JP2600525B2 - Manufacturing method of electrostatic deflection electrode - Google Patents

Manufacturing method of electrostatic deflection electrode

Info

Publication number
JP2600525B2
JP2600525B2 JP3178599A JP17859991A JP2600525B2 JP 2600525 B2 JP2600525 B2 JP 2600525B2 JP 3178599 A JP3178599 A JP 3178599A JP 17859991 A JP17859991 A JP 17859991A JP 2600525 B2 JP2600525 B2 JP 2600525B2
Authority
JP
Japan
Prior art keywords
electron beam
deflection electrode
electrostatic deflection
passage area
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3178599A
Other languages
Japanese (ja)
Other versions
JPH0529201A (en
Inventor
信幸 安武
新一 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3178599A priority Critical patent/JP2600525B2/en
Publication of JPH0529201A publication Critical patent/JPH0529201A/en
Application granted granted Critical
Publication of JP2600525B2 publication Critical patent/JP2600525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は静電偏向電極を具備して
なる電子ビーム露光装置に係り、特に小型化された静電
偏向電極を容易に形成できる製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron beam exposure apparatus having an electrostatic deflection electrode, and more particularly to a manufacturing method capable of easily forming a miniaturized electrostatic deflection electrode.

【0002】半導体装置の製造において各種パターンを
形成する手段として電子ビーム露光装置が利用されてい
るが、近年、半導体装置の高集積度化が進むに伴ってそ
れを構成する各種パターンが一層微細化されており、微
細パターンを形成するための電子ビーム露光装置に対し
素早い応答性と一層の高精度化が要求されている。
2. Description of the Related Art In the manufacture of semiconductor devices, electron beam exposure apparatuses have been used as means for forming various patterns. In recent years, as the degree of integration of semiconductor devices has increased, the various patterns constituting the devices have been further miniaturized. Therefore, quick response and higher accuracy are required for an electron beam exposure apparatus for forming a fine pattern.

【0003】かかる用途に供する電子ビーム露光装置は
通常電子レンズの中に組み込むインレンズ方式の静電偏
向電極を具備しているが、インレンズ方式の静電偏向電
極は全体を小型化する必要があり高精度な部品加工を必
要とする。そこで小型化された静電偏向電極を容易に形
成できる製造方法の開発が要望されている。
An electron beam exposure apparatus provided for such a purpose usually has an in-lens type electrostatic deflection electrode incorporated in an electron lens, but the in-lens type electrostatic deflection electrode needs to be downsized as a whole. Requires high precision parts processing. Therefore, development of a manufacturing method capable of easily forming a miniaturized electrostatic deflection electrode is demanded.

【0004】[0004]

【従来の技術】図3は電子ビーム露光装置の一部を示す
側断面図、図4は従来の静電偏向電極を示す斜視図であ
る。
2. Description of the Related Art FIG. 3 is a side sectional view showing a part of an electron beam exposure apparatus, and FIG. 4 is a perspective view showing a conventional electrostatic deflection electrode.

【0005】通常の電子ビーム露光装置は図3(a) に示
す如く電子ビームの通過領域を真空状態に保つためのシ
ール筒1と、シール筒1の外側に嵌挿され内部を通過す
る電子ビームを収束させる電子レンズ2と、シール筒1
の内側に嵌挿され電子ビームが向かう方向を制御する静
電偏向電極3を具えている。
As shown in FIG. 3 (a), a conventional electron beam exposure apparatus includes a seal cylinder 1 for keeping a region where an electron beam passes in a vacuum state, and an electron beam inserted outside the seal cylinder 1 and passing therethrough. Lens 2 that converges, and seal cylinder 1
And an electrostatic deflecting electrode 3 which is inserted into the inside and controls the direction of the electron beam.

【0006】静電偏向電極3は電子ビーム通過領域を挟
んで対向せしめた複数対の電極31で構成されており、対
向せしめた電極31の間隔を大きくすると静電偏向電極3
の内部における電界の均一性を良くすることができる。
そこで電極31の間隔を任意に決められるように静電偏向
電極3を電子レンズ2の外に配置している。
The electrostatic deflecting electrode 3 is composed of a plurality of pairs of electrodes 31 opposed to each other with the electron beam passing area interposed therebetween.
Can improve the uniformity of the electric field inside.
Therefore, the electrostatic deflection electrode 3 is arranged outside the electron lens 2 so that the interval between the electrodes 31 can be arbitrarily determined.

