JP2593987B2 - Manufacturing method of flame retardant fiber composite - Google Patents

Manufacturing method of flame retardant fiber composite

Info

Publication number
JP2593987B2
JP2593987B2 JP3292880A JP29288091A JP2593987B2 JP 2593987 B2 JP2593987 B2 JP 2593987B2 JP 3292880 A JP3292880 A JP 3292880A JP 29288091 A JP29288091 A JP 29288091A JP 2593987 B2 JP2593987 B2 JP 2593987B2
Authority
JP
Japan
Prior art keywords
fiber
parts
fibers
weight
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3292880A
Other languages
Japanese (ja)
Other versions
JPH0578936A (en
Inventor
敬治 市堀
隆治 松本
洋一 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP3292880A priority Critical patent/JP2593987B2/en
Publication of JPH0578936A publication Critical patent/JPH0578936A/en
Application granted granted Critical
Publication of JP2593987B2 publication Critical patent/JP2593987B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Woven Fabrics (AREA)
  • Bedding Items (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、難燃剤で高度に難燃強
化したハロゲン含有繊維と他の繊維とを複合した、風合
や吸湿性などに優れ、かつ難燃性を有する難燃繊維複合
の製法に関する。さらに詳しくは、難燃剤であるSb化
合物を多量に含有せしめたハロゲン含有繊維と、天然繊
維および化学繊維よりなる群から選ばれた少なくとも1
種の繊維とを複合した難燃繊維複合体の製法に関する。 【0002】 【従来の技術】近年、インテリアのみならず、衣料や寝
具用繊維製品においても難燃化が強く要望され、しかも
難燃性以外の視感、風合、吸湿性、耐洗濯性、耐久性な
どの性能に対する要望も強まってきている。 【0003】従来より繊維の難燃化に関する研究は、モ
ダアクリル系繊維やポリクラール系繊維を中心に、ポリ
エステル系繊維やビスコースレーヨン繊維など特定繊維
の単独物について行なわれており、1種の繊維の単独物
では難燃性能に優れたものもえられているが、消費者の
ますます多様化し、高度化する要求にはほとんどこたえ
られていないのが現状である。したがって、必然的に難
燃性繊維と他の繊維との混綿、混紡、交織などが必要と
なるが、2種以上の異種の繊維を混合した複合繊維に対
する難燃化の研究は数が少ない。 【0004】たとえば、含燐ポリエステル繊維とアクリ
ロニトリル系繊維との混合による複合繊維(特公昭52-2
1612号公報)や、スズ酸およびアンチモン酸含有ポリク
ラール繊維とポリエステル繊維、アクリル繊維、木綿な
どとの混合による複合繊維(特開昭 53-6617号公報)が
有効であるとの記載はあるが、難燃性、風合、吸湿性な
どの点で充分とはいいがたい。 【0005】 【発明が解決しようとする課題】本発明は消費者のます
ます多様化し、高度化する難燃性、視感、風合、吸湿
性、耐洗濯性、耐久性などに対する要求にこたえられる
繊維がないという問題を解決するためになされたもので
ある。 【0006】 【課題を解決するための手段】本発明者らは、かかる実
情に鑑み鋭意検討を重ねた結果、Sb化合物を多量に含有
したハロゲン含有重合体よりなる繊維を他の可燃性繊維
と混合すると、従来の難燃性繊維と比べて、難燃性の低
下の度合が極めて小さい難燃繊維複合体がえられること
を見出し、本発明を完成するに至った。 【0007】すなわち、本発明は、アクリロニトリル30
〜70%(重量%、以下同様)、ハロゲン含有ビニル系単
量体70〜30%およびこれらと共重合可能なビニル系単量
体0〜10%よりなる共重合体に、該重合体に対して8%
以上12%未満の粒径を2μm以下に揃えたSb化合物を含
有させて溶解紡糸してえられた繊維(以下、ハロゲンSb
含有繊維ともいう)85〜15部(重量部、以下同様)に対
して、天然繊維および化学繊維よりなる群から選ばれた
少なくとも1種の繊維(以下、他の繊維ともいう)15〜
85部を含ませることを特徴とする難燃繊維複合体の製法
に関するものであって、所望の難燃性を有し、かつ視
感、風合、吸湿性、耐洗濯性、耐久性などの消費者の多
様化し、高度化した要求を満足させる難燃繊維複合体を
製造する方法に関する。 【0008】前記難燃繊維複合体とは、ハロゲンSb含有
繊維と他の繊維とを混紡または混綿したもの、ハロゲン
Sb含有繊維と他の繊維とを交撚したもの、前記混紡もし
くは混綿したものを用いて製造した糸または前記交撚し
たものを用いて製造した交織または交編したもの、さら
にはこれらの組合わせによってえられるものを含む概念
である。 【0009】 【実施例】本発明においては、アクリロニトリル30〜70
%、ハロゲン含有ビニル系単量体70〜30%およびこれら
と共重合可能なビニル系単量体0〜10%よりなる共重合
体に、該重合体に対して8%以上12%未満の粒径を2
μm以下に揃えたSb化合物を含有させた繊維が使用され
る。 【0010】本発明に用いるアクリロニトリル30〜70
%、ハロゲン含有ビニル系単量体70〜30%およびこれら
と共重合可能なビニル系単量体0〜10%よりなる共重合
体の具体例としては、アクリロニトリル−塩化ビニリデ
ン、アクリロニトリル−塩化ビニル、アクリロニトリル
−塩化ビニル−塩化ビニリデン、アクリロニトリル−臭
化ビニル、アクリロニトリル−塩化ビニリデン−臭化ビ
ニル、アクリロニトリル−塩化ビニル−臭化ビニルなど
のハロゲン含有ビニル系単量体とアクリロニトリルとの
共重合体、塩化ビニル、塩化ビニリデン、臭化ビニル、
臭化ビニリデンなどのハロゲン含有ビニル系単量体の1
種以上とアクリロニトリルおよびこれらと共重合可能な
ビニル系単量体との共重合体などがあげられるが、これ
らに限定されるものではない。また前記共重合体を適宜
混合して使用してもよい。なお、本明細書にいうアクリ
ロニトリル30〜70%、ハロゲン含有ビニル系単量体70〜
30%およびこれらと共重合可能なビニル系単量体0〜10
%よりなる共重合体には、いかなる形においても部分ア
セタール化ポリビニルアルコールが含有されることはな
い。 【0011】前記共重合可能なビニル系単量体として
は、たとえばアクリル酸、そのエステル、メタクリル
酸、そのエステル、アクリルアミド、メタクリルアミ
ド、酢酸ビニル、ビニルスルホン酸、その塩、メタクリ
ルスルホン酸、その塩、スチレンスルホン酸、その塩な
どがあげられ、それらの1種または2種以上の混合物が
用いられうる。 【0012】前記アクリロニトリル30〜70%、ハロゲン
含有ビニル系単量体70〜30%およびこれらと共重合可能
なビニル系単量体0〜10%からなる重合体からの繊維
所望の難燃性を有しつつアクリル繊維の風合を有する
ため好ましい。また共重合可能なビニル系単量体の少な
くとも1つがスルホン酸基含有ビニル系単量体のばあい
には、染色性が向上するので好ましい。 【0013】なお、前記アクリロニトリル30〜70%、ハ
ロゲン含有ビニル系単量体70〜30%およびこれらと共重
合可能なビニル系単量体0〜10%よりなる共重合体中の
ハロゲン含有ビニル系単量体量が30%未満では、繊維を
難燃化することが困難となり、また70%をこえると、製
造された繊維の物性(強度、伸度、耐熱性など)、染色
性、風合などの性能が充分でなくなり、いずれも好まし
くない。 【0014】本発明に用いる粒径を2μm以下に揃えた
Sb化合物は難燃剤として用いられるものであり、その具
体例としては酸化アンチモン(Sb2 3 、Sb
2 4 、Sb2 5 など)、アンチモン酸、オキシ塩化
アンチモンなどの無機アンチモン化合物があげられる
が、これらに限定されるものではない。これらは単独で
用いてもよく、2種以上組合わせて用いてもよい。 【0015】アクリロニトリル30〜70%、ハロゲン含有
ビニル系単量体70〜30%およびこれらと共重合可能なビ
ニル系単量体0〜10%よりなる共重合体に対するSb化合
物の割合は8%以上12%未満である。該量が6%未満で
は難燃繊維複合体として必要な難燃性をうるために、ハ
ロゲンSb含有繊維の難燃繊維複合体中における混合率を
高める必要がある。このようにハロゲンSb含有繊維の混
合率を高めると、難燃繊維複合体の難燃性以外の、たと
えば視感、風合、吸湿性、耐洗濯性、耐久性などの性能
がえられにくくなる。なお、該量が50%をこえると、繊
維製造時のノズル詰まりや繊維物性(強度、伸度など)
の低下がおこり、高度に難燃強化した繊維の製造面や品
質面などで問題が生じ、好ましくない。とくに難燃繊維
に強い強度などや難燃繊維複合体に良好な、編織性など
が求められるばあいには、Sb化合物の割合は6%以上12
%未満が好ましく、8%以上12%未満がさらに好まし
い。また難燃繊維複合体に高度の難燃性と製糸性とが求
められるばあいには、Sb化合物の割合は12〜40%が好ま
しく、12〜30%がさらに好ましい。ただし、8%未満お
よび12%以上は本発明の範囲外である。 【0016】本発明においてはアクリロニトリル30〜70
%、ハロゲン含有ビニル系単量体70〜30%およびこれら
と共重合可能なビニル系単量体0〜10%よりなる共重合
体に対するSb化合物の量が8%以上12%未満に維持され
る限り、他の難燃剤と組合わせて用いてもよい。 【0017】前記Sb化合物と組合わせて用いることので
きる他の難燃剤としては、たとえばヘキサブロモベンゼ
ンなどの芳香族ハロゲン化物、塩化パラフィンなどの脂
肪族ハロゲン化物、トリス(2,3-ジクロロプロピル)ホ
スフェートなどの含ハロゲン燐化合物、ジブチルアミノ
ホスフェートなどの有機燐化合物、ポリ燐酸アンモニウ
ムなどの無機燐化合物、MgO 、Mg(OH)2 、MgCO3 などの
無機マグネシウム化合物、酸化第2スズ、メタスズ酸、
オキシハロゲン化第1スズ、オキシハロゲン化第2ス
ズ、水酸化第1スズなどの無機スズ化合物などがあげら
れる。該他の難燃剤の使用量は0〜10%であることが好
ましい。 【0018】本発明においてはハロゲンSb含有繊維85〜
15部、好ましくは60〜15部、さらに好ましくは60〜20
部、とくに好ましくは50〜20部と、天然繊維および化学
繊維よりなる群から選ばれた少なくとも1種の繊維15〜
85部、好ましくは40〜85部、さらに好ましくは40〜80
部、とくに好ましくは50〜80部とから、本発明による
燃繊維複合体が製造される。 【0019】本発明におけるハロゲンSb含有繊維と天然
繊維および化学繊維よりなる群から選ばれた少なくとも
1種との使用割合は、最終製品に要求される難燃性、視
感、風合、吸湿性、耐洗濯性、耐久性などの性能により
決定されるものである。なおハロゲンSb含有繊維の種類
およびその構成割合、他の難燃剤を用いるばあいにはそ
の難燃剤の種類および添加量、混合する繊維の種類およ
び組合わせなどにより前記使用割合が決められる。 【0020】前記ハロゲンSb含有繊維が15部未満、すな
わち混合する天然繊維や化学繊維の割合が85部をこえる
ばあいには、難燃繊維複合体の難燃性が不足し、一方、
ハロゲンSb含有繊維が85部をこえ、混合する天然繊維や
化学繊維の割合が15部未満のばあいには、難燃性には優
れているものの他の視感、風合、吸湿性、耐洗濯性、耐
久性などの性能が充分でなくなり、いずれも好ましくな
い。 【0021】本発明による難燃繊維複合体が所望の難燃
性を有し、しかも混合する天然繊維や化学繊維の特徴を
はっきりださせるためには、ハロゲンSb含有繊維が60〜
15部で、混合する天然繊維や化学繊維の割合が40〜85部
