JP2590763B2 - Infrared solid-state imaging device - Google Patents

Infrared solid-state imaging device

Info

Publication number
JP2590763B2
JP2590763B2 JP6292863A JP29286394A JP2590763B2 JP 2590763 B2 JP2590763 B2 JP 2590763B2 JP 6292863 A JP6292863 A JP 6292863A JP 29286394 A JP29286394 A JP 29286394A JP 2590763 B2 JP2590763 B2 JP 2590763B2
Authority
JP
Japan
Prior art keywords
odd
numbered
charge
state imaging
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6292863A
Other languages
Japanese (ja)
Other versions
JPH08153865A (en
Inventor
茂 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6292863A priority Critical patent/JP2590763B2/en
Publication of JPH08153865A publication Critical patent/JPH08153865A/en
Application granted granted Critical
Publication of JP2590763B2 publication Critical patent/JP2590763B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電荷結合素子(CC
D)による電子走査方式の2次元赤外線固体撮像素子に
関する。
BACKGROUND OF THE INVENTION The present invention relates to a charge coupled device (CC).
D) An electronic scanning two-dimensional infrared solid-state imaging device according to D).

【0002】[0002]

【従来の技術】従来の赤外線固体撮像素子の例を図3に
示す。この例は順次走査方式の構成を採っている。単位
画素は受光領域12,トランスファゲート5及び垂直C
CD13の1段分(4電極)から構成されている。この
単位画素が2次元に配列されており、各垂直CCD13
は水平CCD15に繋がっている。水平CCD終端には
出力部16が設けられている。トランスファゲートには
全て同一の駆動信号が供給されるように、共通のトラン
スファゲート配線14で接続されている。受光領域面積
対画素面積比である開口率は全画素同一になっている。
2. Description of the Related Art FIG. 3 shows an example of a conventional infrared solid-state imaging device. This example employs a progressive scanning configuration. The unit pixel is a light receiving area 12, a transfer gate 5, and a vertical C
It is composed of one stage (four electrodes) of CD13. The unit pixels are two-dimensionally arranged, and each vertical CCD 13
Is connected to the horizontal CCD 15. An output section 16 is provided at the end of the horizontal CCD. All the transfer gates are connected by a common transfer gate wiring 14 so that the same drive signal is supplied. The aperture ratio, which is the ratio of the light receiving area to the pixel area, is the same for all pixels.

【0003】[0003]

【発明が解決しようとする課題】前述した従来の赤外線
固体撮像素子では、開口率と垂直CCDで扱い得る最大
転送電荷量とがトレードオフの関係にあり、感度とダイ
ナミックレンジとのバランスを取って設計されていた。
換言すれば、どちらにも犠牲が払われていた。このため
温度計測装置等に用いられる場合、装置の方で測温範囲
を区切り、絞り調整やフィルタ切替によって測定可能な
温度範囲を拡大していた。従って、従来のものでは測温
範囲が跨るような低温被写体と高温被写体を同一画面に
捕らえ、同時に測温することができないという欠点があ
った。
In the above-described conventional infrared solid-state imaging device, there is a trade-off between the aperture ratio and the maximum transfer charge amount that can be handled by the vertical CCD, and the sensitivity and the dynamic range must be balanced. Was designed.
In other words, both were sacrificed. For this reason, when used in a temperature measurement device or the like, the temperature measurement range is divided by the device, and the temperature range that can be measured by adjusting the aperture or switching the filter is expanded. Therefore, the conventional apparatus has a drawback that a low-temperature subject and a high-temperature subject whose temperature measurement ranges extend over the same screen cannot be captured and the temperature cannot be measured simultaneously.