【0007】しかし、電極31の間隔が大きい静電偏向電
極3は電子ビーム通過領域に所要の電界強度を付与する
ため、図示省略された偏向増幅器を介してそれぞれの電
極31に高い駆動電圧を印加する必要がある。その結果、
偏向増幅器は大きい増幅度を具えていることが要求され
ることになり素早い応答性は期待できない。
However, the electrostatic deflecting electrode 3 having a large distance between the electrodes 31 applies a high driving voltage to each electrode 31 via a deflection amplifier (not shown) in order to impart a required electric field intensity to the electron beam passage area. There is a need to. as a result,
Since the deflection amplifier is required to have a large amplification degree, quick response cannot be expected.

【0008】また図3(a) に示す通常の電子ビーム露光
装置は電子レンズ2と静電偏向電極3が離れた位置に配
置されており、電子ビームが向かう方向を制御する静電
偏向電極3の作用点と、電子ビームを収束させる電子レ
ンズ2の作用点がずれているため高度な偏向精度は期待
できない。
In the ordinary electron beam exposure apparatus shown in FIG. 3A, an electron lens 2 and an electrostatic deflecting electrode 3 are arranged at a distance from each other, and an electrostatic deflecting electrode 3 for controlling the direction of the electron beam is provided. And the action point of the electron lens 2 that converges the electron beam is shifted, so that high deflection accuracy cannot be expected.

【0009】それに対し素早い応答性と一層の高精度化
が要求される電子ビーム露光装置は図3(b) に示す如
く、シール筒1およびその外側に嵌挿され内部を通過す
る電子ビームを収束させる電子レンズ2と、シール筒1
の内側の電子レンズ2と同じ位置に嵌挿されたインレン
ズ方式の静電偏向電極4を具備している。
On the other hand, as shown in FIG. 3 (b), an electron beam exposure apparatus which requires quick response and higher accuracy converges the electron beam inserted into the seal cylinder 1 and the outside thereof and passing therethrough. Electronic lens 2 to be sealed and seal cylinder 1
And an in-lens type electrostatic deflecting electrode 4 fitted at the same position as the electron lens 2 inside.

【0010】インレンズ方式の静電偏向電極4は電子レ
ンズ2との作用点のずれが無く高度な偏向精度が得られ
る。しかも対向せしめた電極41の間隔が小さく比較的低
い駆動電圧の印加で所要の電界強度が得られるため、偏
向増幅器の増幅度を大きくする必要がなく素早い応答性
を具えた電子ビーム露光装置を構成できる。
The in-lens type electrostatic deflecting electrode 4 does not shift the point of action with the electron lens 2 and provides a high degree of deflection accuracy. Moreover, since the required electric field strength can be obtained by applying a relatively low driving voltage with a small interval between the electrodes 41 facing each other, it is not necessary to increase the amplification degree of the deflection amplifier, and an electron beam exposure apparatus having a quick response is configured. it can.

【0011】しかし、インレンズ方式の静電偏向電極は
全体を小型化する必要があり高精度な部品加工を必要と
する。例えば対向せしめる複数対の電極を個々に形成す
るとそれぞれの寸法誤差や組立誤差が積算される。そこ
で従来の静電偏向電極は図4に示す如く対向せしめた複
数対の電極を同時に形成している。
However, the in-lens type electrostatic deflection electrode needs to be reduced in size as a whole, and requires highly accurate component processing. For example, when a plurality of pairs of electrodes facing each other are individually formed, their dimensional errors and assembly errors are integrated. Therefore, in the conventional electrostatic deflection electrode, a plurality of pairs of electrodes facing each other are simultaneously formed as shown in FIG.

【0012】即ち、従来のインレンズ方式の静電偏向電
極4は図4(a) に示す如く、セラミック等の絶縁体から
なる円筒42の内壁に金属からなる円筒43を接着し、図4
(b)に示す如く放電加工等により円筒43を貫通する電子
ビーム通過領域44から円筒42の内壁に達する複数の絶縁
溝45を形成する。
That is, as shown in FIG. 4A, a conventional in-lens type electrostatic deflecting electrode 4 has a metal cylinder 43 adhered to the inner wall of a cylinder 42 made of an insulator such as ceramic as shown in FIG.
As shown in (b), a plurality of insulating grooves 45 reaching the inner wall of the cylinder 42 from the electron beam passage area 44 penetrating the cylinder 43 are formed by electric discharge machining or the like.

