JP2600280B2 - Method for estimating rotor temperature of induction motor - Google Patents

Method for estimating rotor temperature of induction motor

Info

Publication number
JP2600280B2
JP2600280B2 JP63104849A JP10484988A JP2600280B2 JP 2600280 B2 JP2600280 B2 JP 2600280B2 JP 63104849 A JP63104849 A JP 63104849A JP 10484988 A JP10484988 A JP 10484988A JP 2600280 B2 JP2600280 B2 JP 2600280B2
Authority
JP
Japan
Prior art keywords
temperature
rotor
value
stator winding
induction motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63104849A
Other languages
Japanese (ja)
Other versions
JPH01274685A (en
Inventor
利雄 宮野
継利 大谷
秀紀 高崎
英司 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP63104849A priority Critical patent/JP2600280B2/en
Publication of JPH01274685A publication Critical patent/JPH01274685A/en
Application granted granted Critical
Publication of JP2600280B2 publication Critical patent/JP2600280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は誘導電動機のすべり周波数を演算で求めるベ
クトル制御装置において、すべり周波数を演算する際に
必要なロータ温度を推定する方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating a rotor temperature required when calculating a slip frequency in a vector control device for calculating a slip frequency of an induction motor.

〔従来の技術〕[Conventional technology]

誘導電動機のベクトル制御方式としては、すべり周波
数制御型ベクトル制御が最も一般的である。すべり周波
数制御方式では、誘導電動機のすべり周波数ω
(1)式のように誘導電動機の回路定数に基づいて演算
・制御し、直流機と同等のトルク特性を得ることができ
る。
As a vector control method for an induction motor, a slip frequency control type vector control is the most common. In the slip frequency control method, the slip frequency ω S of the induction motor is calculated and controlled based on the circuit constant of the induction motor as shown in equation (1), and a torque characteristic equivalent to that of a DC motor can be obtained.

ω=(R2×It)/Φ …(1) ここで、 ωS:すべり周波数 R2:誘導電動機の2次抵抗値 Φ2:誘導電動機の2次鎖交磁束 It:トルク成分電流 しかし、誘導電動機の2次抵抗値は、ロータの温度に
より大きく変化し、例えば100℃の温度変化に対し約40
%の変動となる。この結果、電動機の発生トルクも同程
度変動し、良好なトルク特性が得られない。
ω S = (R 2 × I t ) / Φ 2 (1) where, ω S : slip frequency R 2 : secondary resistance value of the induction motor Φ 2 : secondary flux linkage of the induction motor I t : torque Component current However, the secondary resistance value of the induction motor greatly changes depending on the temperature of the rotor.
% Variation. As a result, the generated torque of the electric motor fluctuates to the same extent, and good torque characteristics cannot be obtained.

従来においては、第3図に示すように2次電流に相当
する電流指令値を用いて演算したステータ巻線温度とロ
ータ温度との温度差補償値Δθと、ステータ巻線温度の
検出値θとを和により、ロータ温度θを推定し、例
えば(2),(3)式のような関係に基づいて2次抵抗
値の実際値を予測していた(特開昭58−215992号、特開
昭60−131088号公報参照)。
Conventionally, as shown in FIG. 3, a temperature difference compensation value Δθ between a stator winding temperature and a rotor temperature calculated using a current command value corresponding to a secondary current, and a detected value θ 1 of the stator winding temperature. The rotor temperature θ 2 is estimated from the sum of the above and the actual value of the secondary resistance value is predicted based on a relationship such as, for example, equations (2) and (3) (Japanese Patent Laid-Open No. 58-215992, See JP-A-60-131088).