【0004】[0004]

【課題を解決するための手段】前述の課題を解決するた
めに本発明の赤外線固体撮像素子は、奇数例の画素と偶
数列の画素が異なる開口率を有し、受光部から垂直電荷
結合素子へ信号電荷を転送し、かつ受光部のバイアス電
位を規定するトランスファゲートが奇数列の画素と偶数
列の画素とで別配線され別端子を具備し、奇数列に対応
するものと偶数列に対応するものの2組の水平電荷結合
素子及びそれに連なる出力部を具備している。開口率の
大きい画素列はチャネル幅の狭い垂直電荷結合素子を備
えており、開口率の小さい画素列はチャネル幅の広い垂
直電荷結合素子を備えている。
According to the present invention, there is provided an infrared solid-state imaging device according to the present invention, wherein odd-numbered pixels and even-numbered pixels have different aperture ratios, and a vertical charge-coupled device is provided from a light receiving portion. A transfer gate that transfers signal charges to the light-receiving section and defines the bias potential of the light receiving section is separately wired for odd-numbered column pixels and even-numbered column pixels, and has separate terminals, and corresponds to odd-numbered columns and even-numbered columns. However, two sets of horizontal charge-coupled devices and an output section connected to the two sets are provided. A pixel column with a large aperture ratio has a vertical charge-coupled device with a small channel width, and a pixel column with a small aperture ratio has a vertical charge-coupled device with a wide channel width.

【0005】[0005]

【作用】本発明の赤外線固体撮像素子では、奇数列と偶
数列とで開口率の異なる画素が配列されている、すなわ
ち、受光領域面積が広くて垂直CCDチャネル幅が狭い
画素列と、受光領域面積が狭くて垂直CCDチャネル幅
が広い画素列とが交互に配列されている。開口率が高い
画素列は高感度だが扱い得る電荷量が少ないため、低温
被写体に対する温度差検出能力は高いが高温被写体に対
しては飽和して温度差検出不能となる。一方、開口率が
低い画素列は低感度だが扱い得る電荷量が多いため、低
温被写体に対する温度差検出に不利だが高温被写体に対
しても飽和せず温度差検出可能である。これら2種類の
画素列の受光部におけるバイアス電位設定条件は、それ
ぞれに対応する垂直CCDの最大転送電荷量に即して決
定されるべきものであり最適条件が異なるが、本発明で
は受光部のバイアス電位を規定するトランスファゲート
が奇数列の画素と偶数列の画素とで別配線され別端子を
具備しているので、互いに独立に設定することができ
る。さらに、奇数列に対応するものと偶数列に対応する
ものの2組の水平CCD及びそれに連なる出力部を具備
しているので、奇数列で構成されるイメージ信号と偶数
列で構成されるイメージ信号とを完全に分離して取り出
すことができる。従って、本発明では低温被写体測温に
有効なイメージ信号と高温被写体測温に有効なイメージ
信号とを全く同時に得ることができるので、温度計測装
置等に用いれば低温被写体と高温被写体を同一画面に捕
らえて同時に測温することが可能となり、前述の課題が
解決される。
In the infrared solid-state imaging device according to the present invention, pixels having different aperture ratios are arranged in odd-numbered rows and even-numbered rows, that is, a pixel row having a large light-receiving area and a narrow vertical CCD channel width; Pixel rows having a small area and a wide vertical CCD channel width are alternately arranged. A pixel row having a high aperture ratio has high sensitivity but has a small amount of charge that can be handled. Therefore, the temperature difference detection capability for a low-temperature subject is high, but a high-temperature subject is saturated and the temperature difference cannot be detected. On the other hand, a pixel row having a low aperture ratio has low sensitivity but has a large amount of charge that can be handled, and thus is disadvantageous for detecting a temperature difference for a low-temperature subject, but can detect a temperature difference without being saturated for a high-temperature subject. The bias potential setting conditions in the light receiving sections of these two types of pixel rows are to be determined according to the maximum transfer charge amounts of the corresponding vertical CCDs, and the optimum conditions are different. Since the transfer gates for defining the bias potential are separately wired for the pixels in the odd-numbered columns and the pixels in the even-numbered columns and have different terminals, they can be set independently of each other. Further, since two sets of horizontal CCDs, one corresponding to an odd column and the other corresponding to an even column, are provided and an output unit connected to the horizontal CCD, an image signal composed of odd columns and an image signal composed of even columns are provided. Can be completely separated and taken out. Therefore, according to the present invention, an image signal effective for low-temperature subject temperature measurement and an image signal effective for high-temperature subject temperature measurement can be obtained at the same time. The temperature can be captured and measured at the same time, and the above-mentioned problem is solved.