【0013】電子ビーム通過領域44から円筒42の内壁に
達する複数の絶縁溝45を形成することによって、円筒43
が切り分けられ電子ビーム通過領域44を挟んで対向する
複数対の電極41が形成されるが、全ての電極41はあらか
じめ円筒42の内壁に接着されておりばらばらに切り離さ
れることはない。
By forming a plurality of insulating grooves 45 reaching the inner wall of the cylinder 42 from the electron beam passage area 44, the cylinder 43
Are cut to form a plurality of pairs of electrodes 41 opposed to each other with the electron beam passage area 44 interposed therebetween. However, all the electrodes 41 are bonded to the inner wall of the cylinder 42 in advance and are not separated apart.

【0014】なお、電子ビーム通過領域44から円筒42の
壁面が見えると壁面に滞留した電荷が電子ビームの偏向
方向を乱すため、円筒43を切り分ける絶縁溝45は直線で
はなく電子ビーム通過領域44と円筒42の内壁との間で屈
曲させ、電子ビーム通過領域44から直接円筒42の壁面が
見えないように留意されている。
When the wall surface of the cylinder 42 is seen from the electron beam passage area 44, the electric charge staying on the wall disturbs the direction of deflection of the electron beam. The inner wall of the cylinder 42 is bent so that the wall surface of the cylinder 42 cannot be seen directly from the electron beam passage area 44.

【0015】[0015]

【発明が解決しようとする課題】しかし、従来のインレ
ンズ方式の静電偏向電極は外側に電極を支持する絶縁体
からなる円筒を具えており、この円筒が制約条件になっ
て静電偏向電極の更なる小型化を阻害するという問題が
あった。
However, the conventional in-lens type electrostatic deflecting electrode is provided with a cylinder made of an insulator which supports the electrode on the outside, and this cylinder is a constraint and the electrostatic deflecting electrode is restricted. There is a problem that further miniaturization is hindered.

【0016】本発明の目的は小型化された静電偏向電極
を容易に形成できる製造方法を提供することにある。
An object of the present invention is to provide a manufacturing method capable of easily forming a miniaturized electrostatic deflection electrode.

【0017】[0017]

【課題を解決するための手段】図1は本発明になる静電
偏向電極の製造方法を示す斜視図である。なお全図を通
し同じ対象物は同一記号で表している。
FIG. 1 is a perspective view showing a method of manufacturing an electrostatic deflection electrode according to the present invention. The same object is denoted by the same symbol throughout the drawings.

【0018】上記課題は電子ビーム通過領域52を取り囲
むように複数の電極51を配置してなる電子ビーム露光装
置用静電偏向電極の製造において、金属からなるブロッ
ク54にブロック54を貫通する円形の電子ビーム通過領域
52と、電子ビーム通過領域52の側面から外側に向かって
延びる複数の内側絶縁溝55と、ブロック54の側面から電
子ビーム通過領域52に向かって延びる複数の外側絶縁溝
56を形成し、外側絶縁溝56にそれぞれ絶縁体53を嵌挿し
絶縁体53を外側絶縁溝56の内壁に接着した後、複数の中
間絶縁溝57を形成することによって対応する内側絶縁溝
55と外側絶縁溝56を連通せしめ、電子ビーム通過領域52
を取り囲む複数の電極51を形成する本発明になる静電偏
向電極の製造方法によって達成される。
The above-mentioned problem is a problem in manufacturing an electrostatic deflection electrode for an electron beam exposure apparatus in which a plurality of electrodes 51 are arranged so as to surround an electron beam passage area 52. Electron beam passage area
52, a plurality of inner insulating grooves 55 extending outward from the side surface of the electron beam passage region 52, and a plurality of outer insulating grooves extending toward the electron beam passage region 52 from the side surface of the block 54
After forming the insulators 53 into the outer insulating grooves 56 and bonding the insulators 53 to the inner walls of the outer insulating grooves 56, a plurality of intermediate insulating grooves 57 are formed to form the corresponding inner insulating grooves.
55 and the outer insulating groove 56 are connected to each other,
The present invention is achieved by the method for manufacturing an electrostatic deflection electrode according to the present invention, in which a plurality of electrodes 51 surrounding the electrode 51 are formed.

