JP2592740C - - Google Patents
Info
- Publication number
- JP2592740C JP2592740C JP2592740C JP 2592740 C JP2592740 C JP 2592740C JP 2592740 C JP2592740 C JP 2592740C
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- iron loss
- coating
- tension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 81
- 238000000576 coating method Methods 0.000 claims description 45
- 239000011248 coating agent Substances 0.000 claims description 44
- 229910000831 Steel Inorganic materials 0.000 claims description 41
- 239000010959 steel Substances 0.000 claims description 41
- 229910052742 iron Inorganic materials 0.000 claims description 36
- 239000007788 liquid Substances 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 238000005096 rolling process Methods 0.000 claims description 10
- 239000008119 colloidal silica Substances 0.000 claims description 5
- 229910000976 Electrical steel Inorganic materials 0.000 claims 3
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- 238000000137 annealing Methods 0.000 description 40
- 230000005381 magnetic domain Effects 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- WGLPBDUCMAPZCE-UHFFFAOYSA-N trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 10
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 8
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 description 7
- KRHYYFGTRYWZRS-UHFFFAOYSA-N HF Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000001603 reducing Effects 0.000 description 6
- 229910052839 forsterite Inorganic materials 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000005498 polishing Methods 0.000 description 5
- ILRRQNADMUWWFW-UHFFFAOYSA-K Aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 125000004435 hydrogen atoms Chemical class [H]* 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000001965 increased Effects 0.000 description 3
- 230000005389 magnetism Effects 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 238000005121 nitriding Methods 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N HCl Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 238000005261 decarburization Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000004137 magnesium phosphate Substances 0.000 description 2
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- DLYUQMMRRRQYAE-UHFFFAOYSA-N Phosphorus pentoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000002708 enhancing Effects 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000011068 load Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000002195 synergetic Effects 0.000 description 1
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】
本発明は鉄損の極めて低い一方向性電磁鋼板およびその製造方法に関するもの
である。
【0002】
【従来の技術】
一方向性電磁鋼板の製造においてはエネルギー節約の観点から鉄損を低減する
ことが重要である。鉄損を低減する方法としては高磁東密度化、固有抵抗増大、
薄手化等従来から知られている治金的方法に加えて、特開昭55−18566号
公報、特開昭61−117218号公報に開示されている磁区細分化技術、或い
は特開昭49−96920号公報、特開昭53−144419号公報等に示され
ている鏡面化処理等がある。この他、さらに超低鉄損を得る方法として特開昭5
4−43115号公報に示されるような鏡面を有する鋼板に微小歪を付与し、磁
区を細分化する方法がある。しかしこの方法は歪取焼鈍を必要とする巻き鉄心ト
ランス用素材としては焼鈍によって磁区細分化効果が消失するため利用価値がな
いという難点がある。
【0003】
【発明が解決しようする課題】
本発明は、上記方法に比べて鉄損低減効果が大きく、従来にない超低鉄損材が
得られるため、各種鉄心材料としてその用途は広く、中でも歪取焼鈍を必要とす
る巻き鉄心トランス用素材としての利用価値が高い、極めて鉄損の低い一方向性
電磁鋼板およびその製造方法を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
本発明は一定の深さと幅を持った線状または点状の溝を形成した仕上焼鈍済み
の一方向性電磁鋼板の表面被膜を除去し、表面粗度を平均粗さ0.4μm以下の
鏡面に仕上げたもの、或いは平均粗さ0.4μm以下の鏡面を有する仕上焼鈍済
みの一方向性電磁鋼板の表面に上記の溝を形成させた後、張力絶縁被膜を施すこ
とによって鉄損の極めて低い一方向性電磁鋼板を得ようとするものである。従っ
て用途は巻き鉄心トランスに限らず、積み鉄心トランスでも十分効果が期待され
る。即ち、本発明は表面粗度の低減と溝形成による磁区制御の相乗効果によって
、従来にない超低鉄損の一方向性電磁鋼板を得ようとするものである。
【0005】
以下、本発明を詳細に説明する。
本発明に使用する素材は二次再結晶法によりGoss方位を発達させたもので
、その製造方法には特にこだわるものではない。一般的なプロセスは転炉、電気
炉、真空溶解炉等で溶解精錬し、成分調整し、これにインヒビター形成元素等を
若干添加した後、連続鋳造するか或いは通常の鋳型に鋳造後、分塊圧延する方法
でスラブとする。スラブは公知の条件の熱延により、通常3.0mm以下の厚み
のコイルにする。或いは溶鋼を直接急冷凝固させて、薄板にすることも本発明の
本質を変えるものではない。その後熱延板を焼鈍し、或いは焼鈍することなしに
酸洗する。一回冷延工程の場合は、そのまま最終厚みまで圧延する。二回冷延工
程の場合は公知の中間焼鈍を挟んだ二回の圧延で最終厚みとする。その後脱炭焼
鈍し、必要に応じて窒化処理し、焼鈍分離剤を塗布し、仕上焼鈍する。焼鈍分離
剤には通常MgOが用いられ、これにフォルステライト被膜の生成を助けるため
TiO2等の添加をすることがある。さらにB系化合物、Sb系化合物、Na、
K系化合物等を適宜添加することは本発明の本質に影響を与えない。また、Al
2O3、SiO2等の焼鈍分離剤を使用してもよい。
【0006】
本発明ではフォルステライト被膜を作らないほうが都合がよいが、本発明にお
いてフォルステライト被膜の有無は問わない。
方向性電磁鋼板においては、二次再結晶粒の配向性が高いことが重要である。
二次再結晶のための仕上焼鈍は公知の条件で行うが、例えば1200℃の温度で
20時間程度行う。通常の一方向性電磁鋼板の製造では仕上焼鈍後、焼鈍分離剤
を洗い落として製品とするもの、およびこのフォルステライト被膜の上にコーテ
ィングを施して形状矯正焼鈍を行うもの等がある。
【0007】
このような工程で処理した鋼板に公知の方法で歪取焼鈍に耐える磁区制御を行
う。磁区制御の方法としては、例えば特開昭61−117218号公報に示され
る機械的方法による溝形成法があり、また特開昭60−255926号公報に示
されるレーザー照射によって局部的に絶縁被膜を除去した後、酸によって地鉄を
溶解し溝を形成する方法がある。この他、レーザー照射により一定の深さの凹部
を形成する方法を用いてもよいし、歪取焼鈍に耐える磁区制御方法ならば公知の
方法を利用できる。
【0008】
本発明の特徴とするところは、上記の方法で溝を形成した鋼板の表面がある臨
界値以下の粗さの鏡面を有しており、しかもこれに特定範囲の張力を付与するコ
ーティングを施す点にある。ここで鏡面とは粗度平均粗さ0.4μm以下のもの
をいう。鏡面を得る方法として知られているものの一つに電解研磨がある。これ
は鋼板表面の絶縁被膜或いは酸化物を酸等で除去した後、例えば燐酸と無水クロ
ム酸の電解液中で電気的に研磨することで得られる。また化学的に鏡面を得る方
法も知られている。例えば、過酸化水素水中に少量の弗酸を添加した液を使用す
る方法がある。この他、希硫酸、希硝酸、希塩酸を用いる場合も粗度の低い面が
得られる。この他、仕上焼鈍前に塗布される焼鈍分離剤或いは仕上焼鈍雰囲気条
件によっても得られる。
【0009】
本発明においては上記の方法により鏡面を得た後、前述した溝を形成しても類
似の効果が得られる。
次に鋼板に張力を付与する方法について述べる。
一方向性電磁鋼板の圧延方向に張力を付与すると鉄損が低減することはよく知
られている。現在商品化されている製品は鋼板と表面被膜の膨脹係数の差によっ
て生じる張力によって与えられている。本発明においては張力コーティング液と
して、例えば特公昭53−28375号公報に示される無水クロム酸−燐酸アル
ミニウムを主成分とする液、或いは特公昭56−52117号公報に示される無
水クロム酸−燐酸マグネシウムを主成分とする液を鋼板に塗布焼付けすることに
よって張力を付与することができる。この張力は塗布焼付け回数を繰り返すこと
によってさらに増大し、鉄損特性が大幅に改善されるという新たな知見を得た。
以下実験結果をもとにさらに説明する。
【0010】
図1はSi:3.2%を含む板厚0.16mm、磁束密度B8:1.94Tの
一方向性電磁鋼板を特開昭61−117218号公報に示される90〜220k
g/m2の荷重で鋼板に溝を形成し、750℃以上の温度で熱処理する方法によ
って磁区を制御し(本実験では溝深さ13μm、幅50μm、圧延方向に対し7
5°方向の溝間隔5mm、歪取焼鈍850℃×2時間)、表面被膜を除去し、化
学研磨により鋼板表面の平滑度を調整した後、無水クロム酸−燐酸アルミニウム
を主成分とするコーティング液を820℃で焼付けた後の鉄損特性を示したもの
である。図から、平均粗さが0.4μm以下において非常に低い鉄損が得られる
ことが判る。
【0011】
図2はコーティング液の塗布焼付け回数と鉄損の関係を示している。用いた素
材は図1と同じ条件で磁区制御したものである。被膜除去後の鋼板表面の平均粗
さは化学研磨により0.1μm以下とした。この鋼板を10%の希硫酸水に短時
間浸漬し、水洗乾燥した後、無水クロム酸−燐酸アルミニウムを主成分とする液
を片面当たり3g/m2塗布した後乾燥し、820℃×30秒の焼鈍を行い、そ
の後磁気測定した。次いでさらにこのコーティングと熱処理を繰り返し行い、磁
気測定を行った。図から、コーティング焼付処理を重ねると、より鉄損が改善さ
れることが判る。
【0012】
図3はこのコーティング焼付処理回数と鋼板に付与される張力の関係をみたも
のである。張力は鋼板の片面の絶縁被膜を酸により除去した後、鋼板の撓み量を
測定して計算によって求めたものである。焼付処理回数が増える程、張力が大き
くなることが判る。
この張力がさらに鉄損の大幅改善をもたらし、超低鉄損化を果たしているもの
といえる。このコーティング液は無水クロム酸−燐酸アルミニウムを主成分とす
る液、或いは無水クロム酸−燐酸マグネシウムを主成分とする液等公知のものを
使用できる。鋼板との密着性を高める上で鋼板に薄い金属メッキを施してもよい
。
【0013】
次に本発明の限定理由について述べる。
Siは鉄損低減に有効な元素であるが、その上限は4.5%とする。4.5%
を超えると通常の二次再結晶法では脆性等の問題があり、製造が困難になる。
鋼板の表面粗度は図1に示すように0.4μm以下でないと超低鉄損が得られ
ない。鋼板に形成する溝の深さ、幅、間隔については、特公昭62−53579
号公報に示されている。これによると鋼板に形成する溝の深さは5μm超におい
て磁区制御の効果があり、溝の幅は300μmを超えると鉄損の改善代が小さく
なる。また溝の間隔は2〜15mm、好ましくは3〜8mmで圧延方向に対して
45〜90°、好ましくは70〜90°方向がよい。
【0014】
張力絶縁被膜の焼付温度探索結果(板厚0.15mm、付着量3g/m2、焼
付処理回数2回)を図5に示す。これによると750℃超〜950℃、好ましく
は800〜900℃がよいことが判る。750℃以下または950℃超では充分
な張力が得られない。
このコーティング焼付回数は2回以上繰り返すと張力が増大し、鉄損低減効果
が大きい。しかし張力が1.0kg/mm2超得られれば1回でも相当の効果は
望める。
【0015】
【実施例】
以下実施例について述べる。
実施例1
鋼板の地鉄表面に深さ12μm、直径50μm、点と点の距離0.2mmの点
状の溝を圧延方向に対して90°方向に5mm間隔に形成したSi:3.2%を
含む板厚0.15mmの高磁束密度一方向性電磁鋼板(A)、(B)を準備した
。
【0016】
試料(A)は弗酸により表面被膜を除去し、電解研磨によりRaを0.1μm
以下に調整した。次いで5%の希硫酸に浸漬した後、無水クロム酸+燐酸アルミ
ニウム+コロイダルシリカを主成分とするコーティング液を塗布し、800℃×
30秒の焼鈍を行った。次いで同じ条件のコーティングと820℃×30秒の焼
鈍を2回繰り返した。試料Bはコーティングと820℃×30秒の焼鈍を1回実
施した。試料(A)、(B)の被膜の断面写真を図4に示す。試料(A)の地鉄
と被膜の境界が試料(B)に比べてスムーズになっている。
【0017】
磁気特性は次の如くである。
試料(A)は極めて低い鉄損値を示した。
【0018】
実施例2
C:0.054%、Si:3.3%、Mn:0.14%、S:0.007%、
酸可溶性Al:0.030%、N:0.0075%、Cr:0.10%、Sn:
0.05%、残部Feと不可避的不純物からなる鋼塊を1150℃に加熱した後
、板厚1.6mmに熱延した。この熱延板を1100℃で焼鈍した後酸洗し、0
.16mm厚に冷延した。次いで脱炭焼鈍を830℃で湿水素窒素雰囲気中で行
った後、窒化処理を750℃で水素、窒素、アンモニア混合ガス中で行った。次
いで焼鈍分離剤MgOを塗布し、1200℃の仕上焼鈍を行い、二次再結晶を完
了させた。
【0019】
得られた試料から磁気特性のほぼ揃った試料A、Bを選び、これに歯形ロール
を用いて深さ14μm、幅50μmの溝を圧延方向に対して75°方向に5mm
の間隔で形成した。
次いで850℃×2時間の焼鈍を行った。次いで試料Aを酸により表面被膜を
除去した後、過酸化水素水と弗酸の混合液でRaを0.1μm(板厚減10μm
)以下の鏡面にした。次いで試料A、B共無水クロム酸、燐酸アルミニウム、コ
ロイダルシリカを主成分とするコーティング液を片面当り3g/m2塗布し、8
20℃×30秒の張力コーティングを行い、磁気測定した。さらに同じ張力コー
ティングを繰り返し行い、磁気測定した。この結果を表1に示す。
【0020】
【表1】
【0021】
試料Aは試料Bに比べ極めて低い鉄損が得られた。
実施例3
C:0.056%、Si:3.6%、Mn:0.09%、S:0.007%、
酸可溶性Al:0.029%、N:0.0078%、Cr:0.08%、Sn:
0.04%、残部Feと不可避的不純物からなる鋼塊を1150℃に加熱した後
、板厚1.4mm厚に熱延した。この熱延板を1100℃で焼鈍した後、酸洗し
0.14mm厚に冷延した。次いで脱炭焼鈍を830℃で湿水素窒素雰囲気中で
行った後、窒化処理を750℃で水素、窒素、アンモニア混合ガス中で行い、鋼
板の〔N〕量を200ppmとした。
【0022】
次いで焼鈍分離剤としてAl2O3をアルコールで溶いて塗布し、1200℃×
20時間の仕上焼鈍を行った。次いで水洗して乾燥した状態で鋼板の表面にはフ
ォルステライトは形成されておらず、その表面粗度はRa=0.3μmであった
。
次に歯形ロールを用いて深さ12μm、幅50μmの溝を実施例2と同じ状態
で形成させた。次いで10%の希硫酸に短時間浸清した後水洗乾燥し、無水クロ
ム酸、燐酸アルミニウム、コロイダルシリカを主成分とするコーティング液を片
面当り3g/m2塗布し、880℃×30秒の焼鈍を行い、磁気測定した。さら
に同じコーティング焼付処理を繰り返し行い、磁気測定した。この結果を表2に
示す。
【0023】
【表2】【0024】
実施例4
C:0.080%、Si:3.5%、Mn:0.075%、S:0.025%
、酸可溶性Al:0.035%、N:0.0080%、Sn:0.13%、Cu
:0.07%、残部Feと不可避的不純物からなる鋼塊を1350℃に加熱した
後、2.3mm厚に熱延した。次いで熱延板焼鈍を1000℃で行った後酸洗し
、1.35mmまで冷延した。次いで焼鈍を前段1120℃、後段900℃の温
度で行った後、100℃の湯中に投入冷却し、次いで酸洗し、0.17mmまで
冷延した。次いで冷延板を脱脂し、2%の水酸化ナトリウム水溶液を塗布し、8
50℃で脱炭焼鈍した。
【0025】
次いでMgOスラリーを塗布し、1200℃の温度で仕上焼鈍を行った。次い
で水洗乾燥した後、歯形ロールを用いて深さ15μm、幅50μmの溝を圧延方
向に対して75°方向に5mm間隔で形成した。次いで800℃で焼鈍した後、
5%の硫酸水に浸漬した後の表面の平均粗さはほぼ0.2μmであった。次いで
無水クロム酸、燐酸アルミニウム、コロイダルシリカを主成分とするコーティン
グ液を付着量が片面当り3g/m2、焼鈍条件が820℃×30秒の張力コーテ
ィングを行った後、同一条件の塗布と焼鈍を繰り返した。磁気特性は鉄損W13/5
0=0.28w/kgで、非常に低い鉄損値を示した。
【0026】
【発明の効果】
本発明によれば、各種鉄心材料としての用途が広く、中でも歪取焼鈍を必要と
する巻き鉄心トランス用素材としての利用価値が高い、極めて鉄損の低い一方向
性電磁鋼板が提供される。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet having extremely low iron loss and a method for producing the same. [0002] In the production of grain-oriented electrical steel sheets, it is important to reduce iron loss from the viewpoint of energy saving. Methods for reducing iron loss include increasing the magnetic east density, increasing the specific resistance,
In addition to conventionally known metallurgical methods such as thinning, magnetic domain segmentation techniques disclosed in JP-A-55-18566 and JP-A-61-117218, or JP-A-49-117218. No. 96920, JP-A-53-144419 and the like. In addition, Japanese Patent Application Laid-Open No.
There is a method disclosed in Japanese Patent Application Laid-Open No. 4-43115, in which a steel sheet having a mirror surface is given a small strain to subdivide magnetic domains. However, this method has a drawback that it is not useful as a material for a wound iron core transformer requiring strain relief annealing because the magnetic domain segmentation effect is lost by annealing. [0003] The present invention has a large iron loss reducing effect as compared with the above-described method, and can obtain an unprecedented ultra-low iron loss material. An object of the present invention is to provide a grain-oriented electrical steel sheet which has a high value of use as a material for a wound iron core transformer requiring strain relief annealing and has extremely low iron loss, and a method for producing the same. Means for Solving the Problems The present invention removes the surface coating of a finish-annealed unidirectional magnetic steel sheet having a linear or dot-like groove having a certain depth and width, and removing the surface coating. After forming the above-mentioned grooves on the surface of the finished grain-finished magnetic steel sheet having a roughness of 0.4 μm or less in average roughness or finish annealing having a mirror surface with an average roughness of 0.4 μm or less, The purpose of the present invention is to obtain a grain-oriented electrical steel sheet having extremely low iron loss by applying a tension insulating film. Therefore, the application is not limited to the wound iron core transformer, and a sufficient effect can be expected with a stacked iron core transformer. That is, the present invention aims to obtain an unusually low-loss iron-oriented unidirectional magnetic steel sheet by the synergistic effect of the reduction of the surface roughness and the magnetic domain control by the formation of the grooves. Hereinafter, the present invention will be described in detail. The material used in the present invention has a Goss orientation developed by a secondary recrystallization method, and there is no particular restriction on the manufacturing method. The general process is smelting and refining in a converter, electric furnace, vacuum melting furnace, etc., adjusting the components, adding a small amount of inhibitor-forming elements, etc., and then casting it continuously or casting it into a normal mold, then sizing. A slab is formed by rolling. The slab is formed into a coil having a thickness of usually 3.0 mm or less by hot rolling under known conditions. Alternatively, the molten steel is directly quenched and solidified to form a thin plate, which does not change the essence of the present invention. Thereafter, the hot-rolled sheet is annealed or pickled without annealing. In the case of a single cold rolling step, rolling is performed to the final thickness as it is. In the case of the twice cold rolling step, the final thickness is obtained by rolling twice with a known intermediate annealing. Thereafter, decarburization annealing is performed, nitriding treatment is performed as required, an annealing separator is applied, and finish annealing is performed. MgO is usually used as an annealing separating agent, and TiO 2 or the like may be added to the MgO to help form a forsterite film. Further, a B-based compound, an Sb-based compound, Na,
The proper addition of a K-based compound or the like does not affect the essence of the present invention. Also, Al
An annealing separator such as 2 O 3 or SiO 2 may be used. In the present invention, it is convenient not to form a forsterite film, but in the present invention, it does not matter whether a forsterite film is present. In the grain-oriented electrical steel sheet, it is important that the secondary recrystallized grains have high orientation.
The finish annealing for the secondary recrystallization is performed under known conditions, for example, at a temperature of 1200 ° C. for about 20 hours. In the production of ordinary grain-oriented electrical steel sheets, there are a product in which after finishing annealing, an annealing separating agent is washed off to obtain a product, and a product in which a coating is applied on this forsterite film and shape correction annealing is performed. [0007] The steel sheet treated in such a process is subjected to magnetic domain control to withstand strain relief annealing by a known method. As a method of controlling the magnetic domain, there is, for example, a groove forming method by a mechanical method disclosed in Japanese Patent Application Laid-Open No. 61-117218, and an insulating film is locally formed by laser irradiation described in Japanese Patent Application Laid-Open No. 60-255926. After the removal, there is a method of dissolving the base iron with an acid to form a groove. In addition, a method of forming a concave portion having a constant depth by laser irradiation may be used, or a known method may be used as long as it is a magnetic domain control method that can withstand strain relief annealing. [0008] A feature of the present invention is that the surface of a steel sheet grooved by the above-described method has a mirror surface with a roughness less than a certain critical value, and furthermore, imparts a specific range of tension thereto. The point is to apply. Here, the mirror surface means one having a roughness average roughness of 0.4 μm or less. One known method for obtaining a mirror surface is electrolytic polishing. This can be obtained by removing the insulating film or oxide on the surface of the steel sheet with an acid or the like and then electrically polishing in an electrolytic solution of phosphoric acid and chromic anhydride, for example. A method of chemically obtaining a mirror surface is also known. For example, there is a method of using a liquid obtained by adding a small amount of hydrofluoric acid to a hydrogen peroxide solution. In addition, when using dilute sulfuric acid, dilute nitric acid, or dilute hydrochloric acid, a surface with low roughness can be obtained. In addition, it can also be obtained by an annealing separator applied before the finish annealing or the finish annealing atmosphere conditions. In the present invention, a similar effect can be obtained by forming the above-described groove after obtaining a mirror surface by the above method. Next, a method for imparting tension to a steel sheet will be described. It is well known that applying tension in the rolling direction of a grain-oriented electrical steel sheet reduces iron loss. Currently commercial products are provided by the tension created by the difference in the expansion coefficients of the steel sheet and the surface coating. In the present invention, as a tension coating solution, for example, a solution containing chromic anhydride-aluminum phosphate as a main component described in JP-B-53-28375, or a chromic anhydride-magnesium phosphate described in JP-B-56-52117. By applying and baking a liquid containing as a main component a steel plate, tension can be imparted. This tension was further increased by repeating the number of times of coating and baking, and a new finding was obtained that iron loss characteristics were significantly improved.
This will be further described below based on experimental results. FIG. 1 shows a unidirectional magnetic steel sheet containing 3.2% of Si and having a thickness of 0.16 mm and a magnetic flux density B 8 of 1.94T, which is disclosed in Japanese Patent Application Laid-Open No. 61-117218, 90-220 k.
The magnetic domain was controlled by forming a groove in the steel sheet with a load of g / m 2 and heat-treating the steel sheet at a temperature of 750 ° C. or more (in this experiment, the groove depth was 13 μm, the width was 50 μm, and the rolling direction was 7 μm).
5 mm groove spacing in the 5 ° direction, strain relief annealing at 850 ° C. for 2 hours), removing the surface coating, adjusting the smoothness of the steel sheet surface by chemical polishing, and then coating liquid mainly composed of chromic anhydride-aluminum phosphate 1 shows iron loss characteristics after baking at 820 ° C. From the figure, it can be seen that a very low iron loss can be obtained when the average roughness is 0.4 μm or less. FIG. 2 shows the relationship between the number of application and baking of the coating liquid and the iron loss. The material used was one subjected to magnetic domain control under the same conditions as in FIG. The average roughness of the steel sheet surface after the removal of the coating was adjusted to 0.1 μm or less by chemical polishing. This steel sheet was dipped in 10% diluted sulfuric acid aqueous solution for a short time, washed with water and dried, and then applied with a liquid containing chromic anhydride-aluminum phosphate as a main component at a rate of 3 g / m 2 per side, and then dried. Was annealed and then magnetically measured. Next, the coating and the heat treatment were further repeated, and a magnetic measurement was performed. From the figure, it can be seen that the iron loss is further improved by repeating the coating baking treatment. FIG. 3 shows the relationship between the number of times of the coating baking process and the tension applied to the steel sheet. The tension was obtained by calculating the bending amount of the steel sheet after removing the insulating coating on one side of the steel sheet with acid. It can be seen that the tension increases as the number of printing operations increases. It can be said that this tension brings about a further improvement in iron loss and achieves ultra-low iron loss. As the coating liquid, a known liquid such as a liquid mainly containing chromic anhydride-aluminum phosphate or a liquid mainly containing chromic anhydride-magnesium phosphate can be used. A thin metal plating may be applied to the steel sheet in order to enhance the adhesion to the steel sheet. Next, the reasons for limitation of the present invention will be described. Si is an element effective in reducing iron loss, and its upper limit is 4.5%. 4.5%
If the ratio exceeds, there are problems such as brittleness in the ordinary secondary recrystallization method, and the production becomes difficult. As shown in FIG. 1, an extremely low iron loss cannot be obtained unless the surface roughness of the steel sheet is 0.4 μm or less. Regarding the depth, width and spacing of the grooves formed in the steel plate, see JP-B-62-53579.
No. in the official gazette. According to this, when the depth of the groove formed in the steel plate exceeds 5 μm, there is an effect of magnetic domain control, and when the width of the groove exceeds 300 μm, the margin of improvement in iron loss is reduced. The interval between the grooves is 2 to 15 mm, preferably 3 to 8 mm, and is 45 to 90 °, preferably 70 to 90 ° with respect to the rolling direction. FIG. 5 shows the results of searching for the baking temperature of the tensile insulating film (sheet thickness 0.15 mm, adhesion amount 3 g / m 2 , baking process twice). According to this, it is found that the temperature is higher than 750 ° C. to 950 ° C., preferably 800 to 900 ° C. If the temperature is lower than 750 ° C. or higher than 950 ° C., sufficient tension cannot be obtained. When the number of times of coating baking is repeated two or more times, the tension increases, and the effect of reducing iron loss is large. However, if the tension is more than 1.0 kg / mm 2 , a considerable effect can be expected even once. EXAMPLES Examples will be described below. Example 1 Si: 3.2% in which dot-like grooves having a depth of 12 μm, a diameter of 50 μm, and a point-to-point distance of 0.2 mm were formed at intervals of 5 mm in the direction of 90 ° with respect to the rolling direction on the surface of the steel plate of the steel sheet. , High magnetic flux density unidirectional magnetic steel sheets (A) and (B) having a thickness of 0.15 mm were prepared. In the sample (A), the surface film was removed with hydrofluoric acid, and Ra was 0.1 μm by electrolytic polishing.
Adjusted below. Next, after immersion in 5% diluted sulfuric acid, a coating solution containing chromic anhydride + aluminum phosphate + colloidal silica as a main component is applied, and 800 ° C. ×
Annealing was performed for 30 seconds. Then, coating under the same conditions and annealing at 820 ° C. for 30 seconds were repeated twice. For sample B, coating and annealing at 820 ° C. × 30 seconds were performed once. FIG. 4 shows cross-sectional photographs of the coatings of the samples (A) and (B). The boundary between the ground iron and the coating of the sample (A) is smoother than that of the sample (B). The magnetic properties are as follows. Sample (A) showed an extremely low iron loss value. Example 2 C: 0.054%, Si: 3.3%, Mn: 0.14%, S: 0.007%,
Acid-soluble Al: 0.030%, N: 0.0075%, Cr: 0.10%, Sn:
After heating a steel ingot consisting of 0.05% and the balance of Fe and unavoidable impurities to 1150 ° C., it was hot-rolled to a sheet thickness of 1.6 mm. This hot rolled sheet was annealed at 1100 ° C., and then pickled,
. It was cold rolled to a thickness of 16 mm. Next, after decarburizing annealing was performed at 830 ° C. in a wet hydrogen nitrogen atmosphere, nitriding was performed at 750 ° C. in a mixed gas of hydrogen, nitrogen, and ammonia. Next, an annealing separator MgO was applied and finish annealing was performed at 1200 ° C. to complete secondary recrystallization. Samples A and B having substantially uniform magnetic properties were selected from the obtained samples, and a groove having a depth of 14 μm and a width of 50 μm was formed in the direction of 75 ° with respect to the rolling direction by 5 mm using a toothed roll.
Formed at intervals. Next, annealing was performed at 850 ° C. × 2 hours. Next, after removing the surface film of the sample A with an acid, Ra was adjusted to 0.1 μm (a thickness reduction of 10 μm) with a mixed solution of a hydrogen peroxide solution and hydrofluoric acid.
) The following mirror surface. Next, a coating solution containing chromic anhydride, aluminum phosphate, and colloidal silica as the main components was applied to each of Samples A and B at a rate of 3 g / m 2 per side, and 8
Tensile coating was performed at 20 ° C. for 30 seconds, and the magnetism was measured. Further, the same tension coating was repeated, and the magnetic measurement was performed. Table 1 shows the results. [Table 1] Sample A had extremely low iron loss compared to Sample B. Example 3 C: 0.056%, Si: 3.6%, Mn: 0.09%, S: 0.007%,
Acid-soluble Al: 0.029%, N: 0.0078%, Cr: 0.08%, Sn:
A steel ingot consisting of 0.04%, the balance being Fe and unavoidable impurities, was heated to 1150 ° C., and then hot-rolled to a thickness of 1.4 mm. After annealing this hot rolled sheet at 1100 ° C., it was pickled and cold rolled to a thickness of 0.14 mm. Next, after decarburizing annealing was performed at 830 ° C. in a wet hydrogen nitrogen atmosphere, nitriding was performed at 750 ° C. in a mixed gas of hydrogen, nitrogen, and ammonia, and the [N] amount of the steel sheet was set to 200 ppm. Next, Al 2 O 3 as an annealing separating agent is dissolved in alcohol and applied, and then 1200 ° C. ×
Finish annealing was performed for 20 hours. Then, in the state of washing and drying, no forsterite was formed on the surface of the steel sheet, and the surface roughness was Ra = 0.3 μm. Next, a groove having a depth of 12 μm and a width of 50 μm was formed in the same state as in Example 2 using a toothed roll. Then, it is rinsed with 10% dilute sulfuric acid for a short time, washed with water and dried, and coated with a coating solution mainly composed of chromic anhydride, aluminum phosphate and colloidal silica at a rate of 3 g / m 2 on one side, and annealed at 880 ° C. for 30 seconds. Was performed and the magnetism was measured. Further, the same coating baking treatment was repeated, and the magnetism was measured. Table 2 shows the results. [Table 2] Example 4 C: 0.080%, Si: 3.5%, Mn: 0.075%, S: 0.025%
, Acid-soluble Al: 0.035%, N: 0.0080%, Sn: 0.13%, Cu
: A steel ingot consisting of 0.07%, the balance being Fe and unavoidable impurities was heated to 1350 ° C. and then hot-rolled to a thickness of 2.3 mm. Then, after hot-rolled sheet annealing was performed at 1000 ° C., it was pickled and cold-rolled to 1.35 mm. Next, annealing was carried out at a temperature of 1120 ° C. in the former stage and 900 ° C. in the latter stage, and then poured into hot water at 100 ° C., cooled, then pickled, and cold rolled to 0.17 mm. Next, the cold-rolled sheet was degreased, and a 2% aqueous sodium hydroxide solution was applied thereto.
Decarburization annealing was performed at 50 ° C. Next, a MgO slurry was applied and finish annealing was performed at a temperature of 1200 ° C. Next, after washing and drying, grooves having a depth of 15 μm and a width of 50 μm were formed at intervals of 5 mm in the direction of 75 ° with respect to the rolling direction using a toothed roll. Then after annealing at 800 ° C,
The average roughness of the surface after immersion in a 5% aqueous sulfuric acid solution was approximately 0.2 μm. Next, after applying a coating solution containing chromic anhydride, aluminum phosphate, and colloidal silica as main components at a coating amount of 3 g / m 2 per side and annealing conditions of 820 ° C. for 30 seconds, application and annealing under the same conditions are performed. Was repeated. Magnetic properties are iron loss W 13/5
0 = 0.28 w / kg, indicating a very low iron loss value. According to the present invention, there is a wide range of uses as various iron core materials, and in particular, it is highly useful as a material for wound iron core transformers that require strain relief annealing, and is one-way with extremely low iron loss. An electrical magnetic steel sheet is provided.
【図面の簡単な説明】
【図1】
鋼板表面の平均粗さと鉄損の関係を示す図である。
【図2】
コーティング液の塗布焼付け回数と鉄損の関係を示す図である。
【図3】
コーティング液の塗布焼付け回数と被膜張力の関係を示す図である。
【図4】
被膜除去前の被膜断面及び被膜除去後コーティング後の被膜断面を示す写真図
である。
【図5】
コーティング焼付温度と被膜張力の関係を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the relationship between the average roughness of a steel sheet surface and iron loss. FIG. 2 is a diagram showing a relationship between the number of times of coating and baking of a coating liquid and iron loss. FIG. 3 is a diagram showing the relationship between the number of times of coating and baking of a coating liquid and the film tension. FIG. 4 is a photograph showing a cross section of a coating before removing the coating and a cross section of the coating after coating after removing the coating. FIG. 5 is a diagram showing a relationship between coating baking temperature and film tension.
