Therefore, 1
A fixed detection accuracy can be ensured only by managing the accuracy when attaching the light receiving means 32 to the base 33,
Further, the assembling work is facilitated through the reduction of the number of parts, and the cost is excellent.

【0033】なお、3個以上の光電変換素子を分離帯3
9を介して配置し、各々の分離帯39に上述した構成の
遮光手段44を設けることにより、3方向以上の複数の
方向からの日射状態を精度良く検出することも可能であ
る。
It is to be noted that three or more photoelectric conversion elements are
By arranging the light-blocking members 9 through the light-shielding members 9 and providing the light-shielding means 44 having the above-described configuration in each of the separation bands 39, it is also possible to accurately detect the state of solar radiation from a plurality of directions of three or more.

【0034】図5は、他の実施例に係る日射検出センサ
の受光手段を示す斜視図であり、図6は、図5に示す受
光手段の断面図である。この実施例の日射検出センサ3
0aも左右二方位の斜め日射を検出するためのもであ
り、上述した日射検出センサ30と同様に、透明または
半透明のカバー部31内に、1個の受光手段50がベー
ス33上に水平方向に配置されている。この受光手段5
0の基板51は、図5に示すように、長手方向の中央部
分で折り曲げられて2つの斜面部51R、51Lが形成
され、凸部を上面に向けて配置されている。2つの斜面
部51R、51Lの斜距離は、光電変換素子35R、3
5Lの長さよりも大きい寸法を有する。斜面部51R、
51Lの下端には、第1リード部36a、36bが基板
51と一体的に構成されており、これら第1リード部3
6a、36bは同一平面上に位置する様に配置されてい
る。また、光電変換素子35R、35Lとボンディング
ワイヤーを介して接続される第2リード部37a、37
bは、斜面部51R、51Lの側方近傍に当該斜面部5
1R、51Lの位置する傾斜面と同一平面上に傾斜して
配置された傾斜部52と、前記第1リード部36a、3
6bの位置する平面と同一平面上に配置された平坦部5
3とから構成される。ボンディングワイヤーは、第2リ
ード部37a、37bの傾斜部52に接続される。そし
て、これら光電変換素子35R、35L、斜面部51
R、51Lを有する基板51、リード部36a、36
b、37a、37bは、透明樹脂又は半透明樹脂等の封
止材料を加熱成形した保護体54により封止され、一体
となって固定されている。
FIG. 5 is a perspective view showing the light receiving means of the solar radiation detecting sensor according to another embodiment, and FIG. 6 is a sectional view of the light receiving means shown in FIG. Insolation detection sensor 3 of this embodiment
0a is also for detecting diagonal solar radiation in two directions, left and right. As in the case of the above-mentioned solar radiation detection sensor 30, one light receiving means 50 is placed horizontally on the base 33 in the transparent or translucent cover portion 31. It is arranged in the direction. This light receiving means 5
As shown in FIG. 5, the zero substrate 51 is bent at a central portion in the longitudinal direction to form two slopes 51R and 51L, and is disposed with the convex portion facing the upper surface. The oblique distance between the two slope portions 51R and 51L is determined by the photoelectric conversion elements 35R and
It has dimensions larger than 5L in length. Slope part 51R,
At the lower end of 51L, first lead portions 36a and 36b are integrally formed with the substrate 51.
6a and 36b are arranged so as to be located on the same plane. Further, the second lead portions 37a, 37 connected to the photoelectric conversion elements 35R, 35L via bonding wires.
b is the slope 5R near the side of the slopes 51R and 51L.
The first lead portions 36a, 3d,
Flat part 5 arranged on the same plane as the plane on which 6b is located
And 3. The bonding wires are connected to the inclined portions 52 of the second lead portions 37a and 37b. The photoelectric conversion elements 35R and 35L and the slope 51
R, 51L, substrate 51, lead portions 36a, 36
b, 37a, and 37b are sealed by a protective body 54 formed by heating and molding a sealing material such as a transparent resin or a translucent resin, and are integrally fixed.