【0019】[0019]

【作用】図1において金属からなるブロックにブロック
を貫通する円形の電子ビーム通過領域と、電子ビーム通
過領域の側面から外側に向かって延びる複数の内側絶縁
溝45、ブロックの側面から電子ビーム通過領域に向かっ
て延びる複数の外側絶縁溝を形成し、外側絶縁溝にそれ
ぞれ絶縁体を嵌挿し絶縁体を外側絶縁溝の内壁に接着し
た後、複数の中間絶縁溝を形成し対応する内側絶縁溝と
外側絶縁溝を連通せしめることによって、従来の静電偏
向電極において電極を支持するため外側に設けられてい
た絶縁体からなる円筒が不要になる。また従来の静電偏
向電極と同様に対向せしめた複数対の電極を同時に形成
することが可能になる。即ち、小型化された静電偏向電
極を容易に形成できる製造方法を実現することができ
る。
In FIG. 1, a circular block for passing an electron beam penetrates a block made of metal, a plurality of inner insulating grooves 45 extending outward from the side of the block, and an electron beam passing region from the side of the block. After forming a plurality of outer insulating grooves extending toward the outer insulating groove, each insulator is inserted into the outer insulating groove and the insulator is bonded to the inner wall of the outer insulating groove, and then a plurality of intermediate insulating grooves are formed to form a corresponding inner insulating groove. By connecting the outer insulating grooves, a cylinder made of an insulator provided outside to support the electrodes in the conventional electrostatic deflection electrode becomes unnecessary. Also, it becomes possible to simultaneously form a plurality of pairs of electrodes facing each other in the same manner as the conventional electrostatic deflection electrode. That is, it is possible to realize a manufacturing method capable of easily forming a miniaturized electrostatic deflection electrode.

【0020】[0020]

【実施例】以下添付図により本発明の実施例について説
明する。なお図2は本発明になる静電偏向電極の変形例
を示す斜視図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 2 is a perspective view showing a modification of the electrostatic deflection electrode according to the present invention.

【0021】本発明になる静電偏向電極は図1(a) に示
す如く金属からなる円柱状のブロック54に、まずブロッ
ク54の一方の端面から他の端面に貫通する断面が円形の
電子ビーム通過領域52と、電子ビーム通過領域52の側面
から外側に向かって放射状に延びる複数の内側絶縁溝55
と、ブロック54の側面から電子ビーム通過領域52に向か
って延びる複数の外側絶縁溝56を形成する。
As shown in FIG. 1 (a), an electrostatic deflection electrode according to the present invention has a cylindrical block 54 made of metal and an electron beam having a circular cross section penetrating from one end face of the block 54 to the other end face. A passage region 52 and a plurality of inner insulating grooves 55 extending radially outward from a side surface of the electron beam passage region 52.
Then, a plurality of outer insulating grooves 56 extending from the side surface of the block 54 toward the electron beam passage area 52 are formed.

【0022】次いで図1(b) に示す如く外側絶縁溝56に
それぞれ絶縁体53を嵌挿し絶縁体53を外側絶縁溝56の内
壁に接着した後、複数の中間絶縁溝57を形成することに
よって対応する内側絶縁溝55と外側絶縁溝56を連通せし
め、電子ビーム通過領域52を取り囲む複数の電極51から
なる静電偏向電極5を形成する。
Next, as shown in FIG. 1B, an insulator 53 is inserted into each of the outer insulating grooves 56 and the insulator 53 is bonded to the inner wall of the outer insulating groove 56, and then a plurality of intermediate insulating grooves 57 are formed. The corresponding inner insulating groove 55 and outer insulating groove 56 are communicated to form the electrostatic deflection electrode 5 including the plurality of electrodes 51 surrounding the electron beam passage area 52.

【0023】なお本発明になる静電偏向電極は図1に示
す如く円柱状のブロックを用いて形成されているが、例
えば図2(a) に示す如く四角柱状のブロックなど他角柱
状のブロックを用いて形成することも可能であり、また
図2(b) に示す如く静電偏向電極の外側に絶縁材料58を
被着せしめて絶縁してもよい。
The electrostatic deflecting electrode according to the present invention is formed by using a columnar block as shown in FIG. 1. For example, as shown in FIG. Alternatively, it may be formed by applying an insulating material 58 to the outside of the electrostatic deflection electrode as shown in FIG. 2 (b).

