JP2591461B2 - Organic thin film EL device and method of manufacturing the same - Google Patents

Organic thin film EL device and method of manufacturing the same

Info

Publication number
JP2591461B2
JP2591461B2 JP5334531A JP33453193A JP2591461B2 JP 2591461 B2 JP2591461 B2 JP 2591461B2 JP 5334531 A JP5334531 A JP 5334531A JP 33453193 A JP33453193 A JP 33453193A JP 2591461 B2 JP2591461 B2 JP 2591461B2
Authority
JP
Japan
Prior art keywords
organic
film
hole injection
injection layer
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5334531A
Other languages
Japanese (ja)
Other versions
JPH07192874A (en
Inventor
多田  宏
繁正 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP5334531A priority Critical patent/JP2591461B2/en
Publication of JPH07192874A publication Critical patent/JPH07192874A/en
Application granted granted Critical
Publication of JP2591461B2 publication Critical patent/JP2591461B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は平面光源やディスプレイ
に使用される有機薄膜EL素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic thin film EL device used for a flat light source or a display.

【0002】[0002]

【従来の技術】EL素子は、自発光の面状表示素子とし
ての利用が注目されている。その中でも、有機物を発光
材として用いた有機薄膜EL素子は、有機層を積層して
機能分離する事によって、印加電圧10V弱で発光効率
が大変良く高輝度な発光が実現している。その基本とな
る素子構成は、陽極/正孔注入層/発光層/陰極、また
は、陽極/発光層/電子注入層/陰極、または、陽極/
正孔注入層/発光層/電子注入層/陰極、であり、通常
は陽極から順次製膜される。
2. Description of the Related Art Attention has been focused on the use of EL elements as self-luminous planar display elements. Among them, an organic thin-film EL element using an organic substance as a light-emitting material achieves extremely high luminous efficiency and high-luminance light emission at an applied voltage of less than 10 V by laminating organic layers and separating functions. The basic element structure is anode / hole injection layer / light-emitting layer / cathode, or anode / light-emitting layer / electron injection layer / cathode, or anode /
It is a hole injection layer / light emitting layer / electron injection layer / cathode, and is usually formed sequentially from the anode.

【0003】従来の有機薄膜EL素子は、正孔注入輸送
層に芳香族アミンの蒸着膜を用いるものがほとんどであ
る。その中でも特に1,1−ビス(4−ジパラトリルア
ミノフェニル)シクロヘキサン、または、N,N’−ジ
フェニル−N,N’−ビス(3メチルフェニル)−1,
1’−ビフェニル−4,4’−ジアミンは、正孔注入特
性が良く、製膜性が良いため、好んで用いられている。
これらの材料の蒸着膜は蒸着直後は均一な膜であるが、
数日後にはかなり凝集が進む事が報告されている( '9
3春応用物理学会予講集30a−SZK−1, '93年
秋応用物理学会予講集29a−ZC−8)。そのため
に、素子の劣化が起こる。また、ガラス転移点が60〜
80℃と低く、素子の駆動時に熱劣化が起こる。
[0003] Most of the conventional organic thin-film EL devices use a vapor-deposited film of an aromatic amine for the hole injection / transport layer. Among them, in particular, 1,1-bis (4-diparatolylaminophenyl) cyclohexane or N, N′-diphenyl-N, N′-bis (3-methylphenyl) -1,
1′-biphenyl-4,4′-diamine is preferably used because it has good hole injection properties and good film-forming properties.
The deposited films of these materials are uniform immediately after the deposition,
It is reported that flocculation will progress considerably in a few days ('9
3 Spring Applied Physics Society Preliminary Collection 30a-SZK-1, '93 Autumn Applied Physics Society Preliminary Collection 29a-ZC-8). Therefore, deterioration of the element occurs. Further, the glass transition point is 60 to
As low as 80 ° C., thermal degradation occurs when the device is driven.

【0004】一般に芳香族アミンはガラス転移点が10
0℃以下と低く、そのために素子の劣化が起こると考え
られている。このことは、有機層の膜質が有機薄膜EL
素子の素子特性に大きく影響する事を示しており、均質
で、接する他の膜との界面の密着の良い安定な膜を作成
する事が有機薄膜EL素子において重要となる。
Generally, aromatic amines have a glass transition point of 10
It is considered that the temperature is as low as 0 ° C. or less, which causes deterioration of the element. This means that the quality of the organic layer is an organic thin film EL.
This indicates that the element characteristics of the element are greatly affected, and it is important for an organic thin film EL element to produce a stable film having a uniform and good adhesion at an interface with another film in contact.

【0005】これに対して、ポルフィリン系化合物を正
孔注入層に用いるという方法も開示されているが(特開
昭57−51781号公報)、この場合でも素子作成後
の正孔注入層の結晶化や凝集が素子の劣化をもたらし
た。
On the other hand, a method of using a porphyrin compound for the hole injection layer has been disclosed (Japanese Patent Application Laid-Open No. 57-51781). And aggregation resulted in deterioration of the device.

【0006】これは、一般に、有機低分子は単分子では
不安定であって結晶化や凝集が時間とともに進むことに
よって、長時間安定で均質な薄膜状態を形成させること
が困難であることによる。
[0006] This is because, in general, a single organic molecule is unstable, and crystallization and aggregation progress with time, so that it is difficult to form a stable and uniform thin film state for a long time.

