JP2600714B2 - Double tube refrigerator - Google Patents

Double tube refrigerator

Info

Publication number
JP2600714B2
JP2600714B2 JP62246839A JP24683987A JP2600714B2 JP 2600714 B2 JP2600714 B2 JP 2600714B2 JP 62246839 A JP62246839 A JP 62246839A JP 24683987 A JP24683987 A JP 24683987A JP 2600714 B2 JP2600714 B2 JP 2600714B2
Authority
JP
Japan
Prior art keywords
pulse tube
regenerator
tube
refrigerator
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62246839A
Other languages
Japanese (ja)
Other versions
JPS6490964A (en
Inventor
英文 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP62246839A priority Critical patent/JP2600714B2/en
Publication of JPS6490964A publication Critical patent/JPS6490964A/en
Application granted granted Critical
Publication of JP2600714B2 publication Critical patent/JP2600714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1406Pulse-tube cycles with pulse tube in co-axial or concentric geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1412Pulse-tube cycles characterised by heat exchanger details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1419Pulse-tube cycles with pulse tube having a basic pulse tube refrigerator [PTR], i.e. comprising a tube with basic schematic

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、パルスチューブを利用して100K以下の極低
温を実現するパルスチューブ型の二重管冷凍機に関す
る。
Description: TECHNICAL FIELD The present invention relates to a pulse tube type double-tube refrigerator that realizes extremely low temperature of 100 K or less by using a pulse tube.

[従来の技術] 現在、常用される極低温冷凍機の基本原理は、高温
(常温)で圧縮したガスを低温で膨張させ冷却ガスを発
生させるというものである。そして、その際の共通した
手段として、可動要素をもって膨張室容積を増減させ、
ガスを膨張させることが行なわれる。
[Prior Art] The basic principle of a cryogenic refrigerator currently used at present is to generate a cooling gas by expanding a gas compressed at a high temperature (normal temperature) at a low temperature. And as a common means at that time, the volume of the expansion chamber is increased or decreased with a movable element,
Inflating the gas is performed.

しかし、容積増減の目的で極低温下に機械的な運動を
営ませる機構では、次のような諸点で解決し難い欠点を
伴うことが不可避となる。具体的には、振動を発生す
ること、機構が複雑化しコストアップすること、摩
耗等の装置寿命阻害要因を除去し得ないこと、低温で
のシールが難しいこと、等である。
However, a mechanism that exercises mechanical movement under cryogenic temperature for the purpose of increasing or decreasing the volume inevitably has drawbacks that are difficult to solve in the following points. Specifically, vibrations are generated, the mechanism is complicated and the cost is increased, it is not possible to eliminate factors such as abrasion and the like that hinder the device life, and it is difficult to seal at low temperatures.

そこで、極低温下で可動部を一切持たないものが指向
される訳であるが、このような要求に合致するガス膨張
要素として、パルスチューブ(Pulse tube)が知られ
る。パルスチューブは、それ自身は薄肉のステンレス細
管等で形成される構造単純なものであるが、その内部に
ガスを導入して往復動させると、温度勾配を形成しガス
導入側に低温端を反対側に高温端をつくり出す。このよ
うな熱交換機能は、パルスチューブ内に導入された圧力
パルスがガス・ピストンを形成して断熱圧縮、膨張作用
を果すためと考えられる。
Therefore, a device having no movable part at cryogenic temperature is intended. A pulse tube is known as a gas expansion element meeting such a requirement. The pulse tube itself has a simple structure made of thin stainless steel thin tubes, etc., but when a gas is introduced inside and reciprocated, a temperature gradient is formed and the low-temperature end is opposed to the gas introduction side. Create a hot end on the side. Such a heat exchange function is considered to be because the pressure pulse introduced into the pulse tube forms a gas piston to perform adiabatic compression and expansion functions.

しかして、近年、このパルスチューブとリジェネレー
タとを組合わせた小型極低温冷凍機が提案されている。
この冷凍機の構造を第4図に示す。このものは、パルス
チューブ1の低温端1aとリジェネレータ2の低温端2aと
を吸熱部3を介して連通し、圧縮機(ピストン)4から
ガス通路5を通してリジェネレータ2の高温端2b側に供
給されるガスを、該リジェネレータ2及び吸熱部3を介
しパルスチューブ1の低温端1aから高温端1b側に向けて
導入するように構成される。その他、図において、6は
リジェネレータ高温端2bに接続するガス通路5に設けた
放熱部(アフタークーラ)、7はパルスチューブ高温端
1bに設けた放熱部(熱交換器)であり、8はこれらの放
熱部6、7を構成する冷却水管を示している。
In recent years, a small cryogenic refrigerator having a combination of the pulse tube and the regenerator has been proposed.
FIG. 4 shows the structure of this refrigerator. The low-temperature end 1a of the pulse tube 1 and the low-temperature end 2a of the regenerator 2 communicate with each other through the heat absorbing portion 3, and the compressor (piston) 4 passes through the gas passage 5 to the high-temperature end 2b of the regenerator 2. The supplied gas is configured to be introduced from the low-temperature end 1a of the pulse tube 1 to the high-temperature end 1b through the regenerator 2 and the heat absorbing section 3. In addition, in the figure, 6 is a heat radiating portion (after cooler) provided in the gas passage 5 connected to the regenerator high temperature end 2b, and 7 is a pulse tube high temperature end.
A heat radiator (heat exchanger) provided in 1b, and 8 denotes a cooling water pipe constituting these heat radiators 6 and 7.