【0024】このように金属からなるブロックにブロッ
クを貫通する円形の電子ビーム通過領域と、電子ビーム
通過領域の側面から外側に向かって延びる複数の内側絶
縁溝45、ブロックの側面から電子ビーム通過領域に向か
って延びる複数の外側絶縁溝を形成し、外側絶縁溝にそ
れぞれ絶縁体を嵌挿し絶縁体を外側絶縁溝の内壁に接着
した後、複数の中間絶縁溝を形成し対応する内側絶縁溝
と外側絶縁溝を連通せしめることによって、従来の静電
偏向電極において電極を支持するため外側に設けられて
いた絶縁体からなる円筒が不要になる。また従来の静電
偏向電極と同様に対向せしめた複数対の電極を同時に形
成することが可能になる。即ち、小型化された静電偏向
電極を容易に形成できる製造方法を実現することができ
る。
A circular electron beam passage area penetrating the block as described above, a plurality of inner insulating grooves 45 extending outward from the side surface of the electron beam passage area, and an electron beam passage area extending from the side surface of the block. After forming a plurality of outer insulating grooves extending toward the outer insulating groove, each insulator is inserted into the outer insulating groove and the insulator is bonded to the inner wall of the outer insulating groove, and then a plurality of intermediate insulating grooves are formed to form a corresponding inner insulating groove. By connecting the outer insulating grooves, a cylinder made of an insulator provided outside to support the electrodes in the conventional electrostatic deflection electrode becomes unnecessary. Also, it becomes possible to simultaneously form a plurality of pairs of electrodes facing each other in the same manner as the conventional electrostatic deflection electrode. That is, it is possible to realize a manufacturing method capable of easily forming a miniaturized electrostatic deflection electrode.

【0025】[0025]

【発明の効果】上述の如く本発明によれば小型化された
静電偏向電極を容易に形成できる製造方法を提供するこ
とができる。
As described above, according to the present invention, it is possible to provide a manufacturing method capable of easily forming a miniaturized electrostatic deflection electrode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明になる静電偏向電極の製造方法を示す
斜視図である。
FIG. 1 is a perspective view illustrating a method for manufacturing an electrostatic deflection electrode according to the present invention.

【図2】 本発明になる静電偏向電極の変形例を示す斜
視図である。
FIG. 2 is a perspective view showing a modification of the electrostatic deflection electrode according to the present invention.

【図3】 電子ビーム露光装置の一部を示す側断面図で
ある。
FIG. 3 is a side sectional view showing a part of the electron beam exposure apparatus.

【図4】 従来の静電偏向電極を示す斜視図である。FIG. 4 is a perspective view showing a conventional electrostatic deflection electrode.

【符号の説明】[Explanation of symbols]

5 静電偏向電極 51 電極 52 電子ビーム通過領域 53 絶縁体 54 ブロック 55 内側絶縁溝 56 外側絶縁溝 57 中間絶縁溝 58 絶縁材料 5 Electrostatic deflection electrode 51 Electrode 52 Electron beam passage area 53 Insulator 54 Block 55 Inner insulating groove 56 Outer insulating groove 57 Intermediate insulating groove 58 Insulating material