であることが好ましい。 【0022】他の繊維が天然繊維のばあい、とくにハロ
ゲンSb含有繊維60〜15部に対して天然繊維40〜85部を混
合するのが好ましく、また他の繊維が化学繊維のばあ
い、とくにハロゲンSb含有繊維が50〜20部に対して化学
繊維50〜80部を混合するのが好ましい。 【0023】本発明による難燃繊維複合体が優れた難燃
性を有する理由は、ハロゲンSb含有繊維にガス型の難燃
効果を生ずるSb化合物が多量に混合されているため、不
燃性のハロゲン化水素、ハロゲン、ハロゲン化アンチモ
ンなどのガスを比較的低温で生成するとともに、該不燃
性の分解物が可燃性の繊維を被覆してしまうためと推察
される。 【0024】また、本発明による難燃繊維複合体の難燃
性が混紡、交撚、混綿、交織、交編などの複合方法に依
存せず、ほぼ同等の性能を示すのは、防炎試験などで接
炎する炎の大きさと比較して、混紡、交撚、混綿はもち
ろんのこと、交織、交編においても組織が非常に緻密か
つ均一であるためと考えられる。 【0025】前記天然繊維の具体例としては、たとえば
綿、麻などの植物繊維や、羊毛、らくだ毛、山羊毛、絹
などの動物繊維など、また化学繊維の具体例としては、
たとえばビスコースレーヨン繊維、キュプラ繊維などの
再生繊維、アセテート繊維などの半合成繊維、あるいは
ナイロン繊維、ポリエステル繊維、アクリル繊維などの
合成繊維などがあげられるが、これらに限定されるもの
ではない。これらの天然繊維や化学繊維は単独でハロゲ
ンSb含有繊維と複合してもよく、2種以上でハロゲンSb
含有繊維と複合してもよい。 【0026】本発明に用いるハロゲンSb含有繊維は、無
機金属化合物などの難燃剤を多量に含むものであるが、
製造に際しては無機金属化合物などの難燃剤を振動ミル
などで充分粉砕し、粒径を2μm 以下に揃えることによ
り、ノズル詰まりや糸切れなどの紡糸上のトラブルを起
こすことなく、またはあまり起こすことなく、通常の紡
糸方法で製造することができる。 【0027】難燃繊維複合体を製造する方法としては、
単繊維の状態で混綿したり、混紡したりしてもよく、交
撚してもよく、それぞれの糸を製造したのち交織、交編
してもよく、紡績のときに固まりにしてスラブやネップ
にしたり、巻きつけたりしてもよい。 【0028】なお本発明における繊維複合体とは、長繊
維、短繊維のごときいわゆる繊維のみならず、糸、織
物、編物、不織布などのごとき繊維製品をも含む概念で
ある。 【0029】本発明による難燃繊維複合体には必要に応
じて、帯電防止剤、熱着色防止剤、耐光性向上剤、白度
向上剤、失透性防止剤などを含有せしめてもよいことは
当然のことである。 【0030】このようにしてえられる本発明による難燃
繊維複合体は、所望の難燃性を有し、しかも混合する他
の繊維の視感、風合、吸湿性、耐洗濯性、耐久性などの
特性を併有している。 【0031】以下、実施例をあげて本発明をさらに詳し
く説明するが、本発明はかかる実施例のみに限定される
ものではない。なお実施例における繊維の難燃性は酸素
指数法(LOI法) によって下記のようにして測定した。こ
れは、一般に繊維の難燃性は織物の状態で測定、評価さ
れているが、織物では糸の撚数、太さ、打込本数などに
より燃焼性に差を生じ、繊維自体の難燃性を正しく評価
しえないためである。 【0032】(燃焼性) 所定の割合で混綿した綿を2g 取り、これを8等分して
約6cmのコヨリを8本作って酸素指数試験器のホルダー
に直立させ、この試料が5cm燃え続けるのに必要な最小
酸素濃度を測定し、これをLOI 値とした。LOI 値が大き
い程燃えにくく、難燃性が高い。 【0033】製造例1〜2 アクリロニトリル49.0%および塩化ビニル51.0%よりな
る共重合体(ハロゲン含有率29%)をアセトンに樹脂濃
度で27.0%になるように溶解した。えられた樹脂溶液の
一部をアセトンで3倍に希釈した液に、三酸化アンチモ
ンを固形分濃度が50%になるように加え、振動ミルを用
いて分散させた。この分散液を三酸化アンチモンが樹脂
に対し20%になるように前記樹脂溶液に添加混合して、
紡糸原液を調製した。 【0034】えられた紡糸原液をノズル孔径 0.08 mmお
よび孔数 300ホールのノズルを用い、30%アセトン水溶
液中へ押出し、水洗したのち 120℃で乾燥し、ついで3
倍に熱延伸して、さらに 140℃で5分間熱処理を行なう
ことにより、ハロゲンSb含有モダアクリル繊維をえた
(製造例1)。 【0035】三酸化アンチモンのかわりに、酸化マグネ
シウムを樹脂に対して10%添加したものを同様にして紡
糸し、モダアクリル繊維をえた(製造例2)。 【0036】参考例1〜4および比較例1〜9 製造例1でえられたハロゲンSb含有モダアクリル繊維お
よび製造例2でえられたモダアクリル繊維それぞれと綿
とを表1に示す割合で混綿し、燃焼性試験用試料を作製
し、LOI 値を測定した。それらの結果を表1に示すとと
もに図1に示す。 【0037】また繊維複合体が綿としての特徴(視感、
風合など)を有するか否かについて官能試験を行なっ
た。それらの結果を表1に示す。なお表1中の○は綿と
しての特徴(吸湿性)を有する、×は有しないことを示
す。 【0038】 【表1】【0039】表1および図1の結果から明らかなよう
に、製造例1のハロゲンSb含有モダアクリル繊維および
製造例2のモダアクリル繊維は、単独では製造例2の繊
維の方が難燃性が優れているものの、これらをそれぞれ
綿と混綿し、繊維複合体としたばあいには、逆にハロゲ
ンSb含有モダアクリル繊維を用いた方が製造例2のモダ
アクリル繊維を用いたものより難燃性の低下が非常に少
なく、綿の混合割合が15部以上では高いLOI 値を示し、
難燃性が優れていることがわかる。 【0040】参考例5〜6および比較例10〜11 製造例1、2でえられたモダアクリル繊維のそれぞれ70
部と綿30部とを混合した繊維複合体の紡績糸(30/2)
よりなる経50本/吋×緯30、40、50本/吋の平織試織布
(それぞれ参考例5および比較例10)を、消防法に規定
される方法で防炎試験した結果、製造例1の繊維を用い
たものは合格し、製造例2の繊維を用いたものは不合格
であった。 【0041】また、製造例1、2でえられたモダアクリ
ル繊維100 %の紡績糸(20/1)を130 本/吋になるよ
うに緯糸として用い、綿100 %の紡績糸(30/1)を85
本/吋になるように経糸として用い、モダアクリル繊維
/綿が重量比で50/50の交織平織織物(それぞれ参考例
6および比較例11)を、消防法に規定される方法で防炎
試験した結果、製造例1の繊維を用いたものは合格し、
製造例2の繊維を用いたものは不合格であった。 【0042】以上のことから、混紡でも交織でも同様の
効果を示すことがわかる。 【0043】製造例3〜12 アクリロニトリル50%、塩化ビニル34%、塩化ビニリデ
ン15%およびメタクリルスルホン酸ソーダ 1.0%よりな
る共重合体(ハロゲン含有率30.3%)をジメチルホルム
アミドに樹脂濃度が25%になるように溶解した。えられ
た溶液に、製造例1と同様にしてえられた三酸化アンチ
モンの振動ミル分散液を、三酸化アンチモンが樹脂に対
して0%、2%、6%、8%、10%、12%、15%、20
%、50%、70%になるように添加混合し(それぞれ製造
例3〜12)、紡糸原液を調製した。 【0044】えられた原液を60%ジメチルホルムアミド
水溶液中へ押出したほかは製造例1と同様な方法で紡糸
し、モダアクリル繊維をえた。なおそのばあいの紡糸性
は、製造例12のばあいにノズルが詰まり、糸切れが発生
したほかは良好であった。 【0045】実施例1〜2、参考例7〜11および比較例
12〜14 製造例3〜12でえられたモダアクリル繊維それぞれ50部
と綿50部とを混綿し、繊維複合体をえた。 【0046】えられた繊維複合体のLOI 値を測定し、混
綿しないモダアクリル繊維単独のLOI 値との差を求め
た。それらの結果を表2に示す。 【0047】 【表2】 【0048】表2の結果より、三酸化アンチモンの添加
量が6%以上のばあい(製造例5〜12でえられたものを
使用したばあい)には、明らかにLOI 値の低下の減少が
認められることがわかる。しかし製造例3〜12で説明し
たように、三酸化アンチモンの添加量が70%になると、
ノズル詰まり、糸切れなどの紡糸上の問題が発生する。 【0049】参考例12 製造例10でえられた三酸化アンチモンを20%添加したモ
ダアクリル繊維60部と綿以外の表3に示す種々の繊維40
部とを混綿し、複合繊維をえた。 【0050】えられた繊維複合体のLOI 値と混綿しない
モダアクリル繊維単独のLOI 値とを測定し、その差を求
めた。それらの結果を表3に示す。 【0051】比較例15 製造例10で用いた三酸化アンチモンにかえて、メタスズ
酸を樹脂に対し20%になるように添加した以外は製造例
10と同様に紡糸して、モダアクリル繊維をえた。えられ
たモダアクリル繊維を用いて参考例12と同様にして混綿
し、繊維複合体をえた。 【0052】えられた繊維複合体のLOI 値と混綿しない
モダアクリル繊維単独のLOI 値とを測定し、その差を求
めた。それらの結果を表3に示す。 【0053】 【表3】 【0054】表3の結果から、製造例10でえられたモダ
アクリル繊維を用いた繊維複合体(参考例12)は、比較
例15の繊維複合体と比較してLOI 値の低下が少ないこと
がわかる。 【0055】 【発明の効果】本発明による難燃繊維複合体を用いる
と、所望の難燃性を有し、しかも単一の難燃性繊維のみ
からではえがたい、視感、風合、吸湿性、耐洗濯性、耐
久性などの特徴を持ったインテリア、衣料および寝具用
繊維製品がえられ、消費者のますます多様化し、高度化
する要求にこたえることができるという効果がえられ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite of a halogen-containing fiber reinforced with a flame retardant, which is highly flame-retarded, and another fiber, which is excellent in feeling and hygroscopicity. And a method for producing a flame-retardant fiber composite having flame retardancy. More specifically, a halogen-containing fiber containing a large amount of an Sb compound as a flame retardant, and at least one selected from the group consisting of natural fibers and chemical fibers.
The present invention relates to a method for producing a flame-retardant fiber composite obtained by compounding a kind of fiber. In recent years, there has been a strong demand for flame retardancy not only in interiors, but also in textiles for clothing and bedding, and in addition to the flame retardancy, visual sensation, feeling, moisture absorption, washing resistance, and the like. Demands for performance such as durability are also increasing. [0003] Conventionally, research on flame retardancy of fibers has been carried out on single fibers of specific fibers such as polyester fibers and viscose rayon fibers, mainly on modacrylic fibers and polychloral fibers. Some of the products alone have excellent flame retardant performance, but at present they hardly meet the diversifying and sophisticated demands of consumers. Therefore, blending, blending, weaving, and the like of the flame-retardant fiber and other fibers are inevitably required. However, there are few studies on flame-retardation of composite fibers in which two or more kinds of different fibers are mixed. [0004] For example, a composite fiber obtained by mixing a phosphorus-containing polyester fiber and an acrylonitrile fiber (Japanese Patent Publication No. 52-2)
No. 1612) and a composite fiber obtained by mixing stannic acid and antimonic acid-containing polychloral fiber with polyester fiber, acrylic fiber, cotton, etc. (JP-A-53-6617) is effective. It is not enough in terms of flame retardancy, feeling, hygroscopicity, etc. [0005] The present invention addresses the increasingly diversified and sophisticated demands of consumers for flame retardancy, visual sensation, feeling, moisture absorption, washing resistance, durability and the like. This was done to solve the problem of no fibers being produced. Means for Solving the Problems The inventors of the present invention have made intensive studies in view of the above circumstances and as a result, have found that a fiber comprising a halogen-containing polymer containing a large amount of an Sb compound is different from other combustible fibers. It has been found that when mixed, a flame-retardant fiber composite is obtained in which the degree of decrease in flame retardancy is extremely small as compared with conventional flame-retardant fibers, and the present invention has been completed. That is, the present invention relates to acrylonitrile 30
Up to 70% (% by weight, the same applies hereinafter), halogen-containing vinyl
70 to 30% and vinyl-based monomer copolymerizable with them
8% to the copolymer consisting of 0 to 10%
A fiber obtained by melt-spinning containing an Sb compound having a particle size of at least 12% and less than 2 μm (hereinafter, halogen Sb)
With respect to 85 to 15 parts (also referred to as “parts by weight”, hereinafter the same), at least one kind of fiber (hereinafter, also referred to as “other fibers”) selected from the group consisting of natural fibers and chemical fibers
85 parts A relates preparation <br/> flame retardant fiber composite, characterized in that Maseru contains, has desired flame retardancy, and luminous, texture, moisture absorption, resistance to washing, A flame-retardant fiber composite that satisfies diversified and sophisticated demands of consumers such as durability
It relates to a method of manufacturing . [0008] The flame-retardant fiber composite is obtained by blending or blending a halogen-containing Sb-containing fiber with another fiber.
Sb-containing fibers and other fibers intertwisted, yarns produced using the blended or blended yarns, or interwoven or interwoven knitted fabrics produced using the intertwisted yarns, and combinations thereof. It is a concept that includes what is obtained by In the present invention, acrylonitrile 30-70
%, Halogen-containing vinyl monomer 70 to 30% and these
And the copolymerizable vinyl monomer 0-10% than styrenesulfonate, a particle size of less than 12% more than 8% relative to the copolymer 2
A fiber containing an Sb compound having a size of not more than μm is used. Acrylonitrile 30-70 used in the present invention
%, Halogen-containing vinyl monomer 70 to 30% and these
And Examples of the copolymerizable vinyl consisting monomer 0-10% copolymer, A acrylonitrile - vinylidene chloride, acrylonitrile - vinyl chloride, acrylonitrile - vinyl chloride - vinylidene chloride, acrylonitrile - vinyl bromide , Acrylonitrile-vinylidene chloride-vinyl bromide, copolymers of acrylonitrile with halogen-containing vinyl monomers such as acrylonitrile-vinyl chloride-vinyl bromide, vinyl chloride, vinylidene chloride, vinyl bromide,
Halogen-containing vinyl monomers such as vinylidene bromide
Etc. copolymers of species or with acrylonitrile and copolymerizable with these vinyl monomer but is exemplified, but the invention is not limited thereto. Or it may be used by appropriately mixing prior Symbol copolymer. Note that the acrylic
Ronitrile 30-70%, halogen-containing vinyl monomer 70-
30% and vinyl monomers 0 to 10 copolymerizable therewith
% Does not contain partially acetalized polyvinyl alcohol in any form. The copolymerizable vinyl monomers include, for example, acrylic acid, esters thereof, methacrylic acid, esters thereof, acrylamide, methacrylamide, vinyl acetate, vinylsulfonic acid, salts thereof, methacrylsulfonic acid, salts thereof , Styrene sulfonic acid, salts thereof, and the like, and one or a mixture of two or more thereof can be used. [0012] Before Kia acrylonitrile 30% to 70%, the fibers from the consisting co polymer of halogen-containing vinyl monomers from 70 to 30% and their co-polymerizable vinyl monomer 0-10%
Is preferred because it has the desired texture of acrylic fibers while having the desired flame retardancy. When at least one of the copolymerizable vinyl monomers is a sulfonic acid group-containing vinyl monomer, the dyeability is improved, which is preferable. The acrylonitrile 30-70%,
70-30% of a vinyl monomer containing a logene and co-weight with them