【0006】[0006]

【実施例】図1は本発明の赤外線固体撮像素子の一実施
例の構成を示す平面図である。開口率が高い受光領域
1,トランスファゲート5及びチャネル幅が狭い垂直C
CD3の1段分(4電極)から成る画素が垂直方向に並
んだ画素列と、開口率が低い受光領域2、トランスファ
ゲート5及びチャネル幅が広い垂直CCD4の1段分
(4電極)から成る画素が垂直方向に並んだ画素列とを
互い違いに配列して撮像領域を構成している。この例で
は出力側から数えて奇数列が開口率の低い画素で偶数列
が開口率の高い画素になっている。受光領域のバイアス
電位を規定するトランスファゲート5は奇数列と偶数列
とで別々の配線6及び7に接続されており、奇数列用ト
ランスァゲート配線6はφTGodd 端子を具備し、偶数
列用トランスファゲート配線7はφTGeven端子を具備
している。
FIG. 1 is a plan view showing the structure of an embodiment of the infrared solid-state imaging device according to the present invention. Light-receiving region 1 with high aperture ratio, transfer gate 5 and vertical C with narrow channel width
A pixel row in which pixels of one stage (four electrodes) of CD3 are arranged in the vertical direction, a light receiving region 2 having a low aperture ratio, a transfer gate 5, and one stage (four electrodes) of a vertical CCD 4 having a wide channel width. An imaging region is configured by alternately arranging pixel rows in which pixels are arranged in a vertical direction. In this example, counting from the output side, odd columns are pixels with a low aperture ratio, and even columns are pixels with a high aperture ratio. The transfer gate 5 for defining the bias potential of the light receiving region is connected to separate wirings 6 and 7 for odd and even columns, and the transfer gate wiring 6 for odd columns has a φTG odd terminal, The transfer gate wiring 7 has a φTG even terminal.

【0007】撮像領域の下部に水平CCDを備えている
が、水平CCDは奇数列用8と偶数列用9の2個から成
っている。全ての垂直CCDは奇数列用水平CCD8に
接続されている。奇数列用水平CCD8と偶数列用水平
CCD9との間に、偶数列垂直CCDからの信号電荷を
奇数列用水平CCD8から偶数列用水平CCD9へ移送
するための転送機構を具備している。偶数列垂直CCD
の最大転送電荷量は奇数列垂直CCDのそれより少ない
ので、図のように奇数列用水平CCD8を撮像領域直下
に設ける構成ならば、偶数列用水平CCD9のチャネル
幅を減らして最大転送電荷量を奇数列用水平CCD8の
それより少なくすることができる。2個の水平CCD8
及び9の終端にはそれぞれ奇数列用出力部10と偶数列
用出力部11が接続されている。2個の出力部10及び
11はそれぞれ扱う電荷量に適した電荷−電圧変換係数
を持たせている。例えばチャネル幅が狭い垂直CCD3
(偶数列)とチャネル幅が広い垂直CCD4(奇数列)
の最大転送電荷量比が1:2であったとすれば、偶数列
用出力部11と奇数列用出力部10の電荷−電圧変換係
数比を2:1としておけば、信号処理装置はどちらの列
に対するものもほぼ同様のものを用いることができて都
合が良い。
A horizontal CCD is provided below the image pickup area. The horizontal CCD is composed of two odd-numbered columns 8 and even-numbered columns 9. All the vertical CCDs are connected to odd-numbered horizontal CCDs 8. A transfer mechanism is provided between the odd-row horizontal CCD 8 and the even-row horizontal CCD 9 for transferring the signal charges from the even-row vertical CCD from the odd-row horizontal CCD 8 to the even-row horizontal CCD 9. Even column vertical CCD
Since the maximum transfer charge amount is smaller than that of the odd column vertical CCD, if the odd column horizontal CCD 8 is provided immediately below the imaging area as shown in the figure, the maximum transfer charge amount can be reduced by reducing the channel width of the even column horizontal CCD 9. Is smaller than that of the odd-numbered horizontal CCD 8. Two horizontal CCD8
9 and 9 are connected to an odd-numbered column output unit 10 and an even-numbered column output unit 11, respectively. Each of the two output units 10 and 11 has a charge-voltage conversion coefficient suitable for the amount of charge to be handled. For example, a vertical CCD 3 with a narrow channel width
(Even line) and vertical CCD 4 with wide channel width (odd line)
Assuming that the maximum transfer charge ratio is 1: 2, if the charge-to-voltage conversion coefficient ratio of the even-numbered column output unit 11 and the odd-numbered column output unit 10 is set to 2: 1, the signal processing device can use either of them. Almost the same thing can be used for the column, which is convenient.