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電子ビーム通過領域(52)を取り囲むよう
に複数の電極(51)を配置してなる電子ビーム露光装置用
静電偏向電極の製造において、 金属からなるブロック(54)に該ブロック(54)を貫通する
円形の電子ビーム通過領域(52)と、該電子ビーム通過領
域(52)の側面から外側に向かって延びる複数の内側絶縁
溝(55)と、該ブロック(54)の側面から該電子ビーム通過
領域(52)に向かって延びる複数の外側絶縁溝(56)を形成
し、 該外側絶縁溝(56)にそれぞれ絶縁体(53)を嵌挿し該絶縁
体(53)を該外側絶縁溝(56)の内壁に接着した後、複数の
中間絶縁溝(57)を形成することによって対応する内側絶
縁溝(55)と外側絶縁溝(56)を連通せしめ、該電子ビーム
通過領域(52)を取り囲む複数の電極(51)を形成すること
を特徴とした静電偏向電極の製造方法。
In the manufacture of an electrostatic deflection electrode for an electron beam exposure apparatus in which a plurality of electrodes (51) are arranged so as to surround an electron beam passage area (52), a block (54) made of metal is added to the block (54). (54) a circular electron beam passage area (52), a plurality of inner insulating grooves (55) extending outward from a side surface of the electron beam passage area (52), and a side surface of the block (54). A plurality of outer insulating grooves (56) extending from the outer insulating groove (52) toward the electron beam passage area (52), an insulator (53) is inserted into each of the outer insulating grooves (56), and the insulator (53) is After bonding to the inner wall of the outer insulating groove (56), a plurality of intermediate insulating grooves (57) are formed so that the corresponding inner insulating groove (55) and outer insulating groove (56) communicate with each other, and the electron beam passage area A method for manufacturing an electrostatic deflection electrode, comprising forming a plurality of electrodes (51) surrounding (52).
【請求項2】 請求項2に記載されたブロック(54)が円
柱状であることを特徴とする静電偏向電極の製造方法
2. A method for manufacturing an electrostatic deflection electrode, wherein the block (54) according to claim 2 is cylindrical.
【請求項3】 請求項2に記載されたブロック(54)が多
角柱状であることを特徴とする静電偏向電極の製造方法
3. A method for manufacturing an electrostatic deflection electrode, wherein the block (54) according to claim 2 has a polygonal column shape.
JP3178599A 1991-07-19 1991-07-19 Manufacturing method of electrostatic deflection electrode Expired - Fee Related JP2600525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3178599A JP2600525B2 (en) 1991-07-19 1991-07-19 Manufacturing method of electrostatic deflection electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3178599A JP2600525B2 (en) 1991-07-19 1991-07-19 Manufacturing method of electrostatic deflection electrode

Publications (2)

Publication Number Publication Date
JPH0529201A JPH0529201A (en) 1993-02-05
JP2600525B2 true JP2600525B2 (en) 1997-04-16

Family

ID=16051273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3178599A Expired - Fee Related JP2600525B2 (en) 1991-07-19 1991-07-19 Manufacturing method of electrostatic deflection electrode

Country Status (1)

Country Link
JP (1) JP2600525B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293472A (en) * 1996-04-26 1997-11-11 Fujitsu Ltd Charged particle beam exposure device, its exposure method, and its manufacture
JP3402998B2 (en) * 1997-03-18 2003-05-06 株式会社東芝 Manufacturing method of electrostatic deflection electrode for charged beam writing apparatus

Also Published As

Publication number Publication date
JPH0529201A (en) 1993-02-05

Similar Documents

Publication Publication Date Title
JP2653008B2 (en) Cold cathode device and method of manufacturing the same
US6025591A (en) Quadrupole mass spectrometers
US5401974A (en) Charged particle beam exposure apparatus and method of cleaning the same
US6956219B2 (en) MEMS based charged particle deflector design
GB2260021A (en) Field emission element
US7829865B2 (en) Electrostatic deflector
JP2600525B2 (en) Manufacturing method of electrostatic deflection electrode
US7012261B2 (en) Multipole lens, charged-particle beam instrument fitted with multipole lenses, and method of fabricating multipole lens
JP3568553B2 (en) Charged particle beam exposure apparatus and cleaning method thereof
KR100230116B1 (en) Field emission electron gun capable of minimizing nonuniform influence of surrounding electric potential condition on electrons emitted from emitters
KR20120093943A (en) High voltage shielding arrangement
US5117117A (en) Electron beam exposure system having an improved seal element for interfacing electric connections
JP7330138B2 (en) ion detector
US11769650B2 (en) Multistage-connected multipole, multistage multipole unit, and charged particle beam device
JPH05129193A (en) Charged beam exposure device
JP2006277996A (en) Electron beam device and device manufacturing method using it
JP4116316B2 (en) Array structure manufacturing method, charged particle beam exposure apparatus, and device manufacturing method
JP7299206B2 (en) Electron Beam Irradiation Area Adjustment Method and Adjustment System, Electron Beam Irradiation Area Correction Method, and Electron Beam Irradiation Device
JP2005136114A (en) Electrode substrate and its manufacturing method, and charged beam exposure device using the same
JP2005183331A (en) Ion source apparatus, and manufacturing method for electronic part
US4825080A (en) Electrical particle gun
KR100670945B1 (en) Microcolumn array using LTCC substrate on wafer scale
KR100242515B1 (en) Field emission cathode supporting structure
JPS6010726A (en) Electron beam exposure
JPH02123651A (en) Manufacture of semiconductor device manufacture device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees