JP2597734B2 - 半凝固金属の連続鋳造方法 - Google Patents

半凝固金属の連続鋳造方法

Info

Publication number
JP2597734B2
JP2597734B2 JP2130139A JP13013990A JP2597734B2 JP 2597734 B2 JP2597734 B2 JP 2597734B2 JP 2130139 A JP2130139 A JP 2130139A JP 13013990 A JP13013990 A JP 13013990A JP 2597734 B2 JP2597734 B2 JP 2597734B2
Authority
JP
Japan
Prior art keywords
semi
continuous casting
solid metal
metal
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2130139A
Other languages
English (en)
Other versions
JPH0428461A (ja
Inventor
安生 藤川
Original Assignee
株式会社 レオテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 レオテック filed Critical 株式会社 レオテック
Priority to JP2130139A priority Critical patent/JP2597734B2/ja
Publication of JPH0428461A publication Critical patent/JPH0428461A/ja
Application granted granted Critical
Publication of JP2597734B2 publication Critical patent/JP2597734B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は非樹枝状初晶が金属融体中に分散した固体−
液体金属混合物(簡単のため半凝固金属と呼ぶ)を連続
鋳造するための方法に関し、溶融金属から一たん半凝固
状態とした上でこの半凝固金属を連続的に鋳造すること
により連続鋳造の利益を一層拡充することについての開
発研究の成果である。
なおこのようにして連続鋳造された鋳片は、半凝固状
態の温度域まで再加熱するすることにより、チクソトロ
ピー性(小さな応力下に大きな変形能を有する。)を加
工に利用(以下「チクソ加工」という。)し、ダイキャ
スト、密閉鍛造、熱間プレス、真空成形等の各種プロセ
スの加工素材としても用いられる。
(従来の技術) 半凝固金属を連続鋳造し、チクソ加工用素材を連続的
に製造する方法については、特公昭56−20944号公報、
特公昭61−7148号公報などに開示されている。これらの
方法では半凝固金属を製造する装置の底部に排出ノズル
を設け、ノズルから排出される半凝固金属を従来技術の
開放鋳型に供給するとか、あるいは半凝固金属製造装置
を連続鋳造鋳型に直結するようにされている。
しかしこれらの方法の実施は、半凝固金属特有の特性
からして技術的に困難であり、いまだ実用化されるには
至っていない。
それというのは、半凝固金属が溶融金属(一般的には
合金)を冷却しながら激しく撹拌して融体中で生成しつ
つある樹枝状初晶を、その枝部が消失ないしは縮小して
丸味を帯びた形態に変換したもので、すでに潜熱をある
程度放出し、凝固の始まった液体であって、過熱度が全
くなく、しかも見掛粘性が非常に大きいという特徴を有
しているからで、約言すると、流動性が非常に悪く、か
つ凝固し易いという欠点を有するので、ノズルから定量
排出は困難をきわめ、鋳型と直結したとしても鋳型前の
ノズル部に相当する中継筒においてすでに凝着がはじま
り凝固シェルが成長して、鋳片の引き抜きは不可能とな
るうれいがあり、また鋳型内においても、従来の溶融金
属とは異る特性を示すので、鋳型の熱負荷は軽減できて
も、従来の連続鋳造技術のままでは、実用化が困難であ
ったのである。
(発明が解決しようとする課題) 半凝固金属は、幾分かの潜熱をすでに放出して凝固が
開始し金属融体中に凝固結晶の分散した状態にあるの
で、過熱度が全くなくそのため非常に凝着し易くてしか
も見掛粘性は高く、流動性が悪いという特性を有する。
従って本来の連続鋳造技術により半凝固金属を連続鋳
造することは困難である。
その場合の問題点につき以下に記す。
(1) 半凝固金属製造装置からノズル排出により従来
の連続鋳造開放鋳型に供給する方法は半凝固金属の見掛
粘性が高く流動性が悪いため、連続定量供給が困難であ
る。
(2) 半凝固金属の排出量により、半凝固金属の特性
(固相率、見掛粘性等)が大きく変化するので、半凝固
金属製造装置では、一定排出量を維持することが、安定