【0008】図2は低温被写体と高温被写体を撮像した
ときの画素における信号電荷の蓄積状態を示している。
ここで(a)は低温被写体を撮像した場合であり、
(b)は高温被写体を撮像した場合である。横軸はトラ
ンスファゲートの読み出し動作により受光部がリセット
されてからの経過時間を表しており、縦軸は受光部の蓄
積電荷量を表している。それぞれの画素の受光部におけ
る最大蓄積電荷量が、対応する垂直CCDの最大転送電
荷量と一致するように、トランスファゲートのリセット
電位を設定すると最も効果的である。トランスファゲー
トが奇数列と偶数列とで別配線となっているので、この
ような設定が可能となっている。図中の「蓄積時間」は
次のリセットが掛かるまでの時間であり、実際の動作で
はここで蓄積電荷量が零になる。(a)に示すように、
低温被写体を撮像したときには信号電荷の増加速度は遅
いが、開口率が高い蓄積時間内に多くの信号電荷を発生
し、測温の良好に行なうことができる。(b)に示すよ
うに、高温被写体を撮像したときには信号電荷の増加速
度は速く、開口率が高い画素では飽和状態となって測温
不能となってしまうが、開口率が低い画素は開口率が高
い画素に比べて信号電荷の増加速度が遅いうえに最大電
荷量も多いので、測温可能状態を維持することができ
る。本発明の赤外線固体撮像素子は、このように得られ
た2種類のイメージ信号を前述の構成によって同時に出
力し得るので、これを用いて温度計測装置等を構成すれ
ば低温被写体と高温被写体を同一画素に捕らえて同時に
測温することが可能となる。
FIG. 2 shows an accumulation state of signal charges in pixels when a low-temperature subject and a high-temperature subject are imaged.
Here, (a) is a case where a low-temperature subject is imaged,
(B) is a case where a high-temperature subject is imaged. The horizontal axis represents the elapsed time since the light receiving unit was reset by the read operation of the transfer gate, and the vertical axis represents the accumulated charge amount of the light receiving unit. It is most effective to set the reset potential of the transfer gate so that the maximum accumulated charge in the light receiving section of each pixel matches the maximum transfer charge of the corresponding vertical CCD. Such a setting is possible because the transfer gates are separately provided for odd columns and even columns. The “accumulation time” in the figure is the time until the next reset is performed, and the accumulated charge amount becomes zero in the actual operation. As shown in (a),
When a low-temperature subject is imaged, the rate of increase of signal charges is slow, but a large amount of signal charges is generated within the accumulation time with a high aperture ratio, and good temperature measurement can be performed. As shown in (b), when a high-temperature subject is imaged, the rate of increase of the signal charge is fast, and a pixel having a high aperture ratio is saturated and cannot be measured, but a pixel having a low aperture ratio has a low aperture ratio. Since the rate of increase of the signal charge is slower and the maximum charge amount is larger than that of the pixel having a higher value, the temperature measurement enabled state can be maintained. The infrared solid-state imaging device of the present invention can simultaneously output the two types of image signals obtained as described above by the above-described configuration. Therefore, if a temperature measurement device or the like is used to configure the same, a low-temperature subject and a high-temperature subject can be identified. It becomes possible to measure the temperature simultaneously by capturing it in the pixel.