【0035】日射検出センサ30aの断面を示す図6に
おいて、符号「55」は一の基準平面を示している。基
板51は、一方の斜面部51Rと基準平面55とのなす
角度αR と、他方の斜面部51Lと基準平面55とのな
す角度αL とが等しくなるように形成されている。とこ
ろで、半導体チップである光電変換素子35R、35L
の受光面47R、47Lと底面は平行であるので、斜面
部51R、51Lに受光手段50を固着させれば、一方
の光電変換素子35Rの受光面47Rが位置する平面が
基準平面55となす角度は前記αR と等しくなり、他方
の光電変換素子35Lの受光面47Lが位置する平面と
基準平面55とのなす角度は前記αL と等しくなり、結
果的に、各光電変換素子35R、35Lの基準平面55
に対する傾斜角度は、等しくなる。
In FIG. 6 showing a cross section of the solar radiation detection sensor 30a, reference numeral "55" indicates one reference plane. The substrate 51 is formed such that an angle αR between one slope 51R and the reference plane 55 is equal to an angle αL between the other slope 51L and the reference plane 55. By the way, the photoelectric conversion elements 35R and 35L, which are semiconductor chips,
Since the light receiving surfaces 47R and 47L are parallel to the bottom surface, if the light receiving means 50 is fixed to the slope portions 51R and 51L, the angle at which the plane on which the light receiving surface 47R of one photoelectric conversion element 35R is located forms the reference plane 55. Is equal to the aforementioned αR, and the angle between the plane on which the light receiving surface 47L of the other photoelectric conversion element 35L is located and the reference plane 55 is equal to the aforementioned αL. As a result, the reference plane of each of the photoelectric conversion elements 35R and 35L is 55
Are equal.

【0036】保護体54の上端面および下端面は、基準
平面55と平行をなすように成形されている。そして、
受光手段50は、その保護体54の下端面を接着剤等を
介してベース33上に固定してある。
The upper end surface and the lower end surface of the protective body 54 are formed so as to be parallel to the reference plane 55. And
The light receiving means 50 has the lower end surface of the protective body 54 fixed on the base 33 via an adhesive or the like.

【0037】このような受光手段50によっても、寸法
精度の高い半導体チップからなる光電変換素子35R、
35Lを精度良く加工可能な基板51上に直接配置する
ことができることから、基板51に対する光電変換素子
35R、35Lの取り付け位置の精度が著しく高まり、
各光電変換素子35R、35Lの受光面47R、47L
の基準平面55に対する傾斜角度も等しくなる。光電変
換素子35R、35Lの取り付け位置の精度向上に加え
て、さらに、精度良く形成できる樹脂成形型を用いた樹
脂モールドの際に各光電変換素子35R、35Lが保護
体54により一体的に封止されるため、図9の従来例の
ごとく2個の受光手段12R、12Lのそれぞれを斜面
部15R、15L上に取り付ける場合に比べると、受光
面47R、47Lの基準平面55に対する傾斜角度は均
一なものとなる。したがって、保護体54の底面及びベ
ースの上面を基準平面55と平行になるように水平に形
成し、一方の光電変換素子35Rを右側に向け、他方の
光電変換素子35Lを左側に向けて受光手段50をベー
ス33上に取り付けるだけで、図7に示される特性線図
から明らかなように、左右の検出感度が対称となり、車
両左側からの日射と右側からの日射とを対称的に精度良
く検出することができる。しかも、個々の受光手段50
ごとの検出特性(例えば検出ピーク等)のばらつきが極
めて小さく、日射状態を精度良くかつ均一に検出するこ
とが可能となる。
Even with such a light receiving means 50, a photoelectric conversion element 35R made of a semiconductor chip having high dimensional accuracy can be used.
Since the 35L can be directly disposed on the substrate 51 that can be processed with high accuracy, the accuracy of the mounting position of the photoelectric conversion elements 35R and 35L with respect to the substrate 51 is significantly increased,
Light receiving surface 47R, 47L of each photoelectric conversion element 35R, 35L
Are also equal to the reference plane 55. In addition to improving the accuracy of the mounting position of the photoelectric conversion elements 35R and 35L, the respective photoelectric conversion elements 35R and 35L are integrally sealed by the protective body 54 at the time of resin molding using a resin mold that can be formed with high accuracy. Therefore, the inclination angles of the light receiving surfaces 47R and 47L with respect to the reference plane 55 are more uniform than when the two light receiving units 12R and 12L are mounted on the inclined surfaces 15R and 15L as in the conventional example of FIG. It will be. Therefore, the bottom surface of the protection body 54 and the top surface of the base are formed horizontally so as to be parallel to the reference plane 55, and one of the photoelectric conversion elements 35R is directed to the right and the other photoelectric conversion element 35L is directed to the left. By simply mounting 50 on the base 33, as is clear from the characteristic diagram shown in FIG. 7, the left and right detection sensitivities are symmetric, and the insolation from the left side of the vehicle and the insolation from the right side are accurately detected symmetrically. can do. Moreover, the individual light receiving means 50
The variation in the detection characteristics (for example, the detection peak) for each is extremely small, and the solar radiation state can be accurately and uniformly detected.