操業のために絶対必要な条件である。
(3) したがって、半凝固金属製造装置と連続鋳造鋳
型とを直結することが好ましいが、従来の技術のままで
は、半凝固金属が鋳型の入口に凝着し、連続的に鋳片を
引き抜くことは不可能である。
(課題を解決するための手段) (1) 半凝固金属装置と連続鋳造鋳型とを直結し、連
続鋳造鋳型からの鋳片引抜速度(鋳造速度)を一定に維
持することにより、半凝固金属製造装置の排出量すなわ
ち、溶融金属の処理量を一定とし、安定した性状の半凝
固金属を製造する。
(2) 半凝固金属製造装置の排出部と連続鋳造鋳型と
は、製造される半凝固金属の粘性抵抗に打ち勝って流動
するのに十分な開口断面積を有する、中継筒によって連
結する。
(3) 該中継筒には、高周波誘導加熱コイルを設置
し、常時通電して加熱しておくことにより、中継筒通過
中の半凝固金属が中継筒内周に凝着成長することを防止
する。
(4) この高周波加熱は通過流動中の半凝固金属に
は、おおきな熱量は与えないが、凝着した金属には、大
きな熱量が加わり、再溶解して、鋳型内凝固シェルとの
連結が防止される。
つまりこの発明は溶融金属を冷却下に撹拌して半凝固
金属を得る冷却撹拌槽の排出部に、半凝固金属の連続鋳
造鋳型と直結しその連続鋳造鋳型の鋳型本体開口断面積
に近いがより小さい開口断面積の中継筒を配設し、該中
継筒を介して冷却撹拌槽からの半凝固金属を連続鋳造鋳
型に導いて連続的に鋳造を行うにあたり、 鋳型本体本体の急速奪熱作用を受けて生成する導入半
凝固金属の凝固シェルに対して、中継筒に装備した誘導
加熱コイルによる半凝固金属の発熱作用で、中継筒内周
における凝固シェルの成長を抑止することを特徴とする
半凝固金属の連続鋳造方法である。
第1図に本発明の方法を実施する装置の構成を全体図
で示し、第2図には連続鋳造鋳型に半凝固金属を導入す
る中継筒を詳細図で示した。
第1図において、半凝固金属を製造する装置は、受湯
槽1と撹拌槽2と撹拌隙間3と撹拌子4及び排出槽5か
ら構成される。
受湯槽1は耐火材で内張りされた円筒容器であって、
その1部に受湯口1′を設けてある。
撹拌槽2は、その内面が保温又は冷却された面を形成
し、撹拌子4との隙間3において、溶融金属に冷却撹拌
効果を与え、半凝固金属を製造する部分である。
撹拌子4は先端の冷却撹拌部4aと駆動軸4bとから構成
され、回転駆動及び昇降手段を有し、高速で矢印αのよ
うに回転、また矢印βのように昇降が可能な構造として
いる。
排出槽5は耐火断熱材を内張りした、保温可能な容器
であってその底部にこの例で水平方向に排出口5′を設
けて中継筒6を取付けてある。
次に連続鋳造装置は鋳型7、スプレー冷却管8及びピ
ンチロール9とから構成され、所定断面形状を有する鋳
片10を連続的に製造する装置であり、中継筒6を介し
て、半凝固金属製造装置に直結している。
中継筒6にはこの例で高周波電源11を付属させてあ
る。
ここで中継筒6と連続鋳造鋳型7の構造において、第
2図により詳述する。中継筒6は耐火材セラミック製の
中継筒本体6a、その外周に設けた誘導加熱コイル6b、中
継筒出口のブレーキング6c、及び給電ターミナル6dから
構成され、排出槽5に直結取付けられる。
連続鋳造鋳型7は所定の鋳片断面形状を有する、両端
開放の純銅製鋳型本体7a、ウォータジャケット7b、給水
管7c、排水管7c′とから構成され、多量の冷却水を通水
して、鋳型本体7aを冷却し、そこに供給される半凝固金
属12を、間接的に接触冷却して凝固されるもので、中継
筒6のブレーキング6cに密着取付けられている。この鋳
型7の出口には、スプレーノズル8を設け、冷却水を直
接噴射し、鋳片10を更に冷却する構造としている。
(作 用) 溶融金属は連続的に受湯口1′に供給され、撹拌槽2
において、撹拌槽2と撹拌子4との隙間3において、撹
拌子先端の冷却撹拌部4aの冷却と、高速回転とにより強
く冷却・撹拌作用を受け、半凝固金属12が製造され、排
出槽5に流下する。撹拌子は必要に応じて、昇降し、隙
間3の調整及び着脱も可能である。
ここで製造された半凝固金属12は、すでに10〜50%の
凝固潜熱を放出し固相の発生したものであって、その温
度は液相線温度より低い粘性の高い、非常に凝固し易い
スラリー状の金属である。したがってこの半凝固金属12
を、従来通りの連続鋳造鋳型に直結供給すると、鋳型入
口に強固な凝固シェルが形成し、引き抜き不能となり、
実用化困難である。
そこでこの発明においては、半凝固金属12を、中継筒
6を介して、排出口5′から連続鋳造鋳型7に供給する
構造とし、中継筒6において高周波電源10から適正な電
力を誘導加熱コイル6bに印加し、適当に加熱することに
よって凝固シェルの形成、成長を防止する。この場合中
継筒本体6aとしては、高温強度に優れた導電性セラミッ
クを使用することも良い。更にブレーキング6cは溶融金