In case of a vinyl halide-containing organic vinyl monomer amount of the co-polymer in consisting monomer 0 to 10% is less than 30%, fiber becomes difficult to flame retarded, also more than 70% In addition, properties such as physical properties (strength, elongation, heat resistance, etc.), dyeing properties, feeling, etc. of the produced fibers become insufficient, and both are not preferred. The particle size used in the present invention is adjusted to 2 μm or less.
The Sb compound is used as a flame retardant, and specific examples thereof include antimony oxide (Sb 2 O 3 , Sb
Etc. 2 O 4, Sb 2 O 5 ), antimony acid, inorganic antimony compounds such as antimony oxychloride and the like, but is not limited thereto. These may be used alone or in combination of two or more. Acrylonitrile 30-70%, containing halogen
70 to 30% of vinyl monomer and vinyl copolymerizable with them
The ratio of the Sb compound to the copolymer composed of 0 to 10% of the phenyl-based monomer is 8% or more and less than 12%. If the amount is less than 6%, it is necessary to increase the mixing ratio of the halogen Sb-containing fiber in the flame retardant fiber composite in order to obtain the flame retardancy required for the flame retardant fiber composite. When the mixing ratio of the halogen-containing Sb-containing fiber is increased in this way, it becomes difficult to obtain performances other than the flame retardancy of the flame-retardant fiber composite, such as sight, feeling, moisture absorption, washing resistance, and durability. . If the amount exceeds 50%, nozzle clogging during fiber production and fiber properties (strength, elongation, etc.)
This is undesirable because it causes problems in the production and quality of highly flame-retardant fibers. In particular, when the strength of the flame-retardant fiber and the good properties of the flame-retardant fiber composite and knitting properties are required, the ratio of the Sb compound is 6% or more.
%, More preferably 8% or more and less than 12%. When the flame retardant fiber composite is required to have a high degree of flame retardancy and yarn formability, the ratio of the Sb compound is preferably 12 to 40%, more preferably 12 to 30%. However, less than 8% and 12% or more are outside the scope of the present invention. In the present invention, acrylonitrile 30 to 70
%, Halogen-containing vinyl monomer 70 to 30% and these
It may be used in combination with another flame retardant as long as the amount of the Sb compound is maintained at 8% or more and less than 12% with respect to a copolymer composed of 0 to 10% of a vinyl monomer copolymerizable with the above. Other flame retardants which can be used in combination with the Sb compound include, for example, aromatic halides such as hexabromobenzene, aliphatic halides such as paraffin chloride, and tris (2,3-dichloropropyl). halogen-containing phosphorus compounds such as phosphates, organic phosphorus compounds such as dibutyl amino phosphate, inorganic phosphorus compounds such as ammonium polyphosphate, MgO, Mg (OH) 2, inorganic magnesium compound such as MgCO 3, stannic oxide, metastannic acid,
Examples thereof include inorganic tin compounds such as stannous oxyhalide, stannic oxyhalide, and stannous hydroxide. The use amount of the other flame retardant is preferably 0 to 10%. In the present invention, the halogen Sb-containing fiber
15 parts, preferably 60 to 15 parts, more preferably 60 to 20
Parts, particularly preferably 50 to 20 parts, and at least one fiber 15 to at least one selected from the group consisting of natural fibers and chemical fibers.
85 parts, preferably 40 to 85 parts, more preferably 40 to 80 parts
From parts, particularly preferably from 50 to 80 parts, the flame-retardant fiber composite according to the invention is produced. In the present invention, the proportion of the halogen Sb-containing fiber and at least one selected from the group consisting of natural fibers and chemical fibers depends on the flame retardancy, visual feeling, feeling, and moisture absorption required for the final product. It is determined by performance such as washing resistance and durability. The usage ratio is determined by the type and composition ratio of the halogen-containing Sb-containing fiber, and when another flame retardant is used, the type and amount of the flame retardant, the type and combination of the fibers to be mixed, and the like. When the content of the halogen Sb-containing fiber is less than 15 parts, that is, when the ratio of the natural fiber or the chemical fiber to be mixed exceeds 85 parts, the flame retardancy of the flame-retardant fiber composite is insufficient.
When the ratio of the natural fiber and the chemical fiber to be mixed is more than 85 parts and the ratio of the natural fiber and the chemical fiber to be mixed is more than 85 parts, other flame sensation, feeling, feeling, moisture absorption, Performances such as washability and durability are not sufficient, and neither is preferable. In order for the flame-retardant fiber composite according to the present invention to have the desired flame retardancy and to clarify the characteristics of the natural fiber and the chemical fiber to be mixed, the fiber containing halogen Sb should have a content of 60 to 60%.