【0038】また、日射検出センサ30aの組み立て
は、2個の光電変換素子35R、35Lが傾斜して組み
込まれた1個の受光手段50をベース33上に配置する
だけでよいため、1個の受光手段50をベース33に取
り付ける際の精度を管理するだけで一定の検出精度を確
保することができ、さらに、部品点数の削減をも通して
組立作業が容易になり、コスト的にも優れたものとな
る。
The solar radiation detection sensor 30a can be assembled only by disposing one light receiving means 50 in which the two photoelectric conversion elements 35R and 35L are incorporated in an inclined manner on the base 33. A fixed detection accuracy can be ensured only by managing the accuracy at the time of attaching the light receiving means 50 to the base 33, and the assembly work is facilitated by reducing the number of parts, and the cost is excellent. It will be.

【0039】なお、基準平面55に対して等しい角度で
傾斜する3面以上の傾斜部を基板51に形成し、各傾斜
部に光電変換素子を設けることにより、3方向以上の複
数の方向からの日射状態を精度良く検出することも可能
である。
It is to be noted that three or more inclined portions inclined at the same angle with respect to the reference plane 55 are formed on the substrate 51, and each inclined portion is provided with a photoelectric conversion element, so that a plurality of directions from three or more directions can be obtained. It is also possible to accurately detect the solar radiation state.

【0040】[0040]

【考案の効果】以上説明した様に、本考案によれば、1
個の受光手段だけをベース上に固定するだけで、少なく
とも二方位からの斜め日射を検出し得る日射検出センサ
となるため、センサの組み立てが容易になる。
[Effects of the Invention] As described above, according to the present invention, 1
By fixing only the light receiving means on the base, a solar radiation detecting sensor capable of detecting oblique solar radiation from at least two directions is provided, so that assembly of the sensor is facilitated.

【0041】更に、受光手段はその光電変換素子ごとに
検出感度がばらつくことがなく、この受光手段を備えた
日射検出センサによれば、少なくとも二方位からの斜め
日射を対称的にかつ高精度に検出することが可能とな
る。
Further, the detection sensitivity of the light receiving means does not vary for each photoelectric conversion element, and according to the solar radiation detection sensor provided with the light receiving means, oblique solar radiation from at least two directions can be detected symmetrically and with high accuracy. It becomes possible to detect.

【0042】[0042]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本考案の一実施例に係る日射検出センサを示
す概略構成図である。
FIG. 1 is a schematic configuration diagram illustrating a solar radiation detection sensor according to an embodiment of the present invention.

【図2】 図1に示される受光手段の平面図である。FIG. 2 is a plan view of the light receiving unit shown in FIG.

【図3】 図3(a)(b)は遮光手段の例を示す断面
図である。
FIGS. 3A and 3B are cross-sectional views showing examples of light shielding means.

【図4】 図1〜図3に示される受光手段の特性線図で
ある。
FIG. 4 is a characteristic line diagram of the light receiving unit shown in FIGS.

【図5】 他の実施例に係る日射検出センサの受光手段
を示す斜視図である。
FIG. 5 is a perspective view showing a light receiving unit of a solar radiation detection sensor according to another embodiment.

【図6】 図5に示す受光手段の断面図である。FIG. 6 is a sectional view of the light receiving unit shown in FIG.

【図7】 図5、図6に示される受光手段の特性線図で
ある。
FIG. 7 is a characteristic diagram of the light receiving unit shown in FIGS. 5 and 6;

【図8】 従来の日射検出センサの一例を示す概略構成
図である。
FIG. 8 is a schematic configuration diagram illustrating an example of a conventional solar radiation detection sensor.

【図9】 従来の日射検出センサの他の例を示す概略構
成図である。
FIG. 9 is a schematic configuration diagram illustrating another example of a conventional solar radiation detection sensor.

【符号の説明】[Explanation of symbols]

32、50…受光手段、 33…ベー
ス、34、51…基板、 38、
54…保護体、35(35R、35L)…光電変換素
子、 39…分離帯、40…分離帯の中心線、
44(45、46)…遮光手段、51R、5
1L…斜面部、 55…基準面。
32, 50: light receiving means, 33: base, 34, 51: substrate, 38,
54: protector, 35 (35R, 35L): photoelectric conversion element, 39: separation band, 40: center line of separation band,
44 (45, 46): light shielding means, 51R, 5
1L: slope, 55: reference plane.