属に濡れない性質をもつセラミック製であり、半凝固金
属12が中継筒6の出口に付着することなく、整流状態で
鋳型内に流入する。
鋳型7内においては、半凝固金属12は鋳型本体7aの水
氷壁に触れて急冷され、凝固シェル12′が早く形成され
鋳片10となり、連続的に溶融金属の供給量に見合う引抜
速度で矢印γのように引き抜かれ、半凝固金属の完全凝
固鋳片が製造される。
この場合、半凝固金属の連続鋳造においては、半凝固
金属の特性から従来の連続鋳造法にない、大きな特長が
発揮される。まず、凝固潜熱を放出していると言う熱
的、温度的条件から、凝固シェル12′の形成、成長が早
く、鋳型に対する熱負荷が小さく、高速引抜が可能であ
る。
次に半凝固金属は温度がすでに低く粘性の高いスラリ
ー状であることから、鋳型への流入は層流(整流)状態
で行なわれ、凝固シェルの形成開始点が安定しており、
従来方法の様に鋳型途中に凝固シェルの破断点が発生す
ることなく、ブレークアウトの発生する危険がない。
したがって従来装置の様に、断続引き抜きの必要はな
く、連続低抜きにより、生産性が高く表面性状の良い鋳
片が製造出来る。次の特長としては、半凝固金属は凝固
収縮量が少ないため、エアーギャップの発生がなく、不
均一冷却による、変形及び割れ発生の危険が小さく、複
雑断面形状の鋳片の製造が可能になり、より最終製品形
状に近い鋳片の製造が可能となる。
(実施例) 次に実施例として、電磁撹拌方式の半凝固金属製造装
置に応用した場合について第3図により説明する。第3
図において、電磁撹拌方式の半凝固金属製造装置は非磁
性金属製の冷却円筒101とコイルケース兼用のウォータ
ジャケット102及び回転磁界を発生させる電磁撹拌コイ
ル103とから構成され、冷却水106を給水管104から通水
し、冷却円筒101の外周を強制冷却して、上部の排出管1
05から排水されると共に、電磁撹拌コイル103に交流電
気を印加し、回転磁界により、中の溶融金属に回転撹拌
力を与える構造である。
次に連続鋳造装置は、所定の鋳込断面形状を有する純
銅製開放鋳型本体111とウォータジャケット112及びピン
チロール116等から構成され、冷却水115を給水管113か
ら通水し、鋳型本体111を強制冷却し、配水管114から排
水115′され、鋳型内の半凝固金属118を冷却・凝固して
鋳片119を形成し、ピンチロール116により、連続的に引
抜きする構造である。
これらの半凝固金属製造装置と連続鋳造鋳型とを、中
継筒108を介し直結している。この中継筒108は、粘性の
高い半凝固金属の流動排出に支障のない十分な大きさの
内径を有し、かつ誘導加熱コイル109を内蔵しており、
高周波電源110から電力を供給通電することにより、半
凝固金属118を適当に加熱し、通過中の半凝固金属118が
凝固、成長するのを防止する。
ここで溶融金属を連続的に冷却円筒101内に供給し、
電磁撹拌コイル103に通電して、回転磁界により、回転
撹拌しつつ冷却円筒101に接触・冷却され、半凝固金属1
18が生成する。この半凝固金属118を中継筒108部で誘導
加熱しつつ連続鋳造鋳型111内に導入し、冷却・凝固さ
せ、鋳片119とし、ピンチロール116によって、溶融金属
117の供給量に見合う速度で連続的に引抜きし、半凝固
金属の鋳片を製造する。この様に本発明はいかなる半凝
固金属製造装置にも応用可能な方法であり、連続鋳造機
の始動等の操業方法は、従来技術をそのまま応用可能で
ある。
(発明の効果) (1) 半凝固金属の完全凝固した鋳片を連続的に製造
できる。この鋳片は、半凝固状態の温度域まで再加熱す
ることによりチクソトロピー性を利用した加工要素材と
しても使用できる。
(2) 鋳片自体も、デンドラント組織がなく、均質で
従来の連続鋳造鋳片より、良好な品質のものが製造でき
る。
(3) 最終製品に近い断面形状の鋳片が製造可能とな
り、省工程が可能となる。特に難加工材料の加工に有利
である。
(4) 鋳型の熱負荷が小さくなり、鋳型寿命の改善等
が期待できる。
(5) 直結連鋳法の欠点である断続引抜の必要がな
く、連続引抜による生産の向上、表面品質の向上が期待
できる。
(6) ブレークアウト事故の危険が全くない。
【図面の簡単な説明】
第1図はこの発明の方法を実施するための装置を基本的
な構成について示す全体図、 第2図はその中継筒の詳細図、 第3図は応用例の一つを示す全体図である。 1……受湯槽、1′……受湯口 2……撹拌槽、3……撹拌隙間 4……撹拌子、5……排出槽 6……中継筒、7……連続鋳造鋳型 8……スプレノズル、9……ピンチロール 11……高周波電源、101……冷却円筒 102……コイルケース兼用ウォータジャケット 103……電磁撹拌コイル、104……給水管 105……排水管、108……中継筒 109……誘導加熱コイル、110……高周波電源 111……連続鋳造鋳型 112……ウォータジャケット 116……ピンチロール

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】溶融金属を冷却下に撹拌して半凝固金属を
    得る冷却撹拌槽の排出部に、半凝固金属の連続鋳造鋳型
    と直結しその連続鋳造鋳型の鋳型本体開口断面積に近い
    がより小さい開口断面積の中継筒を配設し、該中継筒を
    介して冷却撹拌槽からの半凝固金属を連続鋳造鋳型に導
    いて連続的に鋳造を行うにあたり、 鋳型本体の急速奪熱作用を受けて生成する導入半凝固金
    属の凝固シェルに対して、中継筒に装備した誘導加熱コ
    イルによる半凝固金属の発熱作用で、中継筒内周におけ
    る凝固シェルの成長を抑止することを特徴とする半凝固
    金属の連続鋳造方法。
JP2130139A 1990-05-22 1990-05-22 半凝固金属の連続鋳造方法 Expired - Lifetime JP2597734B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2130139A JP2597734B2 (ja) 1990-05-22 1990-05-22 半凝固金属の連続鋳造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2130139A JP2597734B2 (ja) 1990-05-22 1990-05-22 半凝固金属の連続鋳造方法

Publications (2)

Publication Number Publication Date
JPH0428461A JPH0428461A (ja) 1992-01-31
JP2597734B2 true JP2597734B2 (ja) 1997-04-09

Family

ID=15026896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2130139A Expired - Lifetime JP2597734B2 (ja) 1990-05-22 1990-05-22 半凝固金属の連続鋳造方法

Country Status (1)

Country Link
JP (1) JP2597734B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070037582A (ko) * 2004-07-01 2007-04-05 아르재 가부시키가이샤 열전 변환 모듈
CN104117644B (zh) * 2014-07-17 2016-06-29 江西理工大学 一种可提供压力铸造的金属铸坯连续制造装置和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122824A (ja) * 1973-03-29 1974-11-25
JPS6427751A (en) * 1987-07-24 1989-01-30 Mitsubishi Heavy Ind Ltd Method for pre-cooling type continuous casting of molten metal

Also Published As

Publication number Publication date
JPH0428461A (ja) 1992-01-31

Similar Documents

Publication Publication Date Title
US4465118A (en) Process and apparatus having improved efficiency for producing a semi-solid slurry
JP3549055B2 (ja) 固液共存状態金属材料成形用ダイカスト方法、その装置、半凝固成形用ダイカスト方法およびその装置
EP0662361B1 (en) Die casting method and die casting machine
CA1176820A (en) Apparatus for making thixotropic metal slurries
JP4154385B2 (ja) 固液共存状態金属材料製造装置
JPS6225464B2 (ja)
JP2005034905A (ja) 固液共存状態金属スラリの製造装置
JP3496833B1 (ja) 固液共存状態金属材料の製造方法
WO2010000209A1 (zh) 环缝式电磁搅拌制备半固态合金浆料的装置及方法
JP2004114155A (ja) 固液共存状態金属成形用ビレットの製造方法、その装置、半溶融成形用ビレットの製造方法およびその装置
JPH051102B2 (ja)
JP2597734B2 (ja) 半凝固金属の連続鋳造方法
JPH09206890A (ja) 連続鋳造体を製造するための金属の再溶解方法およびそれに用いる装置
JP3348836B2 (ja) 半凝固金属の連続鋳造装置
US4972899A (en) Method and apparatus for casting grain refined ingots
Dock-Young et al. Effects of casting speed on microstructure and segregation of electro-magnetically stirred aluminum alloy in continuous casting process
JPH01192447A (ja) 連続鋳造用金属スラリーの連続的成形方法及びその装置
JPH08318349A (ja) 鋳造用金属ビレットの製造方法及びその製造装置
JPH11104804A (ja) 材料の調製方法
JP3027260B2 (ja) 半溶融スラリーの製造方法
JP2555768B2 (ja) 金属の連続鋳造装置および鋳造方法
CN201168772Y (zh) 空心铜及其铜合金管的电磁水平连续铸造装置
JP2004306116A (ja) 電磁振動による組織微細化のための連続鋳造方法及びその装置
JP3249870B2 (ja) 半凝固Al合金の連続鋳造方法
JPS5890353A (ja) 水平連続鋳造法