この冷凍機の作動は、以下の様である。今、ピストン
4を押し込むと、ガスはリジェネレータ2の内部を通り
予冷されながら吸熱部3及びパルスチューブ低温端1aに
入る。そして、パルスチューブ1の低温端1aに導入され
た高圧ガスは、その中に残留するガスを高温端1bに向け
て圧縮する。このときパルスチューブ1内のガスは、断
熱圧縮を受けて温度上昇しながら温度勾配のある同チュ
ーブ1内を移動する。そして、圧縮後のガスはパルスチ
ューブ高温端1bの放熱部7に入り、ここで放熱して冷却
される。次いで、ピストン4を引き上げると、放熱部7
で熱を放出したガスはパルスチューブ1内で断熱膨張し
低温に降下してから、吸熱部3及びリジェネレータ2を
冷やし込みながら戻される。そして、このようなサイク
ルを繰り返すことで、その吸熱部3に100K以下の極低温
を得ることができる。
The operation of this refrigerator is as follows. Now, when the piston 4 is pushed in, the gas enters the heat absorbing section 3 and the low temperature end 1a of the pulse tube while being precooled through the inside of the regenerator 2. Then, the high-pressure gas introduced into the low temperature end 1a of the pulse tube 1 compresses the gas remaining therein toward the high temperature end 1b. At this time, the gas in the pulse tube 1 moves through the tube 1 having a temperature gradient while undergoing adiabatic compression and rising in temperature. Then, the compressed gas enters the heat radiating portion 7 at the high temperature end 1b of the pulse tube, where it is radiated and cooled. Next, when the piston 4 is pulled up, the radiator 7
The gas that has released the heat in step (1) adiabatically expands in the pulse tube 1 and drops to a low temperature, and then is returned while cooling the heat absorbing section 3 and the regenerator 2. Then, by repeating such a cycle, an extremely low temperature of 100 K or less can be obtained in the heat absorbing portion 3.

以上のように、パルスチューブ型冷凍機では、極低温
下に可動部を保有せずに小型極低温冷凍機を実現できる
のが大きな特徴である。
As described above, the pulse tube refrigerator has a great feature that a small cryogenic refrigerator can be realized without having a movable part at a cryogenic temperature.

[発明が解決しようとする問題点] しかし、既提案に係る構造のパルスチューブ型冷凍機
によると、反面、低温側へ熱侵入が大きい等の問題点が
ある。パルスチューブ1とリジェネレータ2とは、勿論
低温側を真空にシールド(図示省略)しているが、この
場合、対をなすパルスチューブ1とリジェネレータ2と
は別個に配置され、しかも両者とも低温端1a、2aから高
温端1b、2bに向けて大きな温度勾配に有するものである
ため、各々のチューブから大きな熱侵入を来たすことを
免れない。
[Problems to be Solved by the Invention] However, according to the pulse tube refrigerator having the structure proposed in the prior art, on the other hand, there are problems such as a large amount of heat entering the low temperature side. The pulse tube 1 and the regenerator 2 are of course shielded on the low-temperature side by a vacuum (not shown). In this case, the pulse tube 1 and the regenerator 2 forming a pair are separately disposed, and both are kept at a low temperature. Since it has a large temperature gradient from the ends 1a and 2a to the high-temperature ends 1b and 2b, it is inevitable that a large amount of heat enters from each tube.

[問題点を解決するための手段] 本発明は、このような熱侵入の問題を改善し、併せて
装置の集約化を図る見地より、必須要素であるパルスチ
ューブとリジェネレータとを、一方を他方の内側に配し
て二重管に構成したパルスチューブ型の二重管冷凍機を
提供するものである。
[Means for Solving the Problems] The present invention improves the problem of heat invasion and, from the viewpoint of consolidating the devices, combines the essential components of the pulse tube and the regenerator with one another. An object of the present invention is to provide a pulse tube type double tube refrigerator arranged inside the other side to constitute a double tube.

[作用] このようにパルスチューブとリジェネレータとを内外
二重管に構成すれば、両者を一体物として支持できるの
で、高温側の支持部材からの熱伝導に起因する低温側の
熱侵入を少なくすることができる。同時に、別個に配置
する場合に比較すると、その占有スペースを削減でき
る。
[Operation] If the pulse tube and the regenerator are configured as an inner / outer double tube as described above, both can be supported as an integral body, so that heat intrusion on the low temperature side due to heat conduction from the support member on the high temperature side is reduced. can do. At the same time, the occupied space can be reduced as compared with the case where the components are separately arranged.

[実施例] 第1図と第2図は、本発明の一実施例を図示したもの
で、外側にパルスチューブ1を、内側にリジェネレータ
2を配置した二重管の構造を具備している。すなわち、
外筒Aと内筒Bとの間にパルスチューブ1の環状中空部
が形成され、更に内筒Bの内周にリジェネレータ2を構
成する有孔構築体が内挿固着され、両者は内筒Bを挟ん
で一体化されている。そして、外側パルスチューブ1の
低温端1aと内側リジェネレータ2の低温端2aとが、吸熱
部3を介して連通される。また、内側リジェネレータ2
の高温端2bはガス通路5を介して圧縮機4と連通され
る。また、各高温端1b、2bに設けられる放熱部7、6
は、この場合共通の水冷管8をもって構成される。な
お、外筒Aの周囲は図外の真空シールドで包囲される。
[Embodiment] FIGS. 1 and 2 show an embodiment of the present invention, which has a double tube structure in which a pulse tube 1 is arranged on the outside and a regenerator 2 is arranged on the inside. . That is,
An annular hollow portion of the pulse tube 1 is formed between the outer tube A and the inner tube B, and a perforated structure constituting the regenerator 2 is inserted and fixed to the inner periphery of the inner tube B. B are integrated. Then, the low temperature end 1 a of the outer pulse tube 1 and the low temperature end 2 a of the inner regenerator 2 are communicated via the heat absorbing section 3. Also, inside regenerator 2
Is communicated with the compressor 4 via the gas passage 5. Further, heat radiating portions 7 and 6 provided at the high temperature ends 1b and 2b, respectively.
Is configured with a common water cooling tube 8 in this case. The outer cylinder A is surrounded by a vacuum shield (not shown).

このような構成した二重管冷凍機であれば、既述した
パルスチューブ型冷凍機と同様のサイクルを営んで、可
動部無しに吸熱部3に極低温が実現される上に、次の改
良効果が得られる。一つは外部熱侵入を減少できること
であり、これにより冷凍効率を高め、一層の極低温を得
ることができる。もう一つは、パルスチューブ1とリジ
ェネレータ2及び放熱部7、6をコンパクトに集約し
て、装置の小形簡素化を達成することができる。
With the double-tube refrigerator configured as described above, the same cycle as that of the pulse tube refrigerator described above is performed, so that the cryogenic temperature is realized in the heat absorbing unit 3 without the movable unit, and the following improvement is made. The effect is obtained. One is that external heat intrusion can be reduced, thereby increasing the refrigeration efficiency and obtaining a further extremely low temperature. On the other hand, the pulse tube 1, the regenerator 2, and the heat radiating parts 7, 6 can be compactly integrated to achieve a compact and simple apparatus.

なお上記実施例では、第4図の従来例の場合と同様、
パルスチューブ型冷凍機にスターリングサイクルを利用
する場合を例示したが、これはGMサイクルを営ませるも
のであってもよい。但し、GMサイクルを利用する場合
は、リジェネレータ2の入口側に所定のタイミングで交
互に高・低圧を切換えるタイミングバルブの追加を要す
る。
In the above embodiment, as in the case of the conventional example shown in FIG.
Although the case where the Stirling cycle is used for the pulse tube refrigerator has been described as an example, the Stirling cycle may operate a GM cycle. However, in the case of using the GM cycle, it is necessary to add a timing valve that alternately switches between high and low pressures at a predetermined timing on the inlet side of the regenerator 2.

また、上記実施例において、高温側の内外放熱部7、
6は一体化することもできる。
Further, in the above embodiment, the internal and external heat radiating portions 7 on the high temperature side,
6 can also be integrated.

以上、パルスチューブ1を外側に、リジェネレータ2
を内側に配置する例について説明したが、両者の位置関
係は逆であってもよい。第3図は、その実施例を示すも
ので、外筒Aと内筒Bとの環状隙間にリジェネレータ2
を組込む一方、中空部を有する内筒Bをパルスチューブ
1としている。
As described above, the pulse tube 1 is placed outside and the regenerator 2
Although the example in which is disposed inside has been described, the positional relationship between the two may be reversed. FIG. 3 shows an embodiment of the present invention, in which a regenerator 2 is provided in an annular gap between the outer cylinder A and the inner cylinder B.
The inner tube B having a hollow portion is used as the pulse tube 1.