フロントページの続き (56)参考文献 実開 平4−38532(JP,U) (58)調査した分野(Int.Cl.7,DB名) B60H 1/00 101 Continuation of the front page (56) References JP-A-4-38532 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) B60H 1/00 101

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 光電変換素子が樹脂封止された受光手段
(50)を平坦なベース(33)上に固定してなる日射検出セン
サにおいて、 前記受光手段(50)は、 日射光を受光して受光光量に応じた光量信号を出力する
半導体チップからなる少なくとも2個の光電変換素子(3
5R、35L)と、 基準面(55)に対して等しい角度で傾斜する少なくとも2
つの斜面部(51R、51L)が形成され、これら斜面部(51R、
51L)のそれぞれに前記光電変換素子(35R、35L)のそれぞ
れが取り付けられた基板(51)と、を有し、 前記複数個の光電変換素子(35R、35L)と前記基板(51)と
を日射光透過材料で封止して当該日射光透過材料により
保護体(54)を形成したことを特徴とする日射検出セン
サ。
1. A light receiving means in which a photoelectric conversion element is resin-sealed.
In the solar radiation detection sensor having (50) fixed on a flat base (33), the light receiving means (50) comprises at least a semiconductor chip which receives solar radiation and outputs a light quantity signal corresponding to the received light quantity. Two photoelectric conversion elements (3
5R, 35L) and at least two inclined at equal angles to the reference plane (55)
Two slopes (51R, 51L) are formed, and these slopes (51R, 51R) are formed.
51L), a substrate (51) having each of the photoelectric conversion elements (35R, 35L) attached thereto, and the plurality of photoelectric conversion elements (35R, 35L) and the substrate (51). A solar radiation detection sensor characterized by being sealed with a solar light transmissive material and forming a protective body (54) with the solar light transmissive material.
JP1993043405U 1993-08-06 1993-08-06 Solar radiation detection sensor Expired - Lifetime JP2603430Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1993043405U JP2603430Y2 (en) 1993-08-06 1993-08-06 Solar radiation detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1993043405U JP2603430Y2 (en) 1993-08-06 1993-08-06 Solar radiation detection sensor

Publications (2)

Publication Number Publication Date
JPH0713516U JPH0713516U (en) 1995-03-07
JP2603430Y2 true JP2603430Y2 (en) 2000-03-13

Family

ID=12662855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1993043405U Expired - Lifetime JP2603430Y2 (en) 1993-08-06 1993-08-06 Solar radiation detection sensor

Country Status (1)

Country Link
JP (1) JP2603430Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005011053A1 (en) * 2005-03-10 2006-09-21 Preh Gmbh Sun sensor in MID technology
KR102298884B1 (en) * 2017-02-14 2021-09-07 현대자동차주식회사 Sensor assembly for detecting solar insolation for a vehicle and Air conditioning system having the same

Also Published As

Publication number Publication date
JPH0713516U (en) 1995-03-07

Similar Documents

Publication Publication Date Title
JP4134912B2 (en) Photodetector
US6297740B1 (en) Solar radiation sensor
US7115850B2 (en) Sensor device with three-dimensional switch carrier having differently oriented infrared photodetectors
JPS63176A (en) Composite type photosensor
EP0838665A1 (en) Optical displacement detecting apparatus
WO1994011703A1 (en) Pyrheliometric sensor
US6888120B2 (en) Sunload sensor for automotive vehicles
JP3003479B2 (en) Solar radiation sensor
JP2603430Y2 (en) Solar radiation detection sensor
US6495814B1 (en) Photo sensor with signal processing circuit
US5065015A (en) Solar radiation sensor for use in an automatic air conditioner
KR20100049677A (en) Solar sensor for the detection of the direction of incidence and the intensity of solar radiation
US6526820B1 (en) Rain sensor with bonded chips
JP2001091353A (en) Insolation sensor
JP2582494Y2 (en) Solar radiation detection sensor for automotive air conditioners
JP2606818Y2 (en) Automotive solar radiation detection sensor
JP2735249B2 (en) Solar radiation detector for automotive air conditioners
JP2572754Y2 (en) Bidirectional solar radiation detection sensor for automotive air conditioners
US20040211890A1 (en) Positional encoder assembly
US20020024000A1 (en) Photosensor having shading member between optical lens and light sensing element
JP2582493Y2 (en) Solar radiation detection sensor for automotive air conditioners
CN218002700U (en) Vehicle-mounted sunlight sensor and sensing device
JP2002013979A (en) Assembling method for light shielding plate in on-vehicle light detector
JP2597108Y2 (en) Solar radiation detection sensor for automotive air conditioners
JPH07120314A (en) Sunshine sensor