It is preferable that the ratio of the natural fiber and the chemical fiber to be mixed is 40 to 85 parts in 15 parts. When the other fiber is a natural fiber, it is preferable to mix 40 to 85 parts of the natural fiber with respect to 60 to 15 parts of the halogen-containing Sb fiber, and when the other fiber is a chemical fiber, it is particularly preferable. It is preferable to mix 50 to 80 parts of the halogen Sb-containing fiber with 50 to 80 parts of the chemical fiber. The reason why the flame-retardant fiber composite according to the present invention has excellent flame retardancy is that the halogen-containing Sb-containing fiber contains a large amount of an Sb compound which produces a gas-type flame-retardant effect. It is presumed that gases such as hydrogen hydride, halogen, and antimony halide are generated at a relatively low temperature, and the incombustible decomposition products cover combustible fibers. Further, flame retardancy blend of flame retardant fiber composite according to the present invention, without depending交撚, cotton mixing, union, the composite method such as mixed knitting, show substantially the same performance, flameproofing test It is considered that the texture is very dense and uniform not only in blending, twisting, and blending but also in weaving and knitting, as compared with the size of the flame that comes into contact with the flame. Specific examples of the natural fibers include plant fibers such as cotton and hemp, and animal fibers such as wool, camel, goat wool, and silk. Specific examples of the chemical fibers include:
Examples include, but are not limited to, regenerated fibers such as viscose rayon fibers and cupra fibers, semi-synthetic fibers such as acetate fibers, and synthetic fibers such as nylon fibers, polyester fibers, and acrylic fibers. These natural fibers and chemical fibers may be singly combined with a halogen-containing Sb-containing fiber.
It may be combined with the contained fiber. The halogen Sb-containing fiber used in the present invention contains a large amount of a flame retardant such as an inorganic metal compound.
At the time of production, a flame retardant such as an inorganic metal compound is sufficiently pulverized with a vibration mill or the like, and the particle size is adjusted to 2 μm or less, so that there is little or no trouble in spinning such as nozzle clogging and thread breakage. Can be produced by a usual spinning method. As a method for producing a flame-retardant fiber composite,
It may be blended or blended in the state of a single fiber, may be twisted, may be twisted, and may be cross-woven or cross-knitted after each yarn is manufactured. Or may be wrapped. The fiber composite in the present invention is a concept including not only so-called fibers such as long fibers and short fibers, but also fiber products such as yarn, woven fabric, knitted fabric and non-woven fabric. [0029] Optionally the flame retardant fiber composite according to the present invention, an antistatic agent, a thermal coloring preventing agent, light resistance improver, whiteness enhancers, it may be contained and devitrification inhibitor Is a matter of course. The flame-retardant fiber composite according to the present invention thus obtained has the desired flame retardancy, and furthermore, the sensation, feeling, moisture absorption, washing resistance and durability of other fibers to be mixed. Etc. Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to only these Examples. The flame retardancy of the fibers in the examples was measured by the oxygen index method (LOI method) as follows. In general, the flame retardancy of fibers is measured and evaluated in the state of a woven fabric, but in woven fabrics, the combustibility differs depending on the number of twists, thickness, number of threads, etc. Is not able to be evaluated correctly. (Flammability) Take 2 g of cotton mixed at a predetermined ratio, divide it into eight equal parts, make eight koyori of about 6 cm, make them stand upright in the holder of the oxygen index tester, and keep the sample burning 5 cm. The minimum oxygen concentration required for the measurement was measured, and this was defined as the LOI value. The higher the LOI value, the less it burns and the higher the flame retardancy. Production Examples 1-2 Copolymers of acrylonitrile (49.0%) and vinyl chloride (51.0%) (halogen content: 29%) were dissolved in acetone to a resin concentration of 27.0%. Antimony trioxide was added to a liquid obtained by diluting a part of the obtained resin solution with acetone three times so that the solid content concentration became 50%, and dispersed using a vibration mill. This dispersion was added to and mixed with the resin solution so that antimony trioxide was 20% of the resin.
A spinning stock solution was prepared. The obtained spinning stock solution was extruded into a 30% acetone aqueous solution using a nozzle having a nozzle hole diameter of 0.08 mm and a number of holes of 300, washed with water, dried at 120 ° C., and then dried.
This was heat-stretched twice and further heat-treated at 140 ° C. for 5 minutes to obtain a halogen Sb-containing modacrylic fiber (Production Example 1). In place of antimony trioxide, a resin obtained by adding 10% of magnesium oxide to a resin was spun similarly to obtain a modacrylic fiber (Production Example 2). Reference Examples 1-4 and Comparative Examples 1-9 Each of the halogen-Sb-containing modacrylic fiber obtained in Production Example 1 and the modaacryl fiber obtained in Production Example 2 was mixed with cotton in the ratio shown in Table 1, Samples for flammability test were prepared and LOI values were measured. The results are shown in Table 1 and FIG. The characteristics of the fiber composite as cotton (visual feeling,
Organoleptic test was conducted to determine whether or not it had a feeling. Table 1 shows the results. In Table 1, ○ indicates that it has the characteristics (hygroscopicity) of cotton, and X indicates that it does not. [Table 1] As is evident from the results shown in Table 1 and FIG. 1, the halogen-Sb-containing modacrylic fiber of Production Example 1 and the modaacrylic fiber of Production Example 2 alone have superior flame retardancy to the fiber of Production Example 2. However, when these are mixed with cotton to form a fiber composite, on the contrary, the use of halogen Sb-containing modacrylic fiber has a lower flame retardancy than that using the modacrylic fiber of Production Example 2. Very low, a high LOI value when the mixing ratio of cotton is more than 15 parts,
It can be seen that the flame retardancy is excellent. Reference Examples 5-6 and Comparative Examples 10-11 Each of the modacrylic fibers obtained in Production Examples 1 and 2 was 70
Yarn of fiber composite with 30 parts of cotton and 30 parts of cotton (30/2)
As a result of a flameproof test of a plain woven test cloth of 50 / inch × 30, 40/50 / inch (Reference Example 5 and Comparative Example 10) formed by the method specified in the Fire Service Law, the production example was obtained. The one using the fiber of No. 1 passed, and the one using the fiber of Production Example 2 failed. The spun yarn (20/1) of 100% modaacrylic fiber obtained in Production Examples 1 and 2 was used as weft yarn at a rate of 130 yarns / inch, and the spun yarn of 100% cotton (30/1). To 85
A cross-woven plain woven fabric (Reference Example 6 and Comparative Example 11, respectively) in which the weight ratio of modacrylic fiber / cotton was 50/50 was used as a warp so as to give a book / inch, and a flameproof test was conducted by the method specified by the Fire Service Law. As a result, those using the fiber of Production Example 1 passed,
Those using the fibers of Production Example 2 were rejected. From the above, it can be seen that the same effect is obtained in both the mixed spinning and the weaving. Production Examples 3 to 12 A copolymer (halogen content: 30.3%) consisting of 50% acrylonitrile, 34% vinyl chloride, 15% vinylidene chloride and 1.0% sodium methacrylsulfonate was added to dimethylformamide at a resin concentration of 25%. It dissolved so that it might become. Into the obtained solution, a vibration mill dispersion of antimony trioxide obtained in the same manner as in Production Example 1 was added, with antimony trioxide being 0%, 2%, 6%, 8%, 10%, 12% %, 15%, 20
%, 50%, and 70% (manufacturing examples 3 to 12, respectively) to prepare spinning stock solutions. The obtained stock solution was spun in the same manner as in Production Example 1 except that the solution was extruded into a 60% aqueous dimethylformamide solution to obtain a modacrylic fiber. In this case, the spinnability was good except that in the case of Production Example 12, the nozzle was clogged and the yarn was broken. Examples 1-2, Reference Examples 7-11 and Comparative Examples
12-14 Each of 50 parts of the modacrylic fiber obtained in Production Examples 3-12 and 50 parts of cotton were mixed to obtain a fiber composite. The LOI value of the obtained fiber composite was measured, and the difference from the LOI value of the non-cottonized modacrylic fiber alone was determined. Table 2 shows the results. [Table 2] From the results in Table 2, it can be seen that when the amount of antimony trioxide added is 6% or more (when those obtained in Production Examples 5 to 12 are used), the decrease in LOI value is clearly reduced. It turns out that is recognized. However, as described in Production Examples 3 to 12, when the addition amount of antimony trioxide reaches 70%,
Spinning problems such as nozzle clogging and yarn breakage occur. Reference Example 12 60 parts of a modacrylic fiber containing 20% of antimony trioxide obtained in Production Example 10 and various fibers 40 shown in Table 3 other than cotton
And a mixed fiber was obtained. The difference between the LOI value of the obtained fiber composite and the LOI value of the non-cottonized modacrylic fiber alone was measured. Table 3 shows the results. Comparative Example 15 The procedure of Preparation Example 10 was repeated, except that metastannic acid was added to the resin in an amount of 20% in place of the antimony trioxide used in Preparation Example 10.
The fiber was spun in the same manner as in Example 10 to obtain a modacrylic fiber. Using the obtained modacrylic fiber, cotton was mixed in the same manner as in Reference Example 12 to obtain a fiber composite. The difference between the LOI value of the obtained fiber composite and the LOI value of the non-cottonized modacrylic fiber alone was measured. Table 3 shows the results. [Table 3] From the results in Table 3, it can be seen that the fiber composite using the modacrylic fiber obtained in Production Example 10 (Reference Example 12) has a smaller decrease in LOI value as compared with the fiber composite of Comparative Example 15. Recognize. When the flame-retardant fiber composite according to the present invention is used, it has a desired flame retardancy and is hardly evident from only a single flame-retardant fiber, and has a sensation of feeling, feeling, Textile products for interiors, clothing and bedding having characteristics such as moisture absorption, washing resistance, and durability can be obtained, and the effect of meeting the increasingly diverse and sophisticated demands of consumers can be obtained.