【0009】[0009]

【発明の効果】以上説明したように本発明の赤外線撮像
素子は、奇数列の画素と偶数列の画素が異なる開口率を
有し、奇数列の画素と偶数列の画素とでトランスファゲ
ートが別配線され別端子を具備し、奇数列に対応するも
のと偶数列に対応するものの2組の水平電荷結合素子及
びそれに連なる出力部を具備する構成としたので、低温
被写体測温に有利な高感度イメージ信号と高温被写体に
有利な高ダイナミックレンジイメージ信号の両方を同時
に出力することができる。従って、本発明の赤外線固体
撮像素子を用いれば、低温被写体と高温被写体を同一画
面に捕らえ、同時測温可能な温度計測装置等を構成でき
る効果がある。
As described above, in the infrared imaging device according to the present invention, the odd-numbered pixels and the even-numbered pixels have different aperture ratios, and the odd-numbered pixels and the even-numbered pixels have different transfer gates. Since it is configured to have two sets of horizontal charge-coupled devices, one corresponding to an odd-numbered row and the other corresponding to an even-numbered row, and another output terminal connected thereto, a high sensitivity advantageous for low-temperature subject temperature measurement is provided. It is possible to simultaneously output both an image signal and a high dynamic range image signal that is advantageous for a high-temperature subject. Therefore, the use of the infrared solid-state imaging device of the present invention has an effect that a low-temperature subject and a high-temperature subject can be captured on the same screen, and a temperature measuring device or the like capable of simultaneous temperature measurement can be configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の赤外線固体撮像素子の一実施例の構成
を示す平面図である。
FIG. 1 is a plan view illustrating a configuration of an embodiment of an infrared solid-state imaging device according to the present invention.

【図2】開口率が高い画素と開口率が低い画素における
信号電荷の蓄積状態を示す図で、(a)が低温被写体を
撮像した場合、(b)が高温被写体を撮像した場合を表
している。
FIGS. 2A and 2B are diagrams illustrating the accumulation state of signal charges in a pixel having a high aperture ratio and a pixel having a low aperture ratio, wherein FIG. 2A illustrates a case where a low-temperature subject is imaged, and FIG. I have.

【図3】従来の赤外線固体撮像素子の構成を示す平面図
である。
FIG. 3 is a plan view showing a configuration of a conventional infrared solid-state imaging device.

【符号の説明】[Explanation of symbols]

1 開口率が高い受光領域 2 開口率が低い受光領域 3 チャネル幅が狭い垂直CCD 4 チャネル幅が広い垂直CCD 5 トランスファゲート 6 トランスファゲート配線(奇数列用) 7 トランスファゲート配線(偶数列用) 8 水平CCD(奇数列用) 9 水平CCD(偶数列用) 10 出力部(奇数列用) 11 出力部(偶数列用) 12 受光領域 13 垂直CCD 14 トランスファゲート配線 15 水平CCD 16 出力部 REFERENCE SIGNS LIST 1 light-receiving region with high aperture ratio 2 light-receiving region with low aperture ratio 3 vertical CCD with narrow channel width 4 vertical CCD with wide channel width 5 transfer gate 6 transfer gate wiring (for odd columns) 7 transfer gate wiring (for even columns) 8 Horizontal CCD (for odd columns) 9 Horizontal CCD (for even columns) 10 Output unit (for odd columns) 11 Output unit (for even columns) 12 Light receiving area 13 Vertical CCD 14 Transfer gate wiring 15 Horizontal CCD 16 Output unit