θ=θ+Δθ …(2) R2=R20{1+K0(θ−θ)} …(3) ここで、 θ2:ロータ温度推定値 θ1:ステータ巻線温度検出値 Δθ:ステータ巻線とロータの温度差補償値 R2:2次抵抗推定値 R20:基準温度θにおける2次抵抗値 K0:2次導体の抵抗温度係数 θ0:すべり周波数算定時のロータの基準温度 なお、第3図において、1は3相交流電源、2は電流
制御型インバータ、3は誘導電動機、4は速度検出器、
5は温度検出器、6は電流アンプ、7は1次電流演算
部、8は速度制御部、9は磁束−電流変換器、10は係数
器、11は割り算器、12,13は係数器、14は掛け算器、100
はロータ温度推定部である。
θ 2 = θ 1 + Δθ (2) R 2 = R 20 {1 + K 02 −θ 0 )} (3) where θ 2 : rotor temperature estimated value θ 1 : stator winding temperature detected value Δθ : Compensation value of temperature difference between stator winding and rotor R 2 : Estimated value of secondary resistance R 20 : Secondary resistance value at reference temperature θ 0 K 0 : Temperature coefficient of resistance of secondary conductor θ 0 : Rotor at slip frequency calculation In FIG. 3, 1 is a three-phase AC power supply, 2 is a current control type inverter, 3 is an induction motor, 4 is a speed detector,
5 is a temperature detector, 6 is a current amplifier, 7 is a primary current calculation unit, 8 is a speed control unit, 9 is a magnetic flux-current converter, 10 is a coefficient unit, 11 is a divider, 12, 13 are coefficient units, 14 is a multiplier, 100
Denotes a rotor temperature estimating unit.

前記のような制御装置の構成において、ステータ巻線
とロータの温度差補償回路16は通常1次遅れ要素回路又
は複数の1次遅れ回路の結合等で構成される。
In the configuration of the control device as described above, the temperature difference compensating circuit 16 between the stator winding and the rotor is usually constituted by a primary delay element circuit or a combination of a plurality of primary delay circuits.

また、この温度差補償回路16は、一般にアナログ回路
またはマイクロコンピュータによるソフトウェア処理等
で実現され、制御電流が入るとステータ巻線の温度検出
と同時に温度差補償回路16でステータ巻線温度とロータ
温度との温度差のシミュレーションがなされ、前述のよ
うにロータ温度の推定が行われる。
The temperature difference compensating circuit 16 is generally realized by an analog circuit or software processing by a microcomputer. When a control current is input, the temperature difference compensating circuit 16 detects the stator winding temperature and the rotor temperature simultaneously with detecting the stator winding temperature. Is simulated, and the rotor temperature is estimated as described above.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

以上のような制御方式の構成では、一旦制御電源がな
くなると補償回路の演算値も全てゼロにクリアされ、補
償回路の演算値として保持されていたステータ巻線とロ
ータの温度差のシミュレーション値もゼロになる。
In the configuration of the control method as described above, once the control power supply is lost, the operation values of the compensation circuit are all cleared to zero, and the simulation value of the temperature difference between the stator winding and the rotor held as the operation value of the compensation circuit is also reduced. Becomes zero.

そのため、再度電源が投入されたとき、温度差の演算
は0からスタートし、実際のステータ巻線とロータの温
度差とのシミュレーション値に差異を生じロータ温度推
定誤差を生じるという不具合がある。第4図中の、ハッ
チングを施した部分が温度推定誤差に相当する。以上の
ような状況は停電後の再起動時やモータの温度が高い状
態での始動時、最も顕著に現れ、要求されるトルクに対
し電動機の発生トルクが大きく異なり、所定の性能が得
られないという不具合があった。
Therefore, when the power is turned on again, the calculation of the temperature difference starts from 0, and there is a problem that the simulation value between the actual stator winding and the temperature difference between the rotor and the rotor is different, resulting in a rotor temperature estimation error. The hatched portion in FIG. 4 corresponds to the temperature estimation error. The above situation is most remarkable when restarting after a power failure or when starting with a high temperature of the motor, and the generated torque of the motor greatly differs from the required torque, and the predetermined performance cannot be obtained. There was a problem.

本発明は、このような実情に鑑みてなされたものであ
り、停電後の再起動時等においても、ステータ巻線温度
とロータ温度との差を考慮した制御を行うことにより、
トルク制御精度の高いベクトル制御を実現することを目
的とする。
The present invention has been made in view of such circumstances, and at the time of restarting after a power failure, etc., by performing control in consideration of the difference between the stator winding temperature and the rotor temperature,
An object is to realize vector control with high torque control accuracy.

〔課題を解決するための手段〕[Means for solving the problem]

この目的を達成するため、本発明の誘導電動機のロー
タ温度推定方法は、ベクトル制御される誘導電動機のス
テータ巻線温度の検出値と回転子損失よりロータ温度を
推定する温度差補償手段を備えた誘導電動機のベクトル
制御装置のロータ温度推定方法において、電源投入時
に、ステータ巻線温度の検出値と周囲温度の設定値とに
基づいて前記ステータ巻線温度に対するロータ温度の上
昇分を推定し、その推定値を前記温度差補償手段のロー
タ温度上昇分の初期値として設定することを特徴とす
る。
In order to achieve this object, a rotor temperature estimating method for an induction motor according to the present invention includes a temperature difference compensating unit for estimating a rotor temperature from a detected value of a stator winding temperature of a vector-controlled induction motor and a rotor loss. In the rotor temperature estimating method of the induction motor vector control device, when power is turned on, an increase in the rotor temperature with respect to the stator winding temperature is estimated based on a detected value of the stator winding temperature and a set value of the ambient temperature. It is characterized in that the estimated value is set as an initial value of the rotor temperature rise of the temperature difference compensating means.

〔作用〕[Action]

本発明においては、電源投入時にステータ巻線とロー
タの温度差に相当する量を(4),(5)式のようにス
テータ巻線温度の検出値θと周囲温度の設定値θ
差で求められるステータ巻線温度上昇値(θ−θ
の関数として求め、この値を前記温度差補償回路の演算
初期値として設定する。
In the present invention, the amount corresponding to the temperature difference of the stator winding and the rotor when the power is turned on (4), (5) setting theta a detected value theta 1 and the ambient temperature of the stator winding temperature as Stator winding temperature rise value obtained from the difference (θ 1 −θ a )
, And this value is set as the initial value of the operation of the temperature difference compensation circuit.

Δθ(i)=Ki(θ−θ) …(4) 但し、Kiは初期値を意味し、次式で表される。 Δθ (i) = K i ( θ 1 -θ a) ... (4) where, K i denotes the initial value is expressed by the following equation.

ここで、 Δθmax:モータが熱的に飽和した時のステータ巻線とロ
ータの温度差 θ1max:モータが熱的に飽和した時のステータ巻線温度 θ1:電源投入時のステータ巻線温度検出値 θa:周囲温度の基準設定値 このように、温度差補償回路の初期値を電源投入時の
ロータとステータ巻線の温度差に応じて設定することに
より、通常運転時のみならず、停電後の再起動時や電動
機の温度が高い状態での始動時など過渡的な場合でさえ
も正確に2次抵抗値の温度補償が行われるために、ロー
タの温度に関係なくトルク制御精度の高いベクトル制御
を実現することができる。
Where Δθ max : temperature difference between stator winding and rotor when motor is thermally saturated θ 1max : stator winding temperature when motor is thermally saturated θ 1 : stator winding temperature when power is turned on Detection value θ a : Ambient temperature reference setting value In this way, by setting the initial value of the temperature difference compensation circuit according to the temperature difference between the rotor and stator windings when power is turned on, not only during normal operation, Even in transient situations such as when restarting after a power failure or when starting with a high motor temperature, the temperature compensation of the secondary resistance value is accurately performed, so that the torque control accuracy is independent of the rotor temperature. High vector control can be realized.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例に基づいて具体的に
説明する。
Hereinafter, the present invention will be specifically described based on embodiments shown in the drawings.

第1図は、本発明のロータ温度推定方法を実現するた
めのロータ温度推定部100′のブロック図を示してい
る。
FIG. 1 shows a block diagram of a rotor temperature estimating unit 100 'for realizing the rotor temperature estimating method of the present invention.

第1図において、ステータ巻線温度検出値θにロー
タとステータ巻線の温度差補償回路16の出力Δθが加え
られ、ロータ温度推定値として(4)式に従って2次抵
抗の温度補正を行う構成となっている。さらにステータ
巻線温度検出値θと周囲温度の基準設定値θを基に
電源投入時のステータ巻線とロータの温度差に応じて温
度差補償回路16に初期値を設定する。
In FIG. 1 , the output Δθ of the temperature difference compensating circuit 16 between the rotor and the stator winding is added to the stator winding temperature detection value θ1, and the secondary resistance temperature is corrected according to the equation (4) as the rotor temperature estimation value. It has a configuration. And sets an initial value of the temperature difference compensation circuit 16 in accordance with the temperature difference between the stator winding temperature detection value theta 1 and on the basis of the reference set value theta a ambient temperature at power stator winding and the rotor.