【0007】そこで、正孔注入層の熱的な安定性を向上
させて素子の劣化を抑えるために、前述の1,1−ビス
(4−ジパラトリルアミノフェニル)シクロヘキサンや
N,N’−ジフェニル−N,N’−ビス(3メチルフェ
ニル)−1,1’−ビフェニル−4,4’−ジアミンな
どの芳香族アミンを高分子バインダーに分散させた膜を
正孔輸送層として用いる方法が考えられる。この正孔注
入層の製膜には、スピンコート法,ディップコート法等
の湿式製膜法を用いることができる。城戸淳二等は、こ
のような構成の有機薄膜EL素子の特性について発表し
ている(ジャパン・ジャーナル・オブ・アプライド・フ
ィジクス31巻 '92年L960(Japan Jou
rnal of Applied Physics N
o.31'92L960))。このように正孔注入層と
して芳香族アミンの樹脂分散膜を導入した素子の発光特
性は、素子作成直後には高輝度に発光するが、印加電圧
を一定にして連続発光させるとすぐに輝度が初期輝度の
1割以下に落ちる。これは、陽極と正孔注入層との界面
の密着性が悪く、すぐに正孔注入層が陽極から剥離して
しまって電気的接触がとれなくなることが原因であっ
た。これは、正孔注入層としてフタロシアニンの樹脂分
散膜を導入した素子でも同様で、やはり、陽極と正孔注
入層との電気的接触に問題があった。
Therefore, in order to improve the thermal stability of the hole injection layer and suppress the deterioration of the device, the aforementioned 1,1-bis (4-diparatolylaminophenyl) cyclohexane or N, N'- A method in which a film in which an aromatic amine such as diphenyl-N, N'-bis (3-methylphenyl) -1,1'-biphenyl-4,4'-diamine is dispersed in a polymer binder is used as a hole transport layer. Conceivable. For forming the hole injection layer, a wet film forming method such as a spin coating method or a dip coating method can be used. Junji Kido et al. Have published the characteristics of an organic thin-film EL device having such a configuration (Japan Journal of Applied Physics, Vol. 31, '92, L960 (Japan Jou).
rnal of Applied Physics N
o. 31'92L960)). As described above, the light emitting characteristics of the device in which the aromatic amine resin dispersion film is introduced as the hole injection layer emits light with high luminance immediately after the device is fabricated, but the luminance is immediately increased when the light is continuously emitted with the applied voltage constant. It drops to less than 10% of the initial luminance. This was due to poor adhesion at the interface between the anode and the hole injection layer, causing the hole injection layer to immediately peel off from the anode and fail to make electrical contact. This also applies to a device in which a phthalocyanine resin dispersion film is introduced as a hole injection layer, and similarly, there is a problem in electrical contact between the anode and the hole injection layer.

【0008】また、ピンホールを減少させて素子の安定
性を上げるために、正孔注入層として、陽極側から正孔
注入性ポルフィリン系化合物の層と正孔注入性芳香族3
級アミンの層の2層を用いるという有機薄膜EL素子の
構成が開示されている(特開昭63−295695号公
報)。しかし、この構成でも素子の安定性の向上は不十
分であった。すなわち、陽極と正孔注入輸送層との界面
の剥離の防止と、正孔注入層の結晶化や凝集の防止とを
同時に実現することが非常に難しいためであった。
In order to increase the stability of the device by reducing pinholes, a hole-injecting porphyrin compound layer and a hole-injecting aromatic 3
A structure of an organic thin film EL device using two layers of a secondary amine layer has been disclosed (Japanese Patent Application Laid-Open No. Sho 63-295695). However, even with this configuration, the stability of the element has not been sufficiently improved. That is, it is extremely difficult to simultaneously prevent separation of the interface between the anode and the hole injection transport layer and prevention of crystallization and aggregation of the hole injection layer.

【0009】[0009]

【発明が解決しようとする課題】前述のように、有機薄
膜EL素子は高輝度を示すが、その寿命は他の発光素子
と比べると短く、実用化の妨げとなっている。
As described above, the organic thin-film EL device exhibits high luminance, but its life is shorter than other light-emitting devices, which hinders practical use.

【0010】また、一般に、輝度は電流密度に比例する
ので、素子の輝度を上げるためには、印加電圧を上げて
電流を大きくしなければならないが、そうすると素子の
寿命はさらに短くなってしまう。有機薄膜EL素子の実
用性を広げるためにも、駆動電圧の低電圧化が望まし
い。
In general, since the luminance is proportional to the current density, it is necessary to increase the applied voltage to increase the current in order to increase the luminance of the element, but the life of the element is further shortened. In order to expand the practicality of the organic thin film EL element, it is desirable to lower the driving voltage.

【0011】本発明は、以上のような従来の事情に対処
してなされたもので、低駆動電圧で長寿命の有機薄膜E
L素子を提供する事を目的とする。
The present invention has been made in view of the above-mentioned conventional circumstances, and has a low driving voltage and a long life.
It is intended to provide an L element.

【0012】[0012]

【課題を解決するための手段】本発明者は、少なくとも
一方が透明な一対の電極間に、少なくとも正孔注入層と
発光層を有する有機薄膜EL素子において、前記正孔注
入層は陽極に接し、かつ、空隙中に高分子バインダーを
含有する低分子有機P型半導体よりなる膜厚100nm
以下の膜である事を特徴とする有機薄膜EL素子におい
て低駆動電圧、長寿命が実現される事を見いだした。
Means for Solving the Problems The present inventors have proposed an organic thin film EL device having at least one hole injecting layer and a light emitting layer between a pair of transparent electrodes, wherein the hole injecting layer is in contact with the anode. And a film thickness of 100 nm made of a low-molecular organic P-type semiconductor containing a polymer binder in the voids
It has been found that a low driving voltage and a long life can be realized in an organic thin film EL device characterized by the following films.

【0013】その目的は、低分子有機P型半導体を陽極
上に形成する事によって陽極と正孔注入層との界面を密
着させ、高分子バインダーで低分子有機P型半導体の間
の隙間をうめることによって、低分子有機P型半導体の
結晶化や凝集を防ぐことにある。図1に本発明の有機薄
膜EL素子の1例を示した。本発明はこの構成に限るわ
けではない。図2には従来例として、低分子有機P型半
導体を高分子バインダーに分散させて陽極上に製膜した
正孔注入層を用いた有機薄膜EL素子の例を示した。図
2の素子では、正孔注入層と陽極との界面での密着が弱
いために剥離が起き、この界面での抵抗値が上がってジ
ュール熱が発生するためにさらに剥離が進行する。それ
に対して図1の素子では、低分子有機P型半導体と陽極
との密着が図2の素子より強く抵抗値も下がる。そのた
め、図1の素子の方が正孔注入層が安定化し電気的接触
も良くなる。
An object of the present invention is to form a low-molecular organic P-type semiconductor on the anode to make the interface between the anode and the hole injection layer adhere to each other, and fill a gap between the low-molecular organic P-type semiconductor with a polymer binder. Thereby, crystallization and aggregation of the low-molecular organic P-type semiconductor are prevented. FIG. 1 shows an example of the organic thin film EL device of the present invention. The present invention is not limited to this configuration. FIG. 2 shows, as a conventional example, an example of an organic thin film EL device using a hole injection layer formed on an anode by dispersing a low-molecular organic P-type semiconductor in a polymer binder. In the device of FIG. 2, peeling occurs because the adhesion at the interface between the hole injection layer and the anode is weak, and the resistance at this interface increases to generate Joule heat, so that the peeling further proceeds. On the other hand, in the device shown in FIG. 1, the adhesion between the low-molecular organic P-type semiconductor and the anode is stronger than that in the device shown in FIG. Therefore, the device of FIG. 1 stabilizes the hole injection layer and improves the electrical contact.