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 受光部が2次元に配列され、垂直方向と
水平方向に設けられた電荷結合素子によって電子走査さ
れる赤外線固体撮像素子において、奇数列の画素と偶数
列の画素が異なる開口率を有し、受光部から垂直電荷結
合素子へ信号電荷を転送し、かつ、受光部のバイアス電
位を規定するトランスファゲートが奇数列の画素と偶数
列の画素とで別配線され別端子を具備し、奇数列に対応
するものと偶数列に対応するものの2組の水平電荷結合
素子及びそれに連なる出力部を具備することを特徴とす
る赤外線固体撮像素子。
1. An infrared solid-state imaging device in which light receiving units are two-dimensionally arranged and electronically scanned by charge-coupled devices provided in a vertical direction and a horizontal direction, wherein an odd-numbered pixel and an even-numbered pixel have different aperture ratios. A transfer gate for transferring signal charges from the light receiving section to the vertical charge coupled device, and defining a bias potential of the light receiving section, is separately wired for odd-numbered column pixels and even-numbered column pixels, and has a separate terminal. An infrared solid-state imaging device comprising two sets of horizontal charge-coupled devices, one corresponding to an odd-numbered column and the other corresponding to an even-numbered column, and an output unit connected thereto.
【請求項2】 開口率の大きい画素列はチャネル幅が狭
い垂直電荷結合素子を有し、開口率の小さい画素列はチ
ャネル幅の広い垂直電荷結合素子を有する請求項1記載
の赤外線固体撮像素子。
2. The infrared solid-state imaging device according to claim 1, wherein the pixel column having a large aperture ratio has a vertical charge-coupled device having a small channel width, and the pixel column having a small aperture ratio has a vertical charge-coupled device having a wide channel width. .
JP6292863A 1994-11-28 1994-11-28 Infrared solid-state imaging device Expired - Fee Related JP2590763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6292863A JP2590763B2 (en) 1994-11-28 1994-11-28 Infrared solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6292863A JP2590763B2 (en) 1994-11-28 1994-11-28 Infrared solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH08153865A JPH08153865A (en) 1996-06-11
JP2590763B2 true JP2590763B2 (en) 1997-03-12

Family

ID=17787354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6292863A Expired - Fee Related JP2590763B2 (en) 1994-11-28 1994-11-28 Infrared solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2590763B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4663083B2 (en) * 2000-09-11 2011-03-30 オリンパス株式会社 Endoscope device
KR100369359B1 (en) * 2000-12-30 2003-01-30 주식회사 하이닉스반도체 Image sensor capable of separating color data between neighboring pixels and data scan method for the same
US7679041B2 (en) 2006-02-13 2010-03-16 Ge Inspection Technologies, Lp Electronic imaging device with photosensor arrays
JP5091964B2 (en) * 2010-03-05 2012-12-05 株式会社東芝 Solid-state imaging device
JP6851599B2 (en) * 2018-04-03 2021-03-31 シャープ株式会社 Infrared detection system

Also Published As

Publication number Publication date
JPH08153865A (en) 1996-06-11

Similar Documents

Publication Publication Date Title
US10778918B2 (en) Solid-state imaging device
US10685993B2 (en) Imaging device and imaging system
US5060245A (en) Interline transfer CCD image sensing apparatus
JPH01106676A (en) Solid-state image sensor
JP3337976B2 (en) Imaging device
JPS5931056A (en) Solid-state image pickup element
US20020071046A1 (en) Solid-state image apparatus, driving method therefor, and camera system
JPH04262679A (en) Driving method for solid-state image pickup device
JPH035673B2 (en)
JPH06121238A (en) Ccd imaging element
JPS6338865B2 (en)
JPH11205532A (en) Solid-state image pickup device
JP2590763B2 (en) Infrared solid-state imaging device
JPH05206439A (en) Solid-state image sensing element
JPH09321938A (en) Color linear image sensor and its drive method
JPH09116815A (en) Solid-state image pickup device
JP2504845B2 (en) Solid-state imaging device
JP2001053267A (en) Solid-state image sensing element and its driving method and camera system
JP2799003B2 (en) Driving method of solid-state image sensor
JP2695507B2 (en) Color photoelectric conversion device
JPH0440179A (en) Solid image pickup element
JP2900382B2 (en) Solid-state imaging device
JP2595916B2 (en) Solid-state imaging device and driving method thereof
JPH03162183A (en) Photoelectric conversion device
JPH0773347B2 (en) Driving method for solid-state imaging device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961022

LAPS Cancellation because of no payment of annual fees