【図面の簡単な説明】 【図1】図1は製造例1〜2でえられたモダアクリル繊
維と綿とを混綿してLOI 値を測定したばあいの、混綿割
合とLOI 値との関係を示すグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the relationship between the blended cotton ratio and the LOI value when measuring the LOI value by blending the modacrylic fiber obtained in Production Examples 1 and 2 with cotton. It is a graph.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭48−73521(JP,A) 特開 昭52−99399(JP,A) 特開 昭53−6617(JP,A) 特公 昭57−17964(JP,B2) 「高分子」22(253)(1973)P.218 −223   ────────────────────────────────────────────────── ─── Continuation of front page    (56) References JP-A-48-73521 (JP, A)                 JP-A-52-99399 (JP, A)                 JP-A-53-6617 (JP, A)                 Tokiko Sho 57-17964 (JP, B2)                 "Polymer" 22 (253) (1973) p. 218               −223

Claims (1)

(57)【特許請求の範囲】 1 アクリロニトリル30〜70重量%、ハロゲン含有ビニ
ル系単量体70〜30重量%およびこれらと共重合可能なビ
ニル系単量体0〜10重量%よりなる共重合体に、該重合
体に対して8重量%以上12重量%未満の粒径を2μm以
下に揃えたSb化合物を含有させて溶解紡糸してえられ
繊維85〜15重量部に対して、天然繊維および化学繊維よ
りなる群から選ばれた少なくとも1種の繊維15〜85重量
部を含ませることを特徴とする難燃繊維複合体の製法2 共 重合可能なビニル系単量体の少なくとも1つがス
ルホン酸基含有ビニル系単量体である特許請求の範囲第
項記載の製法 前記重合体にSb化合物を含有させた繊維60〜15重量
部に対して、天然繊維および化学繊維よりなる群から選
ばれた少なくとも1種の繊維40〜85重量部を含むように
した特許請求の範囲第1項記載の製法 前記重合体にSb化合物を含有させた繊維50〜20重量
部に対して、天然繊維および化学繊維よりなる群から選
ばれた少なくとも1種の繊維50〜80重量部を含むように
した特許請求の範囲第項記載の製法 前記重合体にSb化合物を含有させた繊維60〜15重量
部に対して、天然繊維40〜85重量部を含むようにした特
許請求の範囲第項記載の製法 前記重合体にSb化合物を含有させた繊維50〜20重量
部に対して、化学繊維50〜80重量部を含むようにした特
許請求の範囲第項記載の製法
(57) [Claims] 1 Acrylonitrile 30-70% by weight, halogen-containing vinyl
70 to 30% by weight of vinyl monomers and copolymerizable copolymers
A copolymer comprising 0 to 10% by weight of a phenyl-based monomer, having a particle size of 8% by weight or more and less than 12% by weight based on the
With respect to 85 to 15 parts by weight of the fiber obtained by melt spinning containing the Sb compound arranged below, 15 to 85 parts by weight of at least one kind of fiber selected from the group consisting of natural fibers and chemical fibers is used. preparation of the flame retardant fiber composite, characterized by containing Maseru. 2. The method according to claim 1, wherein at least one of the copolymerizable vinyl monomers is a sulfonic acid group-containing vinyl monomer.
The method according to claim 1 . (3 ) At least one fiber selected from the group consisting of natural fibers and chemical fibers is contained in an amount of 40 to 85 parts by weight with respect to 60 to 15 parts by weight of the fiber containing the Sb compound in the polymer. 2. The method according to claim 1, wherein (4) The polymer containing the Sb compound in an amount of 50 to 20 parts by weight, wherein 50 to 80 parts by weight of at least one kind of fiber selected from the group consisting of natural fibers and chemical fibers is contained. 4. The method according to claim 3, wherein 5. The method according to claim 3 , wherein natural fibers are contained in an amount of 40 to 85 parts by weight based on 60 to 15 parts by weight of the fiber containing the Sb compound in the polymer. 6. The method according to claim 4, wherein 50 to 80 parts by weight of a chemical fiber is contained with respect to 50 to 20 parts by weight of a fiber containing an Sb compound in the polymer.
JP3292880A 1984-10-05 1991-11-08 Manufacturing method of flame retardant fiber composite Expired - Lifetime JP2593987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3292880A JP2593987B2 (en) 1984-10-05 1991-11-08 Manufacturing method of flame retardant fiber composite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59209967A JPS6189339A (en) 1984-10-05 1984-10-05 Composite fire retardant fiber
JP3292880A JP2593987B2 (en) 1984-10-05 1991-11-08 Manufacturing method of flame retardant fiber composite

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59209967A Division JPS6189339A (en) 1984-10-05 1984-10-05 Composite fire retardant fiber

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7006056A Division JP2898563B2 (en) 1995-01-18 1995-01-18 Flame retardant method for combustible fibers

Publications (2)

Publication Number Publication Date
JPH0578936A JPH0578936A (en) 1993-03-30
JP2593987B2 true JP2593987B2 (en) 1997-03-26

Family

ID=16581644

Family Applications (5)

Application Number Title Priority Date Filing Date
JP59209967A Granted JPS6189339A (en) 1984-10-05 1984-10-05 Composite fire retardant fiber
JP29288991A Expired - Fee Related JP2957779B2 (en) 1984-10-05 1991-11-08 Construction method of precast structure and precast concrete member used for the construction
JP3292879A Expired - Lifetime JP2593986B2 (en) 1984-10-05 1991-11-08 Manufacturing method of flame retardant fiber composite
JP3292880A Expired - Lifetime JP2593987B2 (en) 1984-10-05 1991-11-08 Manufacturing method of flame retardant fiber composite
JP3292878A Expired - Lifetime JP2593985B2 (en) 1984-10-05 1991-11-08 Textile products for bedding

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP59209967A Granted JPS6189339A (en) 1984-10-05 1984-10-05 Composite fire retardant fiber
JP29288991A Expired - Fee Related JP2957779B2 (en) 1984-10-05 1991-11-08 Construction method of precast structure and precast concrete member used for the construction
JP3292879A Expired - Lifetime JP2593986B2 (en) 1984-10-05 1991-11-08 Manufacturing method of flame retardant fiber composite

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP3292878A Expired - Lifetime JP2593985B2 (en) 1984-10-05 1991-11-08 Textile products for bedding

Country Status (1)

Country Link
JP (5) JPS6189339A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189339A (en) * 1984-10-05 1986-05-07 鐘淵化学工業株式会社 Composite fire retardant fiber
JPS63126913A (en) * 1986-11-17 1988-05-30 Mitsubishi Rayon Co Ltd Highly flame-retardant acrylic fiber having excellent light resistance and transparency and production thereof
JPH0194478U (en) * 1987-12-11 1989-06-21
JPH0194479U (en) * 1987-12-14 1989-06-21
JP2898563B2 (en) * 1995-01-18 1999-06-02 鐘淵化学工業 株式会社 Flame retardant method for combustible fibers
JP3477991B2 (en) * 1996-05-13 2003-12-10 鐘淵化学工業株式会社 Flame retardant fabric with improved heat resistance
JP3900539B2 (en) * 1996-05-13 2007-04-04 株式会社カネカ Flame retardant fabric
WO2003080909A1 (en) * 2002-03-25 2003-10-02 Kaneka Corporation Interlaced fabric with high flame retardancy
EP1498522B1 (en) 2002-03-25 2010-09-08 Kaneka Corporation Flame resistant union fabric
JP4308820B2 (en) * 2003-04-28 2009-08-05 株式会社カネカ Flame retardant fiber composite and fabric produced using the same
US20070190877A1 (en) * 2004-07-15 2007-08-16 Wataru Mio Flame retardant knit fabric
WO2006040873A1 (en) * 2004-10-08 2006-04-20 Kaneka Corporation Flame-retardant synthetic fiber, flame-retardant fiber composite, and upholstered furniture product made with the same
JP2008190048A (en) * 2005-05-13 2008-08-21 Kaneka Corp Flame-retardant nonwoven fabric and upholstered furniture product using the same
CN102066625B (en) 2008-07-24 2013-03-13 株式会社钟化 Flame-retardant synthetic fiber, flame-retardant fiber assembly, processes for production of both, and textile goods
EP2762618B1 (en) 2011-09-26 2016-08-31 Kaneka Corporation Flameproof spun yarn, fabric, clothes and flameproof work clothes
CN104674416A (en) * 2015-03-06 2015-06-03 陕西元丰纺织技术研究有限公司 Preparation method for modified acrylic fiber flame-retardant fabric

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873521A (en) * 1972-01-11 1973-10-04
JPS5221612B2 (en) * 1973-03-23 1977-06-11
JPS503821A (en) * 1973-05-17 1975-01-16
US4035542A (en) * 1974-05-16 1977-07-12 Celanese Corporation Flame retardant fiber blend containing fibers which if present apart from the admixture undergo burning
JPS5182023A (en) * 1974-12-23 1976-07-19 Kanegafuchi Chemical Ind NANNENSEINISUGURETAAKURIRUKEIGOSEISENI
JPS5182022A (en) * 1974-12-23 1976-07-19 Kanegafuchi Chemical Ind Nannenseinisugureta akurirukeiseni
JPS536617A (en) * 1976-07-07 1978-01-21 Kohjin Co Ltd Composite fibers
JPS53103020A (en) * 1977-02-21 1978-09-07 Toyobo Co Ltd Fibrous flame retarder
JPS5427384A (en) * 1977-08-02 1979-03-01 Kazuo Fushimi Semiconductor detector
JPS5531023U (en) * 1978-08-19 1980-02-28
JPS5717964A (en) * 1980-07-07 1982-01-29 Minolta Camera Co Ltd Dust figure transfer type electrophotographing copying method
JPS58216995A (en) * 1982-06-11 1983-12-16 株式会社日立製作所 Channel handling tool for nuclear fuel
JPS6189339A (en) * 1984-10-05 1986-05-07 鐘淵化学工業株式会社 Composite fire retardant fiber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
「高分子」22(253)(1973)P.218−223

Also Published As

Publication number Publication date
JPS6189339A (en) 1986-05-07
JPH0673893A (en) 1994-03-15
JP2593985B2 (en) 1997-03-26
JPH0593330A (en) 1993-04-16
JP2593986B2 (en) 1997-03-26
JPH0418050B2 (en) 1992-03-26
JP2957779B2 (en) 1999-10-06
JPH0578936A (en) 1993-03-30
JPH0578935A (en) 1993-03-30

Similar Documents

Publication Publication Date Title
US4863797A (en) Flame-retarded composite fiber
US5208105A (en) Flame-retarded composite fiber
JP2593987B2 (en) Manufacturing method of flame retardant fiber composite
US7365032B1 (en) Flame-retardant union fabric
US7351671B2 (en) Union fabric with flame resistance
US5981407A (en) Thermal resistance-improved flame retardant cloth
JP2693129B2 (en) Flame-retardant fiber composite and fabric manufactured using the same
EP1498523A1 (en) Interlaced fabric with high flame retardancy
JP2898563B2 (en) Flame retardant method for combustible fibers
JP2593989B2 (en) Interior textile products
JP2593988B2 (en) Textile products for clothing
JP2812672B2 (en) Manufacturing method of flame retardant fiber composite
JP3004107B2 (en) Flame retardant fiber composite
JPH08158201A (en) Flame retardant fabric excellent in light fastness
JP2505352B2 (en) Composite flame retardant fiber
JP3525237B2 (en) Flame retardant fiber composite using halogen-containing fiber
JPS60110940A (en) Composite fire retardant fiber
JP2505377B2 (en) Composite flame retardant fiber
JPH0611930B2 (en) Composite flame retardant fiber
JP2550266B2 (en) Manufacturing method of composite flame-retardant fiber
JP2968343B2 (en) Composite flame retardant fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term