[発明の効果] 以上のように、本発明ではパルスチューブとリジェネ
レータとを内外二重管に構成したものであるから、低温
部に可動部を有しないパルスチューブ型冷凍機の特徴を
確保しながら、熱侵入の増大を抑えることができ、併せ
て冷凍機の小型、構造簡素化を図ることができる。
[Effects of the Invention] As described above, in the present invention, since the pulse tube and the regenerator are configured as inner and outer double tubes, the characteristics of the pulse tube type refrigerator having no movable part in the low temperature part are secured. However, an increase in heat intrusion can be suppressed, and the size and structure of the refrigerator can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

第1図と第2図は本発明の一実施例を示し、第1図は冷
凍機本体をなす二重管の概略縦断面図であり、第2図は
第1図のI−I線断面図である。第3図は本発明の他の
実施例を示す二重管の横断面図(第1図のI−I位置相
当)である。第4図はパルスチューブ型冷凍機の従来例
を示すシステム図である。 A……外筒、B……内筒 1……パルスチューブ、2……リジェネレータ 1a、2a……低温端、1b、2d……高温端 3……吸熱部、4……圧縮機 6、7……放熱部
1 and 2 show an embodiment of the present invention. FIG. 1 is a schematic vertical sectional view of a double pipe constituting a refrigerator main body, and FIG. 2 is a sectional view taken along line II of FIG. FIG. FIG. 3 is a cross-sectional view (corresponding to the II position in FIG. 1) of a double pipe showing another embodiment of the present invention. FIG. 4 is a system diagram showing a conventional example of a pulse tube type refrigerator. A: Outer cylinder, B: Inner cylinder 1: Pulse tube 2, Regenerator 1a, 2a: Low temperature end, 1b, 2d: High temperature end 3: Heat absorbing section 4, Compressor 6, 7 ... heat dissipation part

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】パルスチューブとリジェネレータとを、一
方を他方の内側に配して二重管に構成したことを特徴と
する二重管冷凍機。
1. A double-tube refrigerator in which a pulse tube and a regenerator are arranged in a double tube with one disposed inside the other.
JP62246839A 1987-09-30 1987-09-30 Double tube refrigerator Expired - Lifetime JP2600714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62246839A JP2600714B2 (en) 1987-09-30 1987-09-30 Double tube refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62246839A JP2600714B2 (en) 1987-09-30 1987-09-30 Double tube refrigerator

Publications (2)

Publication Number Publication Date
JPS6490964A JPS6490964A (en) 1989-04-10
JP2600714B2 true JP2600714B2 (en) 1997-04-16

Family

ID=17154466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62246839A Expired - Lifetime JP2600714B2 (en) 1987-09-30 1987-09-30 Double tube refrigerator

Country Status (1)

Country Link
JP (1) JP2600714B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014231953A (en) * 2013-05-29 2014-12-11 住友重機械工業株式会社 Stirling type pulse pipe refrigeration machine
CN105115182B (en) * 2015-09-25 2018-08-14 中国科学院上海技术物理研究所 Using the single stage coaxial pulse tube refrigerating device and its design method of annular vascular structure
CN105222389B (en) * 2015-09-25 2017-10-13 中国科学院理化技术研究所 Pulse tube refrigerator

Also Published As

Publication number Publication date
JPS6490964A (en) 1989-04-10

Similar Documents

Publication Publication Date Title
US5022229A (en) Stirling free piston cryocoolers
US6205791B1 (en) High efficiency modular cryocooler with floating piston expander
JP2600714B2 (en) Double tube refrigerator
KR20010083614A (en) Aftercooler and its manufacturing mathod for pulse tube refrigerator
US4845953A (en) Refrigerating system
JPH11344266A (en) Acoustic freezer
JP2947649B2 (en) Pulse tube heat engine
JPH04225755A (en) Cryogenic refrigerating device
JPH05306846A (en) Stirling refrigerator
US4877434A (en) Cryogenic refrigerator
JP2941108B2 (en) Pulse tube refrigerator
JP2828937B2 (en) Heat exchanger for gas compression / expansion machine and method for manufacturing the same
KR100348615B1 (en) Structure for fixing radiator of pulse tube refrigerator
JP2600720B2 (en) Cryogenic refrigerator
JP2941109B2 (en) Pulse tube refrigerator
JP2942045B2 (en) Pulse tube refrigerator
JP3363697B2 (en) Refrigeration equipment
JP2941110B2 (en) Pulse tube refrigerator
JPH03279759A (en) Separation type reverse stirling cycle refrigerator
JPH09133419A (en) Pulse tube freezer
JPH03199854A (en) Very low temperature refrigerator
JPH04327764A (en) Stirling freezer
JPH10325626A (en) Pulsation pipe type freezer
KR20030066153A (en) Device fixing plate spring for fixing displacer of stirling cryocooler
JPH0350949B2 (en)