【0014】したがって、この構成にすることによっ
て、陽極との界面の密着を保ちながら低分子有機P型半
導体の結晶化や凝集を防ぐことができ、膜が非常に安定
化する。そのために電気的接触が良くかつ安定するので
正孔注入効率が向上して低駆動電圧化が実現し、素子の
耐久性も増す。
Therefore, by adopting this structure, crystallization and aggregation of the low molecular weight organic P-type semiconductor can be prevented while keeping the interface at the interface with the anode, and the film is extremely stabilized. Therefore, the electric contact is good and stable, so that the hole injection efficiency is improved, the driving voltage is reduced, and the durability of the element is also increased.

【0015】上記の素子構成を実現するためには、正孔
注入層の低分子有機P型半導体膜が十分薄くなければな
らない。一般に、低分子有機膜を基板上に形成する場
合、膜厚が薄い程低分子有機膜に空隙ができやすく、膜
厚が厚くなる程空隙が小さくなる。これは、基板近傍で
は基板からの様々な影響があって、均一な膜形成が阻害
されるためである。そのために、正孔注入層の低分子有
機P型半導体膜の膜厚が薄い方が高分子バインダーを含
浸させやすい。膜厚が厚くなってしまうと高分子バイン
ダーを低分子有機P型半導体膜全体に含浸させることが
非常に困難になる。高分子バインダーが低分子有機P型
半導体膜全体に含浸していないと、その含浸していない
陽極近傍の部分は空隙が開いたままになってしまい、上
記のような本発明の利点が失われてしまう。したがっ
て、正孔注入層の低分子有機P型半導体膜の膜厚が10
0nm以下であることが好ましい。
In order to realize the above element configuration, the low-molecular organic P-type semiconductor film of the hole injection layer must be sufficiently thin. In general, when a low molecular weight organic film is formed on a substrate, voids are easily formed in the low molecular weight organic film as the film thickness decreases, and the voids decrease as the film thickness increases. This is because there are various influences from the substrate near the substrate, which hinders uniform film formation. Therefore, the smaller the thickness of the low molecular weight organic P-type semiconductor film of the hole injection layer, the easier it is to impregnate the polymer binder. When the film thickness is increased, it becomes very difficult to impregnate the entire low-molecular organic P-type semiconductor film with the polymer binder. If the polymer binder is not impregnated into the entire low molecular weight organic P-type semiconductor film, the portion near the non-impregnated anode remains open and the advantages of the present invention as described above are lost. Would. Therefore, the thickness of the low molecular weight organic P-type semiconductor film of the hole injection layer is 10
It is preferably 0 nm or less.

【0016】膜の空隙は、原子間力顕微鏡または電子顕
微鏡等によって観察する事ができる。1nm以上の径の
空隙を有する膜は高分子バインダーによってうめる事が
容易にでき、膜を安定化する事ができるため特に好まし
い。
The voids in the film can be observed with an atomic force microscope or an electron microscope. A film having voids with a diameter of 1 nm or more is particularly preferable because it can be easily filled with a polymer binder and the film can be stabilized.

【0017】以下に、正孔注入層の形成方法について説
明する。
Hereinafter, a method for forming the hole injection layer will be described.

【0018】正孔注入層の低分子有機P型半導体は、有
機薄膜EL素子の状態において正孔輸送性を有するもの
を指す。一般に、有機半導体はそれに臨接する層によっ
てP型にもN型にもなる。その判別方法の一つとして、
その薄膜状態において酸素雰囲気下と真空下で抵抗値を
測定する方法がある。酸素雰囲気下の方が抵抗値が低い
ものはP型であると判断できる。
The low molecular weight organic P-type semiconductor of the hole injection layer refers to a material having a hole transporting property in the state of an organic thin film EL device. In general, an organic semiconductor is either P-type or N-type depending on the layer adjacent thereto. As one of the determination methods,
There is a method of measuring a resistance value in an oxygen atmosphere and a vacuum in the thin film state. Those having a lower resistance value in an oxygen atmosphere can be determined to be P-type.

【0019】正孔注入層の低分子有機P型半導体には公
知の材料から適宜選択される。例えば、”色素ハンドブ
ック :講談社 '86年”に掲載されているスピロ化
合物,アゾ化合物,キノン化合物,インジゴ化合物,ジ
フェニルメタン化合物,ポリメチン化合物,アクリジン
化合物,ポルフィン化合物等の縮合多環系の色素が適用
できる。また、芳香族アミン等の”オーガニック セミ
コンダクターズ :フェルラック ケミエ社 '74年
(ORGANIC SEMICONDUCTORS :
VERLAG CHEMIE '74)”に掲載されて
いる低分子有機P型半導体も適用できる。これらの低分
子有機P型半導体の中で、高分子バインダーを含浸させ
るときに陽極から剥離してしまうような材料は適切では
ない。また、薄膜状態で、より空隙のできやすいものの
方が好ましい。
The low-molecular organic P-type semiconductor of the hole injection layer is appropriately selected from known materials. For example, condensed polycyclic dyes such as spiro compounds, azo compounds, quinone compounds, indigo compounds, diphenylmethane compounds, polymethine compounds, acridine compounds, and porphine compounds described in "Dye Handbook: Kodansha '86" can be applied. . In addition, "Organic Semiconductors: Ferrac Chemie, Inc. '74 (ORGANIC SEMICONDUCTORS:
Low-molecular-weight organic P-type semiconductors described in "VERLAG CHEMIE '74)" can also be used. Among these low-molecular-weight organic P-type semiconductors, materials that are separated from the anode when impregnated with a polymer binder are used. In addition, it is preferable that a film is easily formed in a thin film state.

【0020】低分子有機P型半導体膜の形成は公知の方
法が適用できるが、例えば、蒸着法によって行うことが
できる。これは具体的には、抵抗加熱,エレクトロンビ
ーム,スパッタ,イオンプレーティング,MBE等であ
る。
Known low-molecular organic P-type semiconductor films can be formed by, for example, a vapor deposition method. This is, specifically, resistance heating, electron beam, sputtering, ion plating, MBE or the like.

【0021】また、湿式製膜法によっても形成できる。
例えば、スピンコーター,アプリケーター,スプレーコ
ーター,バーコーター,ディップコーター,ドクターブ
レード,ローラーコーター,カーテンコーター,ビード
コーター等の装置を用いて製膜する事ができる。
Also, it can be formed by a wet film forming method.
For example, a film can be formed by using an apparatus such as a spin coater, an applicator, a spray coater, a bar coater, a dip coater, a doctor blade, a roller coater, a curtain coater, and a bead coater.

【0022】この場合、塗液の作成に使用する溶剤は公
知の溶剤が適宜用いられる。例えば、アルコール類,芳
香族炭化水素,ケトン類,エステル類,脂肪族ハロゲン
化炭化水素,エーテル類,アミド類,スルホキシド類等
が適用される。
In this case, a known solvent is appropriately used as a solvent used for preparing the coating liquid. For example, alcohols, aromatic hydrocarbons, ketones, esters, aliphatic halogenated hydrocarbons, ethers, amides, sulfoxides and the like are applied.

【0023】低分子有機P型半導体膜の空隙をうめる高
分子バインダーは、公知の材料から適宜選択される。例
えば、ビニル系樹脂,アクリル系樹脂,エポキシ系樹
脂,シリコン系樹脂,スチリル系樹脂,ポリイミド,ポ
リシリレン,ポリビニルカルバゾール,ポリカーボネー
ト,セルロース系樹脂,ポリオレフィン系樹脂等の他、
にかわ,ゼラチン等の天然樹脂が適用できる。
The polymer binder filling the voids in the low molecular weight organic P-type semiconductor film is appropriately selected from known materials. For example, vinyl resin, acrylic resin, epoxy resin, silicon resin, styryl resin, polyimide, polysilylene, polyvinyl carbazole, polycarbonate, cellulose resin, polyolefin resin, etc.
Natural resins such as glue and gelatin can be used.

【0024】低分子有機P型半導体膜に高分子バインダ
ーを含浸させる方法としては公知の方法が適用できる
が、例えば、上記のような湿式製膜法を用いることがで
きる。この場合の湿式製膜法及び溶剤は上記のような公
知の方法及び材料が適宜選択される。この方法の場合、
低分子有機P型半導体膜が溶剤に溶け出してしまわない
ようにする必要がある。つまり、溶剤が高分子バインダ
ーを溶かして、かつ、低分子有機P型半導体膜を溶かし
出さないようにそれぞれの材料を選択する必要がある。
As a method for impregnating the low molecular weight organic P-type semiconductor film with the polymer binder, a known method can be applied. For example, the above-mentioned wet film forming method can be used. In this case, as the wet film forming method and the solvent, known methods and materials as described above are appropriately selected. In this case,
It is necessary to prevent the low-molecular organic P-type semiconductor film from being dissolved in the solvent. That is, it is necessary to select each material so that the solvent dissolves the polymer binder and does not dissolve the low-molecular organic P-type semiconductor film.

【0025】また、低分子有機P型半導体膜に高分子バ
インダーを含浸させる方法として、まず、高分子バイン
ダーの層を低分子有機P型半導体膜の上に形成して、そ
の後に基板を熱することによって高分子バインダーを含
浸させることもできる。高分子バインダーの層を低分子
有機P型半導体膜の上に形成するには、蒸着法等が可能
であるが、一番単純な方法として高分子バインダーの粉
末を低分子有機P型半導体膜の上に載せても良い。この
場合、低分子有機P型半導体膜に使われる材料は、その
融点が高分子バインダーの融点と同じくらいかあるいは
高いものから選択される。
As a method for impregnating a low molecular weight organic P-type semiconductor film with a polymer binder, first, a layer of a high molecular weight binder is formed on the low molecular weight organic P-type semiconductor film, and then the substrate is heated. Thereby, the polymer binder can be impregnated. In order to form the polymer binder layer on the low molecular weight organic P-type semiconductor film, a vapor deposition method or the like can be used. May be placed on top. In this case, the material used for the low molecular weight organic P-type semiconductor film is selected from materials whose melting point is equal to or higher than the melting point of the polymer binder.

【0026】高分子バインダーを含浸させるときに、有
機P型半導体が1種または多種混ざっていても良い。有
機P型半導体を適当に選択すれば、正孔注入効率はさら
に向上する。それは、正孔注入層に注入したホールがさ
らに高分子バインダー中の有機P型半導体を通って流れ
るために障壁が低くなるからである。その際、高分子バ
インダーに混ぜる有機P型半導体としては、酸化電位が
正孔注入層に用いる低分子有機P型半導体と発光材の間
であるものを選択することが望ましい。有機P型半導体
としては、公知の材料から適宜選択される。例えば、上
記の低分子有機P型半導体の他、ポリビニルカルバゾー
ル,ポリシリレン等の高分子有機P型半導体も適用でき
る。本発明においては、高分子バインダーの役割は正孔
注入層の結晶化や凝集を抑えることであり、有機P型半
導体を高分子バインダーに混ぜる割合が多すぎると高分
子バインダーに期待される機械的物性が劣化し、その機
能が失われてしまう。
When the polymer binder is impregnated, one or more organic P-type semiconductors may be mixed. If an organic P-type semiconductor is appropriately selected, the hole injection efficiency is further improved. This is because the holes injected into the hole injection layer further flow through the organic P-type semiconductor in the polymer binder, so that the barrier is lowered. At this time, as the organic P-type semiconductor mixed with the polymer binder, it is desirable to select an organic P-type semiconductor whose oxidation potential is between the low-molecular-weight organic P-type semiconductor used for the hole injection layer and the light emitting material. The organic P-type semiconductor is appropriately selected from known materials. For example, in addition to the above-mentioned low molecular weight organic P-type semiconductor, a high molecular weight organic P-type semiconductor such as polyvinyl carbazole and polysilylene can be applied. In the present invention, the role of the polymer binder is to suppress crystallization and aggregation of the hole injection layer, and if the proportion of the organic P-type semiconductor mixed with the polymer binder is too large, mechanical properties expected of the polymer binder are expected. Physical properties are degraded, and their functions are lost.

【0027】本発明の目的は、有機薄膜EL素子におけ
る正孔注入層の安定化、つまり電気的接触の向上と、そ
れにともなう電荷注入効率の向上にあり、その上にさら
に積層される各層は公知のいずれの組み合わせでも適用
できる。例えば、本発明の正孔注入層を形成した後に、
さらに正孔輸送層を1層または多層形成しても良く、ま
た、発光層は適当な蛍光色素がドープされていても良
く、また、電子注入層が発光層の上に1層または多層形
成されていても良いがこの限りではない。
An object of the present invention is to stabilize a hole injection layer in an organic thin film EL device, that is, to improve electrical contact and consequently to improve charge injection efficiency. Any combination can be applied. For example, after forming the hole injection layer of the present invention,
Further, the hole transport layer may be formed in one or more layers, the light emitting layer may be doped with an appropriate fluorescent dye, and the electron injecting layer may be formed in one or more layers on the light emitting layer. It may be, but not limited to this.

【0028】この構成にする事によって正孔注入層の安
定性が向上するために、発光層への正孔注入効率が大き
く向上し、駆動電圧の低電圧化が実現した。
With this configuration, the stability of the hole injection layer is improved, so that the efficiency of hole injection into the light emitting layer is greatly improved, and the driving voltage is reduced.

【0029】[0029]

【実施例】以下、本発明の実施例について詳細に説明す
る。
Embodiments of the present invention will be described below in detail.

【0030】(実施例1)ガラス基板上にITO(イン
ジウム錫酸化物)をスパッタリングによって製膜し、陽
極とした。その抵抗値は15Ω/□とした。その上に正
孔注入層として、昇華精製した無金属フタロシアニンを
抵抗加熱式の真空蒸着によって30nm製膜した。この
とき、基板の加熱は行わなかった。その後、ポリカーボ
ネートz200(三菱ガス化学社製)をジクロロメタン
に2重量%で溶かした塗液を作成し、これをディップコ
ートによって無金属フタロシアニン層に含浸させた後、
80℃で30分間乾燥させた。正孔注入層+高分子バイ
ンダーの膜厚は32nmであった。さらにその上に発光
層としてトリス−(8−ヒドロキシキノリノール)アル
ミニウムを75nm真空蒸着によって製膜し、最後に陰
極として真空蒸着によってMgAg(蒸着速度比10:
1)を250nm製膜した。
(Example 1) An ITO (indium tin oxide) was formed on a glass substrate by sputtering to form an anode. The resistance value was 15Ω / □. A sublimation-purified metal-free phthalocyanine was formed thereon as a hole injecting layer by resistance heating vacuum evaporation to a thickness of 30 nm. At this time, the substrate was not heated. Thereafter, a coating solution was prepared by dissolving polycarbonate z200 (manufactured by Mitsubishi Gas Chemical Company) in dichloromethane at 2% by weight, and this was impregnated into the metal-free phthalocyanine layer by dip coating.
Dry at 80 ° C. for 30 minutes. The thickness of the hole injection layer + polymer binder was 32 nm. Further, tris- (8-hydroxyquinolinol) aluminum was formed thereon as a light emitting layer by vacuum evaporation at 75 nm, and finally MgAg was formed as a cathode by vacuum evaporation (evaporation rate ratio: 10:
1) was formed into a 250 nm film.

【0031】この素子の発光特性を空気中で測定したと
ころ、印加電圧10Vの直流電圧で1100cd/m2
の非常に明るい緑色の発光が得られた。また、6mA/
cm2 の一定電流密度で連続して発光させたところ、5
00時間後にも面発光の状態を持続していて、その時点
で印加電圧は7.8Vから8.7Vに上昇し、発光輝度
は200cd/m2 から120cd/m2 に落ちた。こ
れは、比較例と比べ本発明の有機薄膜EL素子において
電荷注入効率と耐久性がともに向上していることを示し
ている。
When the light emission characteristics of this device were measured in air, it was 1100 cd / m 2 at a DC voltage of 10 V applied.
A very bright green luminescence was obtained. In addition, 6 mA /
When emitted continuously at a constant current density of 5 cm 2 , 5
Even after 00 hours, the state of surface light emission was maintained, at which point the applied voltage increased from 7.8 V to 8.7 V, and the emission luminance dropped from 200 cd / m 2 to 120 cd / m 2 . This indicates that both the charge injection efficiency and the durability of the organic thin film EL device of the present invention are improved as compared with the comparative example.

【0032】(実施例2)実施例1と同様に素子を作成
したが、正孔注入層の真空蒸着時に基板の温度は100
℃にした。この素子の発光特性を空気中で測定したとこ
ろ、印加電圧10Vの直流電圧で1000cd/m2
非常に明るい緑色の発光が得られた。また、6mA/c
2 の一定電流密度で連続して発光させたところ、50
0時間後にも面発光の状態を持続していて、その時点で
印加電圧は7.7Vから8.7Vに上昇し、発光輝度は
190cd/m2 から110cd/m2 に落ちた。これ
は、実施例1に示した素子の特性とほとんど変わりがな
く、正孔注入層の蒸着条件の影響は出なかった。
(Example 2) An element was prepared in the same manner as in Example 1, except that the temperature of the substrate was 100 when the hole injection layer was vacuum deposited.
° C. When the light emission characteristics of this device were measured in air, a very bright green light emission of 1000 cd / m 2 was obtained at a DC voltage of 10 V applied. In addition, 6mA / c
When continuous light emission at constant current density of m 2, 50
After 0 hour, the state of surface light emission was maintained, at which point the applied voltage increased from 7.7 V to 8.7 V, and the emission luminance dropped from 190 cd / m 2 to 110 cd / m 2 . This was almost the same as the characteristics of the device shown in Example 1, and was not affected by the deposition conditions of the hole injection layer.

【0033】(実施例3)実施例1と同様に素子を作成
したが、正孔注入層として昇華精製したクロルダイアン
ブルーを真空蒸着によって30nm製膜した。
Example 3 A device was prepared in the same manner as in Example 1, except that chlordiane blue purified by sublimation was formed as a hole injection layer by vacuum evaporation to a thickness of 30 nm.

【0034】この素子の発光特性を空気中で測定したと
ころ、印加電圧10Vの直流電圧で840cd/m2
非常に明るい緑色の発光が得られた。また、6mA/c
2の一定電流密度で連続して発光させたところ、50
0時間後にも面発光の状態を持続していて、その時点で
印加電圧は8.5Vから10.1Vに上昇し、発光輝度
は180cd/m2 から110cd/m2 に落ちた。
When the light emission characteristics of the device were measured in air, a very bright green light emission of 840 cd / m 2 was obtained at a DC voltage of 10 V applied. In addition, 6mA / c
When continuous light emission at constant current density of m 2, 50
After 0 hour, the state of surface light emission was maintained. At that time, the applied voltage was increased from 8.5 V to 10.1 V, and the emission luminance was decreased from 180 cd / m 2 to 110 cd / m 2 .

【0035】(実施例4)実施例1と同様に有機薄膜E
L素子を作成したが、ただし、陰極として真空蒸着によ
ってAlLi(蒸着速度比3:1)を25nm製膜し
た。
Example 4 An organic thin film E was produced in the same manner as in Example 1.
An L element was prepared, except that a film of AlLi (deposition rate ratio 3: 1) was formed to a thickness of 25 nm by vacuum deposition as a cathode.

【0036】この素子の発光特性を空気中で測定したと
ころ、印加電圧10Vの直流電圧で1500cd/m2
の非常に明るい緑色の発光が得られた。また、6mA/
cm2 の一定電流密度で連続して発光させたところ、5
00時間後にも面発光の状態を持続していて、その時点
で印加電圧は6.9Vから7.6Vに上昇し、発光輝度
は220cd/m2 から150cd/m2 に落ちた。
When the light emission characteristics of this device were measured in air, it was found that the applied voltage was 1500 cd / m 2 at a DC voltage of 10 V.
A very bright green luminescence was obtained. In addition, 6 mA /
When emitted continuously at a constant current density of 5 cm 2 , 5
Even after 00 hours, the state of surface light emission continued, at which point the applied voltage increased from 6.9 V to 7.6 V, and the emission luminance dropped from 220 cd / m 2 to 150 cd / m 2 .

【0037】(実施例5)実施例1と同様に有機薄膜E
L素子を作成したが、ただし陽極としてSnO2をスパ
ッタリングによって抵抗値が15Ω/□になるように製
膜した。
(Example 5) As in Example 1, the organic thin film E
An L element was prepared, except that SnO 2 was formed as an anode by sputtering so that the resistance was 15 Ω / □.

【0038】この素子の発光特性を空気中で測定したと
ころ、印加電圧10Vの直流電圧で1500cd/m2
の非常に明るい緑色の発光が得られた。また、6mA/
cm2 の一定電流密度で連続して発光させたところ、5
00時間後にも面発光の状態を持続していて、その時点
で印加電圧は7.3Vから9.0Vに上昇し、発光輝度
は220cd/m2 から150cd/m2 に落ちた。
When the light emission characteristics of this device were measured in the air, it was determined that the applied voltage was 1500 cd / m 2 at a DC voltage of 10 V.
A very bright green luminescence was obtained. In addition, 6 mA /
When emitted continuously at a constant current density of 5 cm 2 , 5
After 00 hours, the state of surface light emission was maintained, at which point the applied voltage increased from 7.3 V to 9.0 V, and the emission luminance dropped from 220 cd / m 2 to 150 cd / m 2 .

【0039】(実施例6)ガラス基板上にITOをスパ
ッタリングによって製膜し、陽極とした。その抵抗値は
15Ω/□とした。その上に正孔注入層として、昇華精
製したクロルダイアンブルーを30nm真空蒸着によっ
て製膜した。この時基板の加熱は行わなかった。その上
に、ビスコール660−P(三洋化成工業(株)製)を
イソプロピルアルコールに分散させてスピンコートによ
って20nm製膜した後、基板を160℃に加熱して溶
かしクロルダイアンブルー層に含浸させた。この加熱は
1時間行った。さらにその上に発光層としてトリス−
(8−ヒドロキシキノリノール)アルミニウムを75n
m真空蒸着によって製膜し、最後に陰極としてMgAg
(蒸着速度比10:1)を250nm製膜した。
Example 6 An ITO was formed on a glass substrate by sputtering to form an anode. The resistance value was 15Ω / □. As a hole injection layer, chlordiane blue purified by sublimation was formed thereon by vacuum evaporation at 30 nm. At this time, the substrate was not heated. Viscol 660-P (manufactured by Sanyo Chemical Industry Co., Ltd.) was dispersed thereon in isopropyl alcohol to form a 20 nm film by spin coating, and then the substrate was heated to 160 ° C. to be dissolved and impregnated in the chlordiane blue layer. . This heating was performed for one hour. Further, a tris-
(8-hydroxyquinolinol) aluminum 75n
m by vacuum evaporation, and finally MgAg
(Evaporation rate ratio: 10: 1) to form a 250 nm film.

【0040】この素子の発光特性を空気中で測定したと
ころ、印加電圧10Vの直流電圧で760cd/m2
非常に明るい緑色の発光が得られた。また、6mA/c
2の一定電流密度で連続して発光させたところ、50
0時間後にも面発光の状態を持続していて、その時点で
印加電圧は8.1Vから9.9Vに上昇し、発光輝度は
190cd/m2 から140cd/m2 に落ちた。これ
は、比較例と比べ本発明の有機薄膜EL素子において電
荷注入効率と耐久性がともに向上していることを示して
いる。
When the light emission characteristics of this device were measured in air, a very bright green light emission of 760 cd / m 2 was obtained at a DC voltage of 10 V applied. In addition, 6mA / c
When continuous light emission at constant current density of m 2, 50
After 0 hour, the state of surface light emission was maintained. At that time, the applied voltage increased from 8.1 V to 9.9 V, and the emission luminance dropped from 190 cd / m 2 to 140 cd / m 2 . This indicates that both the charge injection efficiency and the durability of the organic thin film EL device of the present invention are improved as compared with the comparative example.

【0041】(実施例7)ガラス基板上にITOをスパ
ッタリングによって製膜し、陽極とした。その抵抗値は
15Ω/□とした。その上に正孔注入層として、昇華精
製した無金属フタロシアニンを30nm真空蒸着によっ
て製膜した。このとき基板の加熱は行わなかった。その
後、1,1−ビス(4−ジパラトリルアミノフェニル)
シクロヘキサンとポリ(N−ビニルカルバゾール)を重
量比5:1にしてジクロロメタンに2重量%で溶かした
塗液を作成し、これをディップコートによって無金属フ
タロシアニン層に含浸させた後、80℃で30分間乾燥
した。正孔注入層+高分子バインダーの膜厚は33nm
であった。さらにその上に発光層としてトリス−(8−
ヒドロキシキノリノール)アルミニウムを75nm真空
蒸着によって製膜し、最後に陰極としてMgAg(蒸着
速度比10:1)を250nm製膜した。
Example 7 An ITO was formed on a glass substrate by sputtering to form an anode. The resistance value was 15Ω / □. A sublimation-purified metal-free phthalocyanine was formed thereon as a hole injection layer by vacuum evaporation at 30 nm. At this time, the substrate was not heated. Then, 1,1-bis (4-diparatolylaminophenyl)
A coating solution was prepared by dissolving cyclohexane and poly (N-vinylcarbazole) at a weight ratio of 5: 1 in dichloromethane at 2% by weight, and this was impregnated into the metal-free phthalocyanine layer by dip coating. Dried for minutes. The thickness of the hole injection layer + polymer binder is 33 nm.
Met. Further, a tris- (8-
(Hydroxyquinolinol) aluminum was formed into a film by vacuum deposition of 75 nm, and finally, 250 nm of MgAg (deposition rate ratio: 10: 1) was formed as a cathode.

【0042】この素子の発光特性を空気中で測定したと
ころ、印加電圧10Vの直流電圧で2000cd/m2
の非常に明るい緑色の発光が得られた。また、6mA/
cm2 の一定電流密度で連続して発光させたところ、5
00時間後にも面発光の状態を持続していて、その時点
で印加電圧は6.5Vから7.2Vに上昇し、発光輝度
は220cd/m2 から160cd/m2 に落ちた。こ
れは、比較例と比べ本発明の有機薄膜EL素子において
電荷注入効率と耐久性がともに向上していることを示し
ている。
When the light emission characteristics of this element were measured in air, it was found that the applied voltage was 2000 cd / m 2 at a DC voltage of 10 V.
A very bright green luminescence was obtained. In addition, 6 mA /
When emitted continuously at a constant current density of 5 cm 2 , 5
Even after 00 hours, the state of surface light emission was maintained, at which point the applied voltage increased from 6.5 V to 7.2 V, and the emission luminance dropped from 220 cd / m 2 to 160 cd / m 2 . This indicates that both the charge injection efficiency and the durability of the organic thin film EL device of the present invention are improved as compared with the comparative example.

【0043】(実施例8)ガラス基板上にITOをスパ
ッタリングによって製膜し、陽極とした。その抵抗値は
15Ω/□とした。その上に正孔注入層として、昇華精
製したチタニルフタロシアニンを30nm真空蒸着によ
って製膜した。このとき基板の加熱は行わなかった。そ
の後、無金属フタロシアニンとポリ(N−ビニルカルバ
ゾール)を重量比1:1にしてテトラヒドロフランに2
重量%で溶かした塗液を作成し、これをディップコート
によってチタニルフタロシアニン層に含浸させた後、8
0℃で30分間乾燥させた。正孔注入層+高分子バイン
ダーの膜厚は33nmであった。さらにその上に発光層
としてトリス−(8−ヒドロキシキノリノール)アルミ
ニウムを75nm真空蒸着によって製膜し、最後に陰極
としてMgAg(蒸着速度比10:1)を250nm製
膜した。
Example 8 An ITO was formed on a glass substrate by sputtering to form an anode. The resistance value was 15Ω / □. A sublimation-purified titanyl phthalocyanine was formed thereon as a hole injection layer by vacuum evaporation at 30 nm. At this time, the substrate was not heated. Then, the metal-free phthalocyanine and poly (N-vinylcarbazole) were added to tetrahydrofuran at a weight ratio of 1: 1 to 2
A coating solution was prepared by dissolving it in a weight% and impregnating the titanyl phthalocyanine layer by dip coating.
Dry at 0 ° C. for 30 minutes. The thickness of the hole injection layer + polymer binder was 33 nm. Further, tris- (8-hydroxyquinolinol) aluminum was formed thereon as a light emitting layer by vacuum evaporation at 75 nm, and finally MgAg (evaporation rate ratio 10: 1) was formed as a cathode at 250 nm.

【0044】この素子の発光特性を空気中で測定したと
ころ、印加電圧10Vの直流電圧で1800cd/m2
の非常に明るい緑色の発光が得られた。また、6mA/
cm2 の一定電流密度で連続して発光させたところ、5
00時間後にも面発光の状態を持続していて、その時点
で印加電圧は7.5Vから8.3Vに上昇し、発光輝度
は170cd/m2 から120cd/m2 に落ちた。こ
れは、比較例と比べ本発明の有機薄膜EL素子において
電荷注入効率と耐久性がともに向上していることを示し
ている。
When the light emission characteristics of this device were measured in air, it was found that the applied voltage was 1800 cd / m 2 at a DC voltage of 10 V.
A very bright green luminescence was obtained. In addition, 6 mA /
When emitted continuously at a constant current density of 5 cm 2 , 5
After 00 hours, the state of surface light emission was maintained, at which point the applied voltage increased from 7.5 V to 8.3 V, and the emission luminance dropped from 170 cd / m 2 to 120 cd / m 2 . This indicates that both the charge injection efficiency and the durability of the organic thin film EL device of the present invention are improved as compared with the comparative example.

【0045】(比較例1)実施例1と同様に有機薄膜E
L素子を作成したが、高分子バインダーを正孔注入層に
含浸させなかった。
Comparative Example 1 An organic thin film E was prepared in the same manner as in Example 1.
An L element was prepared, but the polymer binder was not impregnated into the hole injection layer.

【0046】この素子の発光特性を空気中で測定したと
ころ、印加電圧10Vの直流電圧で95cd/m2 の緑
色の発光が得られた。また、6mA/cm2 の一定電流
密度で連続して発光させたところ、36時間後に、印加
電圧が10.8Vから17.2Vに上昇し、発光輝度が
180cd/m2 から23cd/m2 に落ちたところで
素子が絶縁破壊した。
When the light emission characteristics of this device were measured in air, a green light emission of 95 cd / m 2 was obtained at a DC voltage of 10 V applied. When light was continuously emitted at a constant current density of 6 mA / cm 2 , the applied voltage increased from 10.8 V to 17.2 V after 36 hours, and the emission luminance increased from 180 cd / m 2 to 23 cd / m 2 . The element was broken down when it fell.