図中係数器17の定数は(5)式で与えられ、誘導電動
機の設計値または実機での測定値から事前に求められ
る。またスイッチ18は電源投入時前記ステータ巻線とロ
ータの温度差に相当する量を温度差補償回路16に初期値
として設定するためのものである。制御電源投入時にの
み(4)式に従いロータとステータ巻線の温度差に相当
する量が温度差補償回路16の初期値として設定される。
In the figure, the constant of the coefficient unit 17 is given by equation (5), and is obtained in advance from the design value of the induction motor or the measured value on the actual machine. The switch 18 is used to set an amount corresponding to the temperature difference between the stator winding and the rotor when the power is turned on, in the temperature difference compensation circuit 16 as an initial value. Only when the control power supply is turned on, the amount corresponding to the temperature difference between the rotor and the stator winding is set as the initial value of the temperature difference compensation circuit 16 according to the equation (4).

第2図は、本発明によるロータ温度の変化と温度補償
値の変化を示す図である。停電等により電動機が停止す
ると、温度差補償値Δθは0にクリアされるが、再運転
時には、温度補償値の初期値としてΔθ(i)がセット
されることを表している。
FIG. 2 is a diagram showing a change in rotor temperature and a change in temperature compensation value according to the present invention. When the motor stops due to a power failure or the like, the temperature difference compensation value Δθ is cleared to 0, but when restarting, Δθ (i) is set as the initial value of the temperature compensation value.

〔発明の効果〕〔The invention's effect〕

上述したように本発明においては、電源投入時に温度
差補償回路にロータとステータ巻線の温度差に相当する
補償値を設定する。その結果、停電後の再起動時や電動
機の温度が高い状態での始動時においても、運転開始直
後からその時点での温度差に相当するレベルから温度差
のシミュレーションが開始されるため通常運転中だけで
なく、前記のような過渡状態においても正確にロータや
ステータ巻線の温度差が補償され、トルク制御精度の高
いベクトル制御を達成する誘導電動機の制御装置を実現
することができる。
As described above, in the present invention, a compensation value corresponding to the temperature difference between the rotor and the stator winding is set in the temperature difference compensation circuit when the power is turned on. As a result, even when restarting after a power failure or when starting with a high motor temperature, the simulation of the temperature difference is started immediately after the start of operation from the level corresponding to the temperature difference at that time, so that normal operation is performed. In addition, it is possible to realize a control device for an induction motor in which the temperature difference between the rotor and the stator winding is accurately compensated even in the transient state as described above, and the vector control with high torque control accuracy is achieved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のロータ温度推定部を示すブロック図、
第2図は本発明による効果を表すグラフ、第3図は従来
のベクトル制御装置のブロック図、第4図は従来の不具
合を示すロータ温度の補償動作を表すグラフである。 1……3相交流電源、2……電流制御型インバータ、3
……誘導電動機、 4……速度検出器、5……温度検出器、6……電流アン
プ、7……1次電流演算部、 8……速度制御器、9……磁束−電流変換器、10……係
数器、11……割り算器、 12,13……係数器、14……掛け算器、16……ロータ温度
補償回路、17……係数器、 18……スイッチ、100,100′……ロータ温度推定部
FIG. 1 is a block diagram showing a rotor temperature estimating unit according to the present invention;
FIG. 2 is a graph showing the effect of the present invention, FIG. 3 is a block diagram of a conventional vector control device, and FIG. 4 is a graph showing a rotor temperature compensation operation showing a conventional problem. 1 ... three-phase AC power supply, 2 ... current control type inverter, 3
...... Induction motor, 4 ... Speed detector, 5 ... Temperature detector, 6 ... Current amplifier, 7 ... Primary current calculation unit, 8 ... Speed controller, 9 ... Flux-current converter, 10 ·································································································································································································· rotor, Temperature estimator