Claims (1)
さ5μm超、幅300μm以下の線状または点状の溝を圧延方向に対して45〜
90°の方向に2〜15mm間隔に形成しており、鋼板表面に張力コーティング
液を塗布焼付けして得られた張力絶縁被膜を施した鉄損がW13/50:0.3
4w/kg以下のSi4.5%以下を含む板厚0.17mm以下の超低鉄損一方
向性電磁鋼板。 【請求項2】 鋼板の地鉄表面のRaが0.4μm以下であり、かつ板面に深
さ5μm超、幅300μm以下の線状または点状の溝を圧延方向に対して45〜
90°の方向に2〜15mm間隔に形成した仕上焼鈍済みの一方向性電磁鋼板に
750℃超〜950℃の温度範囲で張力コーティング液を塗布焼付ける張力コー
ティング処理することを特徴とするSi4.5%以下を含む板厚0.17mm以
下の超低鉄損一方向性電磁鋼板の製造方法。 【請求項3】 750℃超〜950℃の温度範囲で張力コーティング処理を2
回以上繰り返すことを特徴とする請求項2記載の板厚0.17mm以下の超低鉄
損一方向性電磁鋼板の製造方法。 【請求項4】 750℃超〜950℃の温度範囲の張力コーティング処理で1
.0kg/mm2超の張力を付与することを特徴とする請求項2記載の板厚0.
17mm以下の超低鉄損一方向性電磁鋼板の製造方法。 【請求項5】 張力コーティング液に無水クロム酸−燐酸アルミニウム−コロ
イダルシリカを主成分とする液を使用することを特徴とする請求項2、3、4の
いずれかに記載の板厚0.17mm以下の超低鉄損一方向性電磁鋼板の製造方法
。Claims: 1. A steel plate having a surface iron surface having a Ra of 0.4 μm or less and a linear or dot-like groove having a depth of more than 5 μm and a width of 300 μm or less in the plate surface in the rolling direction. 45 to
In the direction of 90 ° forms the 2~15mm spacing, tension coating on the surface of the steel sheet
The iron loss with a tension insulating coating obtained by applying and baking the solution is W13 / 50: 0.3
An ultra-low iron loss unidirectional electrical steel sheet having a sheet thickness of 0.17 mm or less containing 4 w / kg or less of Si 4.5% or less. 2. A linear or dot-like groove having a surface iron surface Ra of 0.4 μm or less and a depth of more than 5 μm and a width of 300 μm or less in the steel sheet having a diameter of 45 to 45 μm.
Si4 characterized by being subjected to a tension coating treatment of applying and coating a tension coating solution in a temperature range of more than 750 ° C to 950 ° C on finish-annealed unidirectional magnetic steel sheets formed at intervals of 2 to 15 mm in a direction of 90 °. 0.17mm or less including 5% or less
The method of manufacturing the ultra-low iron loss unidirectional electrical steel sheet below . 3. A tension coating process in a temperature range of more than 750 ° C. to 950 ° C.
The method for producing an ultra-low iron loss unidirectional magnetic steel sheet having a sheet thickness of 0.17 mm or less according to claim 2, wherein the method is repeated at least once. 4. A tension coating treatment in a temperature range of more than 750 ° C. to 950 ° C.
. 3. The sheet thickness according to claim 2, wherein a tension of more than 0 kg / mm 2 is applied .
A method for manufacturing an ultra-low iron loss unidirectional magnetic steel sheet of 17 mm or less . 5. A plate thickness of 0.17 mm according to claim 2, wherein a liquid mainly composed of chromic anhydride-aluminum phosphate-colloidal silica is used as the tension coating liquid. The following method for producing an ultra-low iron loss unidirectional electrical steel sheet.
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5273944B2 (en) | Manufacturing method of mirror-oriented electrical steel sheet | |
US6287703B1 (en) | Ultralow-iron-loss grain oriented silicon steel plate and process for producing the same | |
JP2671076B2 (en) | Manufacturing method of ultra-low iron loss unidirectional electrical steel sheet | |
KR102579758B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP4018878B2 (en) | Method for forming insulating coating on grain-oriented electrical steel sheet | |
JP2592740B2 (en) | Ultra-low iron loss unidirectional electrical steel sheet and method of manufacturing the same | |
KR102577485B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP2001506704A (en) | Method for manufacturing electrical steel sheet having oriented particles used in manufacturing magnetic circuit of transformer | |
JPS6376819A (en) | Grain-oriented electrical steel sheet having small iron loss and its manufacture | |
KR102576546B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
KR102583464B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP4015875B2 (en) | Manufacturing method of low iron loss grain oriented electrical steel sheet | |
JPS6332849B2 (en) | ||
JP2592740C (en) | ||
JP4300604B2 (en) | Ultra-low iron loss unidirectional silicon steel sheet and manufacturing method thereof | |
JP3148096B2 (en) | Method for manufacturing mirror-oriented electrical steel sheet with low iron loss | |
JPH11310882A (en) | Ultralow iron loss grain oriented silicon steel sheet and its production | |
JPH03240922A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property and bendability | |
JP7151792B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP3336142B2 (en) | Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties | |
JP3148094B2 (en) | Method for manufacturing mirror-oriented electrical steel sheet with low iron loss | |
JP3456869B2 (en) | Manufacturing method of unidirectional electrical steel sheet | |
JPH09194948A (en) | Production of grain-oriented silicon steel sheet good in insulated coating adhesion | |
JPH0730410B2 (en) | Method of manufacturing low iron loss unidirectional silicon steel sheet | |
JP2000129357A (en) | Manufacture of grain oriented silicon steel sheet excellent in magnetic property |