【0047】(比較例2)実施例1と同様にして有機薄
膜EL素子を作成したが、高分子バインダーを正孔注入
層に含浸させず、正孔注入層の上に1,1−ビス(4−
ジパラトリルアミノフェニル)シクロヘキサンを真空蒸
着によって5nm製膜した。
Comparative Example 2 An organic thin film EL device was prepared in the same manner as in Example 1. However, the polymer binder was not impregnated into the hole injection layer, and 1,1-bis ( 4-
Diparatolylaminophenyl) cyclohexane was deposited to a thickness of 5 nm by vacuum evaporation.

【0048】この素子の発光特性を空気中で測定したと
ころ、印加電圧10Vの直流電圧で270cd/m2
緑色の発光が得られた。また、6mA/cm2 の一定電
流密度で連続して発光させたところ、156時間後に、
印加電圧が9.3Vから16.8Vに上昇し、発光輝度
が190cd/m2 から45cd/m2 に落ちたところ
で素子が絶縁破壊した。
When the light emission characteristics of this device were measured in air, green light emission of 270 cd / m 2 was obtained at a DC voltage of 10 V applied. When the light was continuously emitted at a constant current density of 6 mA / cm 2 , after 156 hours,
When the applied voltage increased from 9.3 V to 16.8 V and the light emission luminance decreased from 190 cd / m 2 to 45 cd / m 2 , the device was broken down.

【0049】[0049]

【発明の効果】以上説明したように、本発明によれば正
孔注入層の安定性が向上するために電荷注入効率と耐久
性が向上した有機薄膜EL素子が得られる。
As described above, according to the present invention, an organic thin film EL device having improved charge injection efficiency and durability due to improved stability of the hole injection layer can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機薄膜EL素子の1例を示す断面図
である。
FIG. 1 is a cross-sectional view showing one example of an organic thin film EL device of the present invention.

【図2】従来の有機薄膜EL素子の1例を示す断面図で
ある。
FIG. 2 is a cross-sectional view showing one example of a conventional organic thin film EL device.

【符号の説明】[Explanation of symbols]

1 基板 2 陽極 3 正孔注入層 4 発光層 5 陰極 6 高分子バインダー 7 低分子有機P型半導体 DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Hole injection layer 4 Light emitting layer 5 Cathode 6 Polymer binder 7 Low molecular organic P-type semiconductor

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも一方が透明な一対の電極間
に、少なくとも正孔注入層と発光層を有する有機薄膜E
L素子において、前記正孔注入層は陽極に接し、かつ、
空隙中に高分子バインダーを含有する低分子有機P型半
導体よりなる膜厚100nm以下の膜であることを特徴
とする有機薄膜EL素子。
An organic thin film having at least a hole injection layer and a light emitting layer between a pair of transparent electrodes.
In the L element, the hole injection layer is in contact with the anode, and
An organic thin-film EL device comprising a low-molecular organic P-type semiconductor containing a polymer binder in a void and having a thickness of 100 nm or less.
【請求項2】 高分子バインダーが低分子有機P型半導
体を含有する事を特徴とする請求項1記載の有機薄膜E
L素子。
2. The organic thin film E according to claim 1, wherein the polymer binder contains a low-molecular organic P-type semiconductor.
L element.
【請求項3】 低分子有機P型半導体を厚さ100nm
以下に製膜後に、高分子バインダーを含浸させ正孔注入
層とする事を特徴とする請求項1記載の有機薄膜EL素
子の製造方法。
3. A low-molecular-weight organic P-type semiconductor having a thickness of 100 nm.
2. The method according to claim 1, wherein the hole injection layer is formed by impregnating a polymer binder after forming the film.
【請求項4】 低分子有機P型半導体を厚さ100nm
以下に製膜後に、有機P型半導体を含有する高分子バイ
ンダーを含浸させ正孔注入層とすることを特徴とする請
求項2記載の有機薄膜EL素子の製造方法。
4. A low-molecular organic P-type semiconductor having a thickness of 100 nm
3. The method for producing an organic thin film EL device according to claim 2, wherein a hole injection layer is formed by impregnating a polymer binder containing an organic P-type semiconductor after forming the film.
JP5334531A 1993-12-28 1993-12-28 Organic thin film EL device and method of manufacturing the same Expired - Lifetime JP2591461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5334531A JP2591461B2 (en) 1993-12-28 1993-12-28 Organic thin film EL device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5334531A JP2591461B2 (en) 1993-12-28 1993-12-28 Organic thin film EL device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07192874A JPH07192874A (en) 1995-07-28
JP2591461B2 true JP2591461B2 (en) 1997-03-19

Family

ID=18278449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5334531A Expired - Lifetime JP2591461B2 (en) 1993-12-28 1993-12-28 Organic thin film EL device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2591461B2 (en)

Also Published As

Publication number Publication date
JPH07192874A (en) 1995-07-28

Similar Documents

Publication Publication Date Title
JP3412076B2 (en) Organic EL device
JP2776040B2 (en) Organic thin film EL device
JPH0753953A (en) Organic electroluminescent element
JPH07312290A (en) Organic thin film el element
JPH06325871A (en) Organic electroluminescent element
US5616427A (en) Organic thin film EL device having long lifetime
JP4215837B2 (en) Organic electroluminescent devices with new hole transport materials
JP2797905B2 (en) Organic thin film EL device
JP3684826B2 (en) Organic electroluminescence device
JP3552317B2 (en) Manufacturing method of organic electroluminescent device
US7040943B2 (en) Method for producing an organic electroluminescence display element
JP3227784B2 (en) Organic electroluminescent device
JPH08199161A (en) Organic electroluminescence element
JP3463364B2 (en) Organic electroluminescent device
JPH0888083A (en) Organic electric field light-emitting device
JPH05114487A (en) Organic thin film electroluminescent element
JP3016363B2 (en) Organic thin film EL device
JP2591461B2 (en) Organic thin film EL device and method of manufacturing the same
JPH06299148A (en) Organic electroluminescent element, its production and laser oscillator using the organic electroluminescent element
JP2003229279A (en) Organic electroluminescent element
JP3736881B2 (en) Organic thin film EL device
JPH0762526A (en) Production of organic electroluminescence element
JPH1012381A (en) Organic electroluminescent element
JP3208833B2 (en) Organic electroluminescent device
JP3555271B2 (en) Blue light emitting element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961029

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 16

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 16

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 17

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term