フロントページの続き (72)発明者 渡辺 英司 福岡県行橋市西宮市2丁目13番1号 株 式会社安川電機製作所行橋工場内 (56)参考文献 特開 平1−174286(JP,A) 特開 昭58−215992(JP,A) 特開 昭60−131088(JP,A)Continuation of the front page (72) Inventor Eiji Watanabe 2-3-1-1, Nishinomiya-shi, Yukuhashi-shi, Fukuoka Prefecture Inside Yasukawa Electric Mfg. Co., Ltd. (56) References JP-A-58-215992 (JP, A) JP-A-60-131088 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ベクトル制御される誘導電動機のステータ
巻線温度の検出値と回転子損失よりロータ温度を推定す
る温度差補償手段を備えた誘導電動機のベクトル制御装
置のロータ温度推定方法において、電源投入時に、ステ
ータ巻線温度の検出値と周囲温度の設定値とに基づいて
前記ステータ巻線温度に対するロータ温度の上昇分を推
定し、その推定値を前記温度差補償手段のロータ温度上
昇分の初期値として設定することを特徴とする誘導電動
機のロータ温度推定方法。
1. A method for estimating a rotor temperature of an induction motor vector control apparatus comprising a temperature difference compensating means for estimating a rotor temperature from a detected value of a stator winding temperature of a vector-controlled induction motor and a rotor loss. At the time of injection, an increase in the rotor temperature with respect to the stator winding temperature is estimated based on the detected value of the stator winding temperature and the set value of the ambient temperature, and the estimated value is used as the increase in the rotor temperature of the temperature difference compensating means. A rotor temperature estimation method for an induction motor, wherein the method is set as an initial value.
JP63104849A 1988-04-26 1988-04-26 Method for estimating rotor temperature of induction motor Expired - Fee Related JP2600280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63104849A JP2600280B2 (en) 1988-04-26 1988-04-26 Method for estimating rotor temperature of induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63104849A JP2600280B2 (en) 1988-04-26 1988-04-26 Method for estimating rotor temperature of induction motor

Publications (2)

Publication Number Publication Date
JPH01274685A JPH01274685A (en) 1989-11-02
JP2600280B2 true JP2600280B2 (en) 1997-04-16

Family

ID=14391754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63104849A Expired - Fee Related JP2600280B2 (en) 1988-04-26 1988-04-26 Method for estimating rotor temperature of induction motor

Country Status (1)

Country Link
JP (1) JP2600280B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2986921B1 (en) 2012-02-10 2015-01-16 Renault Sas SYSTEM AND METHOD FOR CONTROLLING THE POWER SUPPLY OF AN ELECTRIC MACHINE IN ACCORDANCE WITH THE TEMPERATURE.
JP7033505B2 (en) 2018-06-21 2022-03-10 株式会社日立産機システム Induction motor overheat monitoring method, induction motor monitoring device, and induction motor control system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174286A (en) * 1987-12-28 1989-07-10 Fuji Electric Co Ltd Vector control device for squirrel-cage induction motor

Also Published As

Publication number Publication date
JPH01274685A (en) 1989-11-02

Similar Documents

Publication Publication Date Title
EP0790701B1 (en) Apparatus and method for controlling torque of induction motor through vector control type inverter
JP3815113B2 (en) Induction motor control method
KR0138730B1 (en) Vector control system for induction motor
JP3183516B2 (en) A method for determining stator flux estimates for asynchronous machines.
JPH11187699A (en) Speed control method for induction motor
JP2001238499A (en) Speed control method of induction motor
JP2600280B2 (en) Method for estimating rotor temperature of induction motor
JP2005012856A (en) Speed sensorless vector controller of induction motor
JP3067659B2 (en) Control method of induction motor
JP3070391B2 (en) Induction motor vector control device
JP3351244B2 (en) Induction motor speed control method
JP3736551B2 (en) Induction motor speed control method
JP2707680B2 (en) Speed calculation device and speed control device for induction motor
JPH0530775A (en) Controller for induction motor
JP3770302B2 (en) Induction motor speed control device
JP3160778B2 (en) Inverter-driven motor speed estimation method and device, and motor vector control device using the speed estimation method
JP3446557B2 (en) Induction motor speed control method
JPS61106091A (en) Slip frequency calculator of induction motor and rotation controller of induction motor using the same
JPH07143800A (en) Vector control method and system for induction motor
JP2005020817A (en) Speed sensorless vector control method and arrangement thereof
JP3070264B2 (en) Speed sensorless vector control method
JP3121525B2 (en) Vector control method and device for induction motor
JP3891103B2 (en) Induction motor speed control method
JP3770228B2 (en) Induction motor speed control method
JPH1118497A (en) Speed control method